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Abstract

In the first part of the paper we study concepts of supremum and maxi-
mum as subsets of a topological space X endowed by preference relations.
Several rather general existence theorems are obtained for the case where
the preferences are defined by countable semicontinuous multi-utility repre-
sentations. In the second part of the paper we consider partial orders and
preference relations ”lifted” from a metric separable space X endowed by a
random preference relation to the space L0(X) of X-valued random variables.
We provide an example of application of the notion of essential maximum
to the problem of the minimal portfolio super-replicating an American-type
contingent claim under transaction costs.
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1. Introduction

This paper pursues several purposes.
First, we continue to study the concepts of supremum and essential supre-

mums as sets, initiated in [8] and where the reader can find a detailed motiva-
tion of interest to these and related objects. In contrast with the mentioned
paper where we worked in the ”elementary” framework of Rd with a partial
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order given by a countable continuous multi-utility representation, we con-
sider here much more general one, namely, of a topological space X equipped
with a preference relation (preorder) and obtain, in this standard setting of
the modern preference theory, extensions of several results from [8].

Our interest to such a general setting is motivated, essentially, by the
models of financial markets with transaction cost with infinite many (and
even uncountably many securities), see the recent works [4] and [3].

Second, we introduce, for a set Γ ⊆ X, a concept of Max Γ as a subset
of the closure Γ̄ and provide some characterizations of this set together with
sufficient conditions ensuring that it is not empty.

Third, and this is our main purpose, we study the concepts of essential
supremum and essential maximum in the space L0(X) of random variables
taking values in a separable metric space X, assuming that L0(X) is equipped
with a preference relation induced by a (possibly, random) preference relation
in X. These objects of interest are subsets of L0(X). Special attention is
payed to the case where X is a separable Hilbert space and the preorder is
given by a random cone.

Forth, we apply the abstract theory to describe the set of minimal hedging
portfolios in the problem of hedging of American-type contingent claims in
the presence of proportional transaction costs.

In the theory of markets with friction which can be found in the book [9]
the value processes are d-dimensional adapted processes and so are American
contingent claims. Hedging (super-replicating) a contingent claim Y = (Yt)
means to find a value process V = (Vt) which dominates the claim in the
sense that for any t the difference Vt−Yt belongs to the solvency cone Kt, i.e.
Vt dominates Yt in the sense of the preference relation generated by the cone
Kt (the latter is a partial order if Kt is proper, as assumed in models with
”efficient friction”). The solvency cone is a fundamental notion of the theory
giving a geometric description of the vectors of investor’s positions that can
be converted (paying the transaction costs) into vectors with non-negative
components. In general, solvency may depend on the state of the nature ω
and this is always the case when models are described in physical units and
the latter description is more convenient for analysis.

Though in the existing models of financial markets Kt(ω) are polyhedral
cones, mathematically it is quite reasonable to consider more abstract models
where K = (Kt) is an adapted set-valued process which values are closed
convex cones, see [14].

The value process V is called minimal if it dominates Y , at the terminal
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date VT = YT , and any value process W dominating Y and dominated by
V dominates V . The problem of interest is whether the minimal portfolios
do exist and how they can found. We provide a description of the set of
minimal portfolios as the solution of (backward) recursive inclusions. In a
striking contrast with the description obtained in [8] for European claims
and involving Esssup, the present one, for the American options, is based on
the concept Essmax. The developed theory covering preorders allows us to
work without the efficient friction condition.

The structure of the paper is the following. In Section 2 we consider a
quite general deterministic setting when the preference relation on a topo-
logical space is given by a family of semicontinuous functions. We extend
our previous results on the existence of Sup Γ (as a no-empty set). We define
the set Max Γ and give sufficient conditions to guarantee its existence. In
the preference theory and multivariate optimization there is a plethora of
definitions of supremum/maximum-like objects, see, e.g. [5], [11], [15], but
we could identify ours with already known and the approach based on multi-
utility representation seems to be new. In Section 3 we work in a setting
where X is a separable metric space and the preference relation in the space
of X-valued random variables is given by a countable family of Carathéodory
functions. We discuss results on the existence of Esssup Γ and Essmax Γ for
an order bounded set of X-valued random variables. In Section 4 we con-
sider a more specific case where the random preference relation is given by
a random cone. In Section 5 we give an application to the hedging problem
for American-type contingent claims under transaction costs.

2. Supremum and Maximum with Respect to a Preference Rela-
tion in a Deterministic Setting

2.1. Basic Concepts

Let � be a preference relation or a preorder in X, i.e. a binary relation
between certain elements of a set X which is reflexive (x � x) and transitive
(if x � y and y � z then x � z). The preorder is called partial order if it is
antisymmetric (if x � y and y � x then x = y).

Define an order interval [x, y] := {z ∈ X : y � z � x} and extend this
notation by putting

]−∞, x] := {z ∈ X : x � z}, [x,∞[:= {z ∈ X : z � x}
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(the latter objects are also called lower and upper contour sets). If Γ is a
subset of X, the notation Γ � x means that y � x for all y ∈ Γ. In the same
spirit: Γ1 � Γ means that x � y for all x ∈ Γ1 and y ∈ Γ;

[Γ,∞[:= ∩z∈Γ{z ∈ X : z � x},

etc. We shall use the notation x � z instead of z � x.
For the case where X is a topological space (this will be the standing

assumption in this paper), the following definitions are used: a preference re-
lation is upper semi-continuous (respectively, lower semi-continuous) if [x,∞[
(respectively, ]−∞, x]) is closed for any x ∈ X and semi-continuous if it is
both upper and lower semi-continuous. It is called continuous if its graph
{(x, y) : y � x} is a closed subset of X ×X.

Let Y be a set equipped by a preference relation �Y . We say that a set
U of Y -valued functions defined on X represents the preference relation � if
for any x, y ∈ X,

x � y ⇔ u(x) �Y u(y) ∀u ∈ U .

