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Abstract

Inspired by the theory of financial markets with transaction costs, we study
a concept of essential supremum in the framework where a random partial
order in Rd is lifted to the space L0(Rd) of d-dimensional random variables.
In contrast to the classical definition, we define the essential supremum as a
subset of random variables satisfying some natural properties. Applications
of the introduced notion to a hedging problem under transaction costs and
set-valued dynamic risk measures are given.

Keywords: Random partial order, Essential supremum, Transaction costs,
Set-valued dynamic risk measures.

2000 MSC: 60G44, G11-G13.

1. Introduction

The aim of this paper is to study a seemingly new concept of essential
supremum in the framework where a rather general (possibly, random) partial
order in Rd is lifted to the space L0(Rd,F) of d-dimensional random vari-
ables. In contrast to the classical definition of the esssup in L0 = L0(R,F)
as a random variable, we define, for Γ ⊆ L0(Rd,F) and a sub-σ-algebra
H ⊆ F , the essential supremum, H-Esssup Γ, as a set of H-measurable ran-
dom variables satisfying some natural properties. In the classical case, where
the partial order in L0 is generated by the linear order of the real-line, this
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set is a singleton, consisting from the usual esssup when H = F and vraimax
when H is trivial. The importance of considering intermediate σ-algebras
is obvious because of applications of such a concept to dynamical models
arising in mathematical finance.

Our interest to such objects as set-valued essential supremum/infimum
originates from an attempt to give a description of the minimal portfolios
dominating a contingent claim in the hedging problem in the presence of
proportional transaction costs.

To explain the motivation and the necessity of this study we recall, first,
some basic facts about the classical hedging problem for the discrete-time
model of frictionless market which can be formulated as follows. We are given
a stochastic basis (Ω,F ,F = (Ft)t=0,...,T , P ) with a d-dimensional adapted
process S = (St) whose first component is equal identically to unit and a
scalar random variable ξ or a scalar adapted processes A = (At). In financial
context S models the price process of d traded securities (the first one is
the numéraire) while ξ and A stand for pay-offs of a European or American
contingent claim, respectively.

The hedging problem is to find the set Γ ∈ R of points x for those there
exist d-dimensional processes H ∈ P such that x + H · ST ≥ ξ (for the
European claim) or x+H ·S ≥ A (for the American claim). Here P denotes
the space of predictable processes, i.e. such that Ht is Ft−1-measurable and
H · ST :=

∑
r≤T Hr∆Sr where ∆Sr := Sr − Sr−1. The process x + H · S

gives the dynamics of values of self-financing portfolio containing at time
t the vector H2

t , ...., H
d
t of units of the risky assets chosen at the previous

date. The values of H1 are irrelevant (because ∆S1 = 0) and can be chosen
arbitrary. Obviously, the set Γ, if non-empty, is a semi-infinite interval.

The hedging problem admits a very simple solution which was suggested,
and in a great generality, by Dmitri Kramkov, [12]. In the case of the
arbitrage-free market, assuming an appropriate integrability of ξ, we have
that Γ = [x,∞[ where x = supQ∈QEQξ where Q is the set of equivalent
martingale measures. To get this result one needs two theorems. The first
one asserts that the processes defined, respectively, as

Xt := esssupQ∈QEQ(ξ|Ft) or Xt := esssupQ∈Q, τ∈TtEQ(Aτ |Ft),

where Tt is the set of stopping times τ with τ ≥ t, are Q-martingale with
respect to every Q ∈ Q. These processes are called generalized Snell en-
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velopes1. The optional decomposition theorem says that X = x+H · S −B
where B is an increasing process with B0 = 0. Thus, we have the required
domination property of x+H · S and, hence, the inclusion Γ ⊇ [x,∞[. The
opposite inclusion is obvious. Note that these arguments not only solves the
problem ”in principle” but also give, e.g., in the case of multinomial mod-
els, a way how to compute the minimal value x of the initial capitals and
how to find the corresponding hedging strategy H — its values are Lagrange
multipliers removing constraints in simple linear programming problems, see
[7].

The model above is fairly standard and mathematically transparent. How-
ever, one should be aware that the given formulation hides some important
issues which happen to be crucial if one wants to consider models with fric-
tion. Historically, the contingent claims or option were baskets of assets
to be delivered. E.g., the European-type call option with a strike K can
be interpreted as the contract to deliver the basket which is represented by
the FT -measurable vector ĈT with Ĉ1

T = −KI{ST≥K}) units of money and

Ĉ2
T = I{ST≥K} units of stock. In general, the nominal (monetary) value of as-

sets to be delivered is ξ = ĈTST . Thus, the above description of the hedging
set means that the capital x allows the option seller to hedge (superreplicate)
the contingent claim expressed in physical units if and only if

x ≥ sup
Q∈Q

EQĈTST = sup
Z∈Z

EĈTZT ,

where Z denotes the set of Rd-valued martingales Z of the form Zt = ρtSt and
ρ = (ρt) runs the set of density processes of equivalent martingale measures,
that is, ρt = E(dQ/dP |Ft).

In the theory of markets with proportional transaction costs a model can
be given by an adapted (polyhedral) cone-valued process K̂ = (K̂t). The
value processes are d-dimensional adapted processes and contingent claims
are d-dimensional random variables or processes, see the book [10] where the
”hat” notations are used to express assets in physical units as opposed to
the ”countability” in monetary terms, i.e. of units of numéraire. Hedging a
European-type contingent claim Ĉ ∈ L(Rd,FT ) means to find a self-financing

1In the particular case of the complete market when Q is a singleton the second pro-
cess is the classical Snell envelop with respect to Q, i.e. the minimal Q-supermartingale
dominating the process A.
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portfolio with the value process V̂ = (V̂t) whose terminal value dominates

the claim in the sense that the difference V̂T − Ĉ belongs to the random
solvency cone K̂T . In other words, V̂T (ω) dominates Ĉ(ω) (a.s.) in the sense

of the preference relation generated by the cone K̂T (ω). The solvency cone
is the fundamental notion of the theory giving a geometric description of the
vectors of investor’s positions that can be converted (paying the transaction
costs) into vectors with non-negative components. The self-financing condi-
tion (with free disposal