In the literature usually Y = R, i.e. U is a set of real functions on X and

x � y ⇔ u(x) ≥ u(y) ∀u ∈ U .

In the sequel of the paper, by default, Y = R if not specified particularly.
This set U is called multi-utility representation of the preference rela-

tion. If its elements are (semi)continuous functions, we say that U is a
(semi)continuous multi-utility representation of the preference relation.

Clearly, any preference relation can be represented by the family of indi-
cator functions U := {I[x,∞[, x ∈ X}.

The following statements (between many other interesting results) are
due to Evren and Ok, [7]:

1) any upper (lower) semicontinuous preference relation on a topological
space X admits an upper (lower) semicontinuous multi-utility representation,

2) any continuous preference relation on a locally compact σ-compact
topological space X admits a continuous multi-utility representation.

Note that an arbitrary family U defines a preference relation. It is a
partial order if the equalities u(x) = u(y) for all u ∈ U imply that x = y.

The elements x and y are equivalent if x � y and y � x; we write x ∼ y
in this case.
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2.2. Supremum as a Set

Definition 2.1. Let Γ be a non-empty subset of X and let � be a prefer-
ence relation. We denote by Sup Γ the largest subset Γ̂ of X such that the
following conditions hold:

(a0) Γ̂ � Γ;

(b0) if x � Γ, then there is x̂ ∈ Γ̂ such that x � x̂;

(c0) if x̂1, x̂2 ∈ Γ̂, then x̂1 � x̂2 implies x̂1 ∼ x̂2.

Remark 2.2. If the relation � is a partial order, the equivalence x̂1 ∼ x̂2

means simply that x̂1 = x̂2. In the case of partial order the set Γ̂ satisfying
(a0), (b0), (c0) is unique, see Lemma 3.3 in [8], but, for a general preference
relation this is not true. Note that Sup Γ may not exist. It is easy to see
that Sup Γ is the union of all subset Γ̂ satisfying (a0), (b0), (c0).

The equivalence relation ∼ defines the quotient space X̃ := X/ ∼; the
notation [x] means the class containing an element x ∈ X̃. The relation
[y] � [x] is a partial order in X̃. Let us consider the weakest topology in X̃
under which the quotient mapping q : x 7→ [x] is continuous.

Note that the continuity of q is equivalent to the inclusion q(Γ̄) ⊆ q(Γ)
for any subset Γ of X (Γ̄ denotes the closure of Γ), see [10], Ch. 3, Th. 1.

Since q(Γ) ⊆ q(Γ̄) we have the equality q(Γ) = q(Γ̄).
We summarize in the following lemma several obvious properties.

Lemma 2.3. Let Γ ⊆ X. Then
(i) Sup Γ = Sup Γ∼, where

Γ∼ := {x′ : there exists x ∈ Γ such that x′ ∼ x} = q−1q(Γ);

(ii) if Γ̂ = Sup Γ, then q(Γ̂) = Sup q(Γ);
(iii) if A ⊆ X̃ and SupA exists, then q−1(SupA) = Sup q−1(A).

If the set Γ̂ = Sup Γ for Γ ⊆ X, then its image q(Γ̂) coincides with

Sup q(Γ) in the quotient space X̃. Also, Γ̂ = Sup q−1(q(Γ)) in X. A function
g : X̃ → R is continuous if and only if g ◦ q : X → R is continuous. From
this criterion it follows that if f : X → R is a continuous function which is
constant on the classes of equivalences, then the function g : X̃ → R with
g([x]) = f(x) is well-defined and continuous.
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Recall that a function u : X → R ∪ {∞} is called lower semicontinuous
(l.s.c.) if at any point x ∈ X

lim inf
xα→x

u(xα) ≥ u(x).

Equivalently, u is l.s.c. if all lower level sets {x ∈ X : u(x) ≤ c} are closed,
see [1]. A function g : X̃ → R is l.s.c. if and only if g ◦ q : X → R is
l.s.c. Indeed, the set {[x] ∈ X̃ : g([x]) > c} is open if and only if its inverse
image {x ∈ X : g(q(x)) > c} is open. If a function f : X → R is l.s.c. and
constant on the classes of equivalences, then the function g : X̃ → R with
g([x]) = f(x) is l.s.c.

A function u is called upper semi-continuous (u.s.c.) if the function −u
is lower semicontinuous.

The following result is a generalization of Theorem 2.4 in [8].

Theorem 2.4. Let � be a partial order in a topological space X represented
by a countable family U = {uj : j = 1, 2, ...} of lower semicontinuous
functions such that all order intervals [x, y], y � x, are compacts. If a subset
Γ is bounded from above, i.e. x̄ � Γ for some x̄, then Sup Γ exists.

Proof. Fix x0 ∈ Γ. Assuming without loss of generality that |uj| ≤ 1
for all uj ∈ U we define the function u :=

∑
j 2−juj. Then u is l.s.c. and,

therefore, for every x � Γ it attains its minimum on the non-empty compact
set [Γ, x]. Put

Λ(x) := argminy∈[Γ,x]u(y).

Then the set Γ̂ :=
⋃
x�Γ Λ(x) obviously satisfies the properties (a0) and (b0).

Let x̂1, x̂2 ∈ Γ̂, x̂1 � x̂2, i.e. uj(x̂1) ≥ uj(x̂2) for all j and u(x̂1) ≥ u(x̂2).
There is x1 � Γ such that x̂1 ∈ Λ(x1). Since x̂2 ∈ [Γ, x̂1] ⊆ [Γ, x1], we
have that u(x̂2) ≥ u(x̂1). So, u(x̂2) = u(x̂1) and this is possible only if
uj(x̂1) = uj(x̂2) for all j. Therefore, x̂1 = x̂2 and (c0) holds. 2

Remark 2.5. The claim of the above theorem holds also under the assump-
tion of the compactness of the sets [Γ, x] for all x � Γ.

In virtue of the above discussion we have the following generalization.

Theorem 2.6. Let � be a preference relation in X represented by a countable
family of lower semicontinuous functions such that all order intervals [[x], [y]],
[y] � [x], are compact subsets of X̃. If the subset Γ is such that x̄ � Γ for
some x̄, then Sup Γ 6= ∅.
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Proof. The partial order in X̃ is given by the family of lower semicon-
tinuous functions {u(f(.)) : u ∈ U} where f : X̃ → X is an arbitrary
function associating with [x] ∈ x̃ a point f(x) ∈ [x]. By virtue of Theorem
2.4 Sup q(Γ) is not empty and so is the set Sup Γ = q−1(Sup q(Γ)). 2

Remark 2.7. One can observe that in the deterministic setting results in-
volving Sup for a preference relation can be easily obtained, in a standard
way, from the corresponding results for partial order in the quotient space.

We finish this subsection by a result showing that on a reasonable level of
generality the existence of a continuous multi-utility representation implies
the existence of a countable continuous multi-utility representation.

Proposition 2.8. Let X be a σ-compact metric space. Suppose that a family
U of continuous functions defines a preference relation on X. Then this
preference relation can be defined by a countable subfamily of U .

Proof. Let X = ∪nXn where Xn are compact metric spaces. The metric
space C(Xn) of continuous functions is separable and so its subspace U|Xn
formed by restrictions of functions from U onto Xn. Thus, there exists a
countable family Un ⊂ U such that the restriction of its elements onto Xn

are dense in U|Xn . It is clear that the countable family ∪nUn defines the same
preference relations as U . 2

Combining this proposition with Theorem 1 in [7] we obtain the following:

Corollary 2.9. Any continuous preference relation on a locally compact and
σ-compact Hausdorff topological space (in particular, on Rd) admits a count-
able multi-utility representation.

In the economic literature compactness assumptions sometimes are con-
sidered as too restrictive. In a relation with our hypothesis it may be of
interest the following result ([7], Th.3): on a topological space with a count-
able base any near-complete upper (lower) semicontinuous preorder admits
upper (lower) semicontinuous multi-utility representation.

The example below shows that the partial order may not admit a count-
able multi-utility representation but, nevertheless, any bounded from above
subset Γ possesses nonempty Sup Γ.

Example 2.10. Let us consider the space X = [0, 1]× [0, 1] ⊂ R2 with the
lexicographic partial order: (x, y) � (x′, y′) if either x > x′ or x = x′ and y ≥
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y′. This partial order does not admit a countable multi-utility representation
{uj}. Indeed, suppose that such a representation exists. Assuming without
loss of generality that 0 ≤ uj ≤ 1 we define the function u : X → [0, 1]
with u(x, y) =

∑
2−juj(x, y). Associate with u the set-valued mapping x 7→

[u(x, 0), u(x, 1)] defined on [0, 1]. From the definition of the partial order
it follows that u(x, 0) < u(x, 1) and u(x, 1) < u(x′, 0) when x < x′. We
get a contradiction since the interval [0, 1] cannot contain uncountably many
disjoint intervals with non-empty interiors.

Let Γ be a non-empty subset of X such that (x, y) � (x̄, ȳ) for any
(x, y) ∈ Γ. Let x̂ = sup{x : (x, y) ∈ Γ}. If there exists y ∈ [0, 1] such that
(x̂, y) ∈ Γ, then Sup Γ = {(x̂, ŷ)} where ŷ = sup{y : (x̂, y) ∈ Γ}. If such y
does not exist, then Sup Γ = {(x̂, 0)}.

Note also that for X = R2 the subset Γ = {(x, y) ∈ R2 : x = 1} is
bounded with respect to the lexicographic partial order but Sup Γ = ∅.

Example 2.11. Let X be a linear topological space and let l : X → R be
a continuous function such that l(0) = 0 and the inequalities l(x) ≥ 0 and
l(y) ≥ 0 implies the inequality l(x+y) ≥ 0. Let x � y means that l(x−y) ≥ 0.
Then � is a continuous preference relations which is a partial order if the
system of inequalities l(x) ≥ 0, l(−x) ≥ 0 has only zero solution. Accordingly
to Corollary 2.9 this preference relation in Rd admits a countable multi-
utility representation. In the model of the market with constant proportional
transaction costs with d assets where the first one is chosen as the numéraire,
the above properties are satisfied by the liquidation function

l(x) = sup{λ : x− λe1 ∈ K}

where K ⊂ Rd is the solvency cone, [2].

2.3. Preference Relation in a Hilbert Space Defined by a Cone

In this subsection we are interested in the preference relation in a (sepa-
rable) Hilbert space X defined by a closed (convex) cone G ⊆ X. As usual,
x � 0 means that x ∈ G, and y � x means that y−x � 0, i.e. y ∈ x+G. Ob-
viously, this preference relation is homogeneous: y � v implies that λy � λx
for any λ ≥ 0. Also if y � x, v � u, then x+v � y+u. It is continuous since
its graph {(x, y) : y − x ∈ G} is a closed subset of X ×X. The preference
relation defined by a cone G is a partial order if and only if G is proper, i.e.
if G0 = {0} where G0 := G ∩ (−G).
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By the classical separation theorem the cone G is the intersection of
the family of closed half-spaces L = {x ∈ X : lx ≥ 0} containing G.
Its complement Gc is the union of the open half-spaces Lc. Notice that in
the Hilbert space X any open covering of an open set contains a countable
subcovering. Hence, there exists a countable family of vectors lj such that
G = ∩j{x ∈ X : ljx ≥ 0}. It follows that a countable family of linear
functions uj(x) = ljx represents the preference relation defined by G. So, the
preference relation defined by a closed convex cone G ⊆ X can be generated
by a countable family of linear functions. Clearly, the converse is true.

For the preference relation given by a cone the properties defining the set
Γ̂ = Sup Γ can be reformulated in geometric terms as follows:

(a′0) Γ̂− Γ ⊆ G;

(b′0) if x− Γ ⊆ G, then there is x̂ ∈ Γ̂ such that x− x̂ ∈ G;

(c′0) if x̂1, x̂2 ∈ Γ̂, then x̂1 − x̂2 /∈ G \G0.

Notation. To distinguish preference relations generated by various cones (a
typical situation in applications for market models with transaction costs)
we shall use sometimes the notation �G. Note also that the order intervals
are convex.

Lemma 2.12. For the partial order defined by a closed proper cone G in Rd

the order intervals [x, y] are bounded.

Proof. Suppose that zn ∈ [x, y] and |zn| → ∞. Passing to a subsequence,
we may assume without loss of generality that zn/|zn| → z∞ with |z∞| = 1.
For any linear function u(x) from the generating family U the inequalities
u(x) ≤ u(zn) ≤ u(y) imply that

u(x)

|zn|
≤ u

( zn
|zn|

)
≤ u(y)

|zn|
.

It follows that u(z∞) = 0 for all u ∈ U . That is z∞ = 0. A contradiction. 2

Thus, for the case of the partial order on Rd given by a cone the hypothe-
ses of Theorem 2.4 are fulfilled. It is also clear that the arguments in the proof
of the above lemma does not work for infinite-dimensional Hilbert space:
though one can always find a weakly convergent subsequence of zn/|zn|, the
norm of the limit might be well equal to zero. But the convexity of the order
intervals combined with the property that the balls in a Hilbert space are
weakly compact leads to the following result.
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Theorem 2.13. Let � be the partial order generated by a proper closed
convex cone G in a Hilbert space X. If Γ ⊆ X is such that x̄ � Γ (i.e.
x̄− Γ ⊆ G) for some x̄ ∈ X and for every x � Γ the order interval [Γ, x] is
bounded, then Sup Γ 6= ∅.

Proof. Take arbitrary x0 ∈ Γ and for each x � Γ define on the Hilbert
space generated by the order interval [Γ, x] the linear function u(.;x) by
putting u(y;x) :=

∑
j aj(x)ljy, where

aj(x) := 2−j(1 + |ljx0|+ |ljx̄|)−1.

The convex closed bounded set [Γ, x] is weakly compact. It follows that

Λ(x) := argminy∈[Γ,x]u(y;x) 6= ∅.

In the same way as in the proof of Theorem 2.4 we check that Γ̂ :=
⋃
x�Γ Λ(x)

satisfies all properties required from Sup Γ. 2

Theorem 2.14. Let � be the preference relation generated by a closed convex
cone G in a Hilbert space X and let q be the projection of X onto (G0)⊥. If
Γ ⊆ X is such that x̄ � Γ for some x̄ ∈ X and the order intervals [q(Γ), q(x)],
x � Γ, are bounded, then Sup Γ 6= ∅.

Proof. The quotient space X̃ = X/ ∼ can be identified with (G0)⊥ and
the projection q with the quotient mapping. The assumptions ensure that in
the quotient space with the induced partial order Sup q(Γ) is non-empty and
so is Sup Γ = q−1(Sup q(Γ)). 2

2.4. Maximum as a Set

We give definitions of other two sets which are reduced, in the case of usual
total order of R and a bounded subset Γ ∈ R, to the singleton {sup Γ}. So,
they also can be considered as generalizations of the classical notion.

In the sequel X is a topological space with a preference relation on it.

Definition 2.15. Let Γ be a non-empty subset of X. We put

Max Γ = {x ∈ Γ : Γ ∩ [x,∞[= [x, x]}.

Note that [x, x] = [x] = {y : y ∼ x}. In the case of partial order
[x, x] = {x}.
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Definition 2.16. Let Γ be a non-empty subset of X. We denote by Max1Γ
the maximal subset Γ̂ ⊆ Γ (possibly empty) such that the following conditions
hold:

(α) if x ∈ Γ, then there is x̂ ∈ Γ̂ such that x̂ � x;

(β) if x̂1, x̂2 ∈ Γ̂, then x̂1 � x̂2 implies x̂1 ∼ x̂2.

Clearly,

Max1Γ ⊆ Max Γ = Max Γ̄ = (Max Γ)∼ ∩ Γ̄ = q−1(q(Max Γ)) ∩ Γ̄. (2.1)

Similarly,

Max1Γ = Max1Γ̄ = (Max1Γ)∼ ∩ Γ̄ = q−1(q(Max1Γ)) ∩ Γ̄. (2.2)

Though the use of the word ”maximum” seems to be more appropriate
in the case of the closed set (and even might confuse some readers when Γ
is not closed), the adopted notations do not lead to a contradiction in the
scalar case. E.g., the open interval Γ =]a, b[⊂ R do not have the maximal
point but the set Max Γ is well-defined: it is the singleton {b}.

Lemma 2.17. Let � be a preference relation on X. Let Γ be a non-empty
subset of X such that q(Γ) = q(Γ). Then q(Max Γ) = Max q(Γ).

Proof. Let [x] ∈ q(Max Γ). Without loss of generality we may assume
that the representative x ∈ Max Γ. It follows that x ∈ Γ and [x] ∈ q(Γ).
Suppose that [y] ∈ q(Γ) ∩ [[x],∞[. By assumption, q(Γ) = q(Γ) and we may
assume that y ∈ Γ ∩ [x,∞[. Since x ∈ Max Γ, this implies that y ∼ x, i.e.
[y] = [x]. Therefore, q(Max Γ) ⊆ Max q(Γ). Of course, the inclusion holds if
Max Γ = ∅. To prove the inverse inclusion, we take [x] ∈ Max q(Γ). Then
[x] ∈ q(Γ) and we may assume that the representative x ∈ Γ. If y ∈ Γ∩[x,∞[,
then [y] ∈ q(Γ) ∩ [[x],∞[. Hence [y] = [x], i.e. y ∈ [x]. But this means that
x ∈ Max Γ and [x] ∈ q(Max Γ). So, Max q(Γ) ⊆ q(Max Γ). 2

Lemma 2.18. Let � be a preference relation on X. Let Γ be a non-empty
subset of X such that q(Γ) = q(Γ). Then q(Max1Γ) = Max1q(Γ).

Proof. Suppose that Max1Γ 6= ∅. It is easy to check that q(Max1Γ)
satisfies the condition (α) and (β) for q(Γ). Indeed, let [x] ∈ q(Γ) = q(Γ).
We may assume without loss of generality that x ∈ Γ and, therefore, there
exists y ∈ Max1Γ such that y � x. Hence, [y] = q(y) � [x], i.e. (α) holds. In
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the same way we establish (β). So, q(Max1Γ) ⊆ Max1q(Γ). If Max1Γ = ∅,
the inclusion is trivial. If [x] ∈ Max1q(Γ), we may assume that x ∈ Γ. It
follows that x ∈ q−1(Max1q(Γ)) ∩ Γ. Hence x ∈ Max1Γ and [x] ∈ q(Max1Γ).
That is, Max1q(Γ) ⊆ q(Max1Γ). If Max1q(Γ) = ∅, the inclusion is trivial. 2

The following assertion shows that in the cases important from the point
of view of applications both definitions lead to the same subset.

Proposition 2.19. Let � be a partial order represented by a countable family
of upper semicontinuous functions and such that all order intervals [x, y],
y � x, are compacts. Suppose that Γ is non-empty and there exists x̄ such that
x̄ � Γ. Then Max Γ and Max1Γ are non-empty sets and Max Γ = Max1Γ.

Proof. The property (β) for the set Max Γ holds obviously. To check
(α) we take a point x ∈ Γ and consider the closed set [x,∞[∩Γ. With-
out loss of generality we may assume that |uj| ≤ 1. Let us define the up-
per semi-continuous function u =

∑
2−juj and put c := supy∈[x,∞[∩Γ u(y).

Since [x,∞[∩Γ is compact (as a subset of [x, x̄]), we obtain that c = u(y∞)
where y∞ ∈ [x,∞[∩Γ. Moreover, supy∈[y∞,∞[∩Γ u(y) = u(y∞) implying that

[y∞,∞[∩Γ = {y∞}. Therefore, y∞ ∈ Max Γ and (α) holds. The claim follows
now from the uniqueness of Max1Γ. 2

The generalization to the preference relation by the passage to the quo-
tient space is not straightforward because the image of the closed set under
a continuous mapping, even such a simple one as a projection in Rd, in gen-
eral, may not be closed. Nevertheless, with the help of the above lemmata
we easily deduce from Proposition 2.19 the following:

Corollary 2.20. Let � be a preference relation represented by a countable
family of upper semicontinuous functions and such that all order intervals
[q(x), q(y)], y � x, are compacts. Suppose that there exists x̄ such that x̄ � Γ
and, moreover, q(Γ) = q(Γ). Then Max Γ and Max1Γ are non-empty sets
and Max Γ = Max1Γ.

Note that in the standard model of a market with transaction costs where
� is the preference relation in Rd defined by the solvency cone the condition
on Γ holds when Γ is a polyhedron or a polyhedral cone: these classes of sets
are stable under linear mappings.

Remark 2.21. The hypotheses of Proposition 2.19 on the partial order is
fulfilled if the latter is generated by a closed convex proper cone in Rd (Propo-
sition 2.6 in [8]). For a general partial order we cannot claim that the sets
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Max Γ and Max1Γ coincide. Indeed, let us consider the partial order in R2

given by the set

G := {(0, 0)} ∪ {(x, y) ∈ Z2
+ : x+ y ≥ 2}.

Then for Γ = {(−1,−1)} ∪ {(i, i) : i ∈ Z+} we have Sup Γ = Max1Γ = ∅
while Max Γ = {(−1,−1)}.
Remark 2.22. In the book [11] one can find a definition of supremum useful
in the vector optimization theory. For the case of Rd with the partial order
given by a convex cone G 6= Rd with non-empty interior it is given as follows.
First, one defines the lower closure of A as the set

Cl−A := {x ∈ Rd : x− intG ⊆ A− intG}

and the set of weak maximal points of A

wMaxA := {x ∈ A : (x+ intG) ∩ A = ∅}.

Finally, SupwA := wMax Cl−A. For the cone G = Rd
+ and A = −Rd we

have the equalities Cl−A = A and SupwA = wMaxA = −∂Rd
+. According

to our definitions SupA = MaxA = Max1A = {0}.
Remark 2.23. Let X = R2, the partial order is generated by the cone R2

+.
Let Γ be the unit disc {x : |x| ≤ 1}. Then Sup Γ = (1, 1) while the set
Max Γ = Γ ∩R2

+.

Remark 2.24. The reader may ask about the correspondence of the intro-
duced concepts with those of the multicriteria optimization. Of course, such
relations do exist and merit to be understood. For simplicity, let us consider
the simplest Pareto maximization problem in Rd:

u(x)→ max, x ∈ Γ,

where u : Rd → Rn is the objective function taking values in the Euclidean
space equipped with the partial order ≥ defined by the cone Rn

+, and Γ
is a closed subset of Rd. We denote by � the preference relation in Rd

induced by u, i.e. having the family {uj(.), 1 ≤ j ≤ n} as the multi-utility
representation. In the terminology of the book [6] (see p. 24, Definition 2.1)
the point x̂ ∈ Γ is called efficient or Pareto optimal if there is no other x ∈ Γ
such that u(x) ≥ u(x̂). Let ΓE denote the set of all efficient points. Suppose
that � is a partial order. It is easily seen that the efficient set ΓE coincides
with Max Γ. An extension of this example to the case of countable set of
criteria is obvious.
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3. Essential Supremum and Essential Maximum in L0(X,F)

3.1. Essential Supremum in a General Setting

Let X be a separable metric space with its Borel σ-algebra BX and let
(Ω,F , P ) be a probability space. LetH be a sub-σ-algebra of F . We consider
in the space L0(X,F) (of classes of equivalence) ofX-valued random variables
a preference relation defined by a countable family U = {uj : j = 1, 2, ...}
of Carathéodory functions uj : Ω×X → R, i.e. functions with the following
properties:

(i) uj(., x) ∈ L0(R,F) for every x ∈ X;
(ii) uj(ω, .) is continuous for almost all ω ∈ Ω.

Namely, for elements γ1, γ2 ∈ L0(X,F), the relation γ2 � γ1 means that
uj(γ2) � uj(γ1) (a.s.) for all j. Recall that the Carathéodory functions
are jointly measurable and so the superpositions uj(γ1), u2(γ1) are random
variables. The equivalence relation γ2 ∼ γ1 has an obvious meaning.

Note that for every ω (except a null set) the countable family of functions
{uj(ω, .)} defines a preference relation in X. Abusing language, we refer to
U as to the family representing a partial order in L0(X,F). In the sequel
we associate with an order interval [γ1, γ2] in L0(X,F) the order intervals
[γ1(ω), γ2(ω)] in X corresponding to these families.

Definition 3.1. Let Γ be a subset of L0(X,F). We denote by H-Esssup Γ
the maximal subset Γ̂ of L0(X,H) such that the following conditions hold:

(a) Γ̂ � Γ;

(b) if γ ∈ L0(X,H) and γ � Γ, then there is γ̂ ∈ Γ̂ such that γ � γ̂;

(c) if γ̂1, γ̂2 ∈ Γ̂, then γ̂1 � γ̂2 implies γ̂1 ∼ γ̂2.

If H-Esssup Γ is a singleton, we denote by H-esssup Γ its unique element.
When needed, we denote Esssup UΓ where U is the family of functions

representing the preference relation.

Inspection of the proof of Theorem 3.7 in [8] (which deals with a partial
order in Rd) allows us to formulate the following statement:

Theorem 3.2. Let � be a preference relation in L0(X,F) represented by a
countable family of Carathéodory functions, i.e. satisfying (i), (ii), such that
|uj| ≤ 1. Let Γ 6= ∅ be such that γ̄ � Γ for some γ̄ ∈ L0(X,H). Suppose that
for any γ ∈ L0([Γ,∞[,H)

Λ(γ) = argminζ∈L0([Γ,γ],H)Eu(ζ) 6= ∅, (3.1)
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where u(ω, z) =
∑

2−juj(ω, z). Then

H-Esssup Γ = ∪γ∈L0([Γ,∞],H)Λ(γ) 6= ∅.

Clearly, this formulation is too technical to be considered as a satisfactory
result. The main part of the proof Theorem 3.7 in [8] consists in checking
that the condition (3.1) is fulfilled under hypothesis that the ω-sections of
the order intervals [γ1, γ2] are compact. The arguments used heavily that the
space is finite-dimensional. In Section 4 we investigate the case where X is
a Hilbert space and the preference relation are given by a random cone in it.

3.2. Essential Maximum

First, we recall some classical concepts, see, e.g. [13], [9].
The set Γ ⊆ L0(X,F) is H-decomposable if for any γ1, γ2 ∈ Γ and A ∈ H

the random variable γ1IA + γ2IAc ∈ Γ.
We denote by envHΓ the smallest H-decomposable subset of L0(X,F)

containing Γ and by cl envHΓ its closure in L0(X,F).
It is easily seen that envHΓ is the set of all random variables of the form∑
γiIAi where γi ∈ Γ and {Ai} is an arbitrary finite partition of Ω into H-

measurable subsets. It follows from this alternative description that the set
H-cl env Γ is H-decomposable.

Definition 3.3. Let Γ be a non-empty subset of L0(X,F). We put

H-Essmax Γ = {γ ∈ cl envHΓ : cl envHΓ ∩ [γ,∞[= [γ, γ]}.

Definition 3.4. Let Γ be a non-empty subset of L0(X,F). We denote by H-
Essmax1Γ the largest subset Γ̂ ⊆ cl envHΓ such that the following conditions
hold:

(i) if γ ∈ cl envHΓ, then there is γ̂ ∈ Γ̂ such that γ̂ � γ;

(ii) if γ̂1, γ̂2 ∈ Γ̂, then γ̂1 � γ̂2 implies γ̂1 ∼ γ̂2.

The definitions of H-EssminΓ and H-Essmin1Γ are obvious.
In the case where� is a partial order we have in Definition 3.3 [γ, γ] = {γ}

and in the condition (ii) above the property γ̂1 ∼ γ̂2 means that γ̂1 = γ̂2.
Clearly, the set with the above properties is uniquely defined. Though our
definitions are given for Γ ∈ L0(X,F), the most important is the case where
Γ ∈ L0(X,H).
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Proposition 3.5. Let � be a partial order in L0(Rd,F) represented by a
countable family of functions satisfying (i), (ii) and such that all order inter-
vals [γ1(ω), γ2(ω)], γ2 � γ1, are compacts a.s. Let Γ be a non-empty subset of
L0(Rd,H). Suppose that there exists γ̄ ∈ L0(Rd,H) such that γ̄ � Γ. Then
H-Essmax Γ = H-Essmax1Γ 6= ∅.

Proof. The arguments are similar to those of Proposition 2.19. Note that
the set H-Essmax Γ obviously satisfies (ii) and it remains only to check (i).
For γ ∈ cl envHΓ, we put

c := sup
γ̃∈cl envHΓ∩L0([γ,∞),H)

Eu(γ̃).

Let (γ̃n) be a sequence on which the supremum in the above definition is
attained. As the set cl envHΓ ⊆ L0(Rd,H) is decomposable, we may as-
sume without loss of generality (by applying Lemma 2.1.2 [9] on convergent
subsequences) that the sequence of conditional expectations E(u(γn)|H) is
increasing and γ̃n converges a.s. to some γ̃∞ ∈ cl envHΓ∩L0([γ,∞),H) such
that c := Eu(γ̃∞).

By definition of c, it is straightforward that γ̃∞ ∈ H-Essmax1Γ and the
conclusion follows. 2

Corollary 3.6. Let � be a preference relation in L0(Rd,F) defined by a
random cone G. Let Γ = L0(B,F) where B is a measurable set-valued map-
ping with non-empty closed sections. Suppose that the projections q(ω,B(ω))
onto G⊥0 (ω) are closed sets a.s. and γ̄ � Γ for some γ̄ ∈ L0(Rd,F). Then
F-Essmax Γ = F-Essmax1Γ 6= ∅.

Proof. Slightly abusing the notation, we consider the ”lifted” mapping
q : L0(Rd,F) → L0(q(Rd),F), defined in the natural way in the space of
(classes of) random variables. It is easy to see that q(Γ) = L0(q(B),F).
According to the above proposition

F -Essmax q(Γ) = F -Essmax1q(Γ) 6= ∅.

The claim follows now from (2.1), (2.2) and Lemmata 2.17, 2.18. 2

4. Essential Supremum in L0(X) with Respect to a Random Cone

4.1. Setting

Let (Ω,F , P ) be a complete probability space and let X be a separable
Hilbert space. Let ω 7→ G(ω) ⊆ X be a measurable set-valued mapping
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whose values are closed convex cones. The measurability is understood as
the measurability of the graph, i.e.

graph G := {(ω, x) ∈ Ω×X : x ∈ G(ω)} ∈ F ⊗ B(X).

The positive dual G∗ of G is defined as the measurable mapping whose values
are closed convex cones

G∗(ω) := {x ∈ X : xy ≥ 0, ∀y ∈ G(ω)},

where xy is the scalar product generating the norm ||.|| in X. Note that
0 ∈ L0(G,F) 6= ∅.

Recall that a measurable mapping whose values are closed subsets admits
a Castaing representation. In our case this means that there is a countable
set of measurable selectors ξi of G such that G(ω) = {ξi(ω) : i ∈ N} for all
ω ∈ Ω. Thus,

graph G∗ = {(ω, y) ∈ Ω×X : yξi(ω) ≥ 0, ∀i ∈ N} ∈ F ⊗ B(X),

i.e. G∗ is a measurable mapping and admits a Castaing representation, i.e.
there exists a countable set of G-measurable selectors ηi of G∗ such that
G∗(ω) = {ηi(ω) : i ∈ N} for all ω ∈ Ω.

Since G = (G∗)∗,

G(ω) = {(ω, x) ∈ Ω×X : ηi(ω)x ≥ 0, ∀i ∈ N}. (4.1)

The relation γ2 − γ1 ∈ G (a.s.) defines a preference relation γ2 � γ1

in L0(X,F). Moreover, the countable family of functions uj(ω, x) = ηj(ω)x
where ηj is a Castaing representation of G∗, represents the preference relation
defined by G which is a partial order when the sections of G are proper cones.

Notation. Let H be a sub-σ-algebra of F and let Γ ⊆ L0(X,F). We
shall use the notation (H, G)-Esssup Γ instead of H-Esssup Γ to indicate that
partial order is generated by the random cone G.

Theorem 4.1. Let X be a separable Hilbert space and let � be a preference
relation in L0(X,F) defined by a random cone G. Suppose that the subspaces
(G0(ω))⊥ are finite-dimensional a.s. Let Γ 6= ∅ be such that γ̄ � Γ for some
γ̄ ∈ L0(X,F). Then F-Esssup Γ 6= ∅.
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Proof. (a) Take arbitrary γ0 ∈ Γ and for each γ ∈ L0(X,F), γ ≥ Γ,
define the random variables

αj(γ) := αj(ω, γ) := 2−j(1 + |ηj(ω)γ0(ω)|+ |ηj(ω)γ̄(ω)|).

Put
u(x, γ) := u(x, ω, γ) :=

∑
j

aj(ω, γ)ηj(ω)x.

Then the mapping ξ 7→ u(ξ, γ) is well-defined for ξ ∈ [Γ, γ] and for such an
argument u(ξ, γ) is a random variable with values in the interval [−1, 1]. Let

c(γ) := inf
ξ
Eu(ξ, γ)

where infimum is taken over all ξ ∈ [Γ, γ]∩L0(X,F). Let ξn be a minimizing
sequence of random variables (not just classes of equivalences) . Without loss
of generality we may assume that ξn(ω) = q(ω, ξn(ω)) a.s., where q(ω, .) is a
projection of X onto (G0(ω))⊥. Moreover, we may assume that the sequence
u(ξn, γ) is decreasing almost surely. Let us consider the set

A :=
{

(ω, x) ∈ Ω×X : lim
n

inf
m≥n
||ξm(ω)− x|| = 0

}
∈ F ⊗ B(X).

Let q(Γ) := {ξ : ξ(ω) = q(ω, γ(ω))}. Since (G0(ω))⊥ are finite-dimensional
a.s., the ω-sections of [q(Γ), q(γ)] are compact a.s. Hence, almost all ω-
sections of A not empty. Take an almost sure measurable selector of A, i.e.
an X-valued random variable ξ such that limn infm≥n ||ξn − ξ|| = 0 a.s. It is
clear that c(γ) = Eu(ξ; γ). Thus, the sets Λ(γ) are non-empty and we can
conclude in the usual way that the set F -Esssup Γ 6= ∅. 2

5. Applications to Models of Financial Markets with Transaction
Costs

In the model we are given a stochastic basis (Ω,F ,F = (Ft)t=0,...,T , P )
with a d-dimensional adapted process S = (St) with strictly positive compo-
nents and an adapted set-valued process K = (Kt) whose values are closed
convex cones Kt ⊂ Rd with the interiors containing Rd

+ \ {0}.
Define the random diagonal operators

φt : (x1, ..., xd) 7→ (x1/S1
t , ..., x

d/Sdt ), t = 0, ..., T,
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and relate with them the random cones K̂t := φtKt. The random cones Kt

and K̂t, corresponding to accountability in monetary and physical units, re-
spectively, induce preference relations on L0(Rd,F) (which are partial orders
in the case when the cones are proper, i.e. the efficient friction condition is
fulfilled.)

We consider the set V̂ of Rd-valued adapted processes V̂ such that the
increments ∆V̂t := V̂t − V̂t−1 ∈ −K̂t for all t and the set V which elements
are the processes V with Vt = φ−1

t V̂t, V̂ ∈ V̂ .

In the context of the theory of markets with transaction costs, Kt are
the solvency cone corresponding to the description of the model in terms of
a numéraire, V is the set of value processes of self-financing portfolios. The
notations with hat correspond to the description of the model in terms of
”physical” units where the portfolio dynamics is much simpler because it does
not depend on price movements. A typical example is the model of currency
market defined via the adapted matrix-valued process of transaction costs
coefficients Λ = (λijt ). In this case

Kt = cone {(1 + λijt )ei − ej, ei, 1 ≤ i, j ≤ d}.

In this model European contingent claims are d-dimensional random vec-
tors while American contingent claims are adapted d-dimensional random
processes. In accordance to the notation adopted in [9] we shall use the no-
tation Y = (Yt) when the American contingent claim is expressed in units

of the numéraire and Ŷ = (Ŷt) when it is expressed in physical units. The

relation is obvious: Ŷt = φtYt.
One of principal problems of practical importance in the theory of finan-

cial markets is to find the set of hedging capitals and hedging strategies,
starting from the minimal initial capital, and develop numerical algorithms
for their implementations, e.g., for multinomial models, see [12] and refer-
ences therein. Since the hedging strategies, in general, are not unique it
seems reasonable to look for hedging strategies with additional properties.
This idea was exploited in [8] where it was considered the hedging problem for

European contingent claim ŶT and for the minimal strategies was obtained
a recurrent system of backward inclusions involving the concept of Esssup.
In this paper for the problem of hedging of an American option (it is quite
different from that of a European one, see [9]) we obtain a recurrent system
of backward inclusions involving Essmax1.
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The value process V̂ ∈ V̂ is called minimal if V̂ �K̂ Ŷ and any process

Ŵ ∈ V̂ such that Ŷ �K̂ Ŵ �K̂ V̂ coincides with V̂ . The notation means
that to compare values of the processes at time t one uses the partial order
generated by the random cone K̂t. We denote V̂min the set of all minimal
processes.

Proposition 5.1. Suppose there exists a process V̂ 0 ∈ V̂ such that V̂ 0 �K̂ Ŷ
Then the set Vmin is non-empty and coincides with the set of solutions of
backward inclusions

V̂t ∈ (Ft, K̂t)-Essmin1L
0((Ŷt+K̂t)∩(V̂t+1+K̂t+1),Ft), t ≤ T−1, V̂T = ŶT .

(5.1)

Proof. Using Corollary 3.6 (or Theorem 4.1 in the case of efficient fric-
tion) and the backward induction we obtain that the set of solutions of the
inclusions (5.1) is nonempty and Essmin = Essmin1.

Take an arbitrary Ŵ ∈ V̂ such that Ŵ �K̂ Ŷ , ŴT = ŶT and assume that

Ŵ �K̂ V̂ where V̂ satisfies the relations (5.1). Since ∆Ŵt+1 ∈ −K̂t+1, we

obtain, assuming the equality V̂t+1 = Ŵt+1, that

Ŵt ∈ L0((Ŷt + K̂t) ∩ (Ŵt+1 + K̂t+1),Ft) = L0((Ŷt + K̂t) ∩ (V̂t+1 + K̂t+1),Ft).

Using the definition of Essmin1 we get that V̂t �K̂t Ŵt, hence V̂t = Ŵt. The

backward induction argument leads to the conclusion that V̂ = Ŵ . 2

Remark 5.2. Suppose for simplicity that all ordering cones are proper and
assume that the model admits a strictly consistent price system. Then the
convex set of hedging initial capitals D̂ is closed, see [9], Th.3.3.3. Let x be a

minimal point of this set in the sense of the partial order induced by K̂0, i.e.
if y ∈ D̂ and y �K̂0

x, then y = x. Then there is a value process V̂ ∈ Vmin
such that its initial value V̂−1 = V̂0 = x. Indeed, by definition of D̂ there is

exists a portfolio process Ŵ such that Ŵ−1 = x and Ŵ � Ŷ . Accordingly to
the above proposition there exists a minimal dominating process V̂ for which
we have in particular V̂0 � x. Thus, V̂0 = x and we can take the initial value
V̂−1 = x. On the other hand, any value process V̂ ∈ Vmin starts from the
initial value which is a minimal element of D̂.

Remark 5.3. The extension of the concepts of the present paper to the
case of random processes in discrete time seems to be rather straightforward.
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More challenging seems to be the case of random processes in continuous-time
which will be explored elsewhere.
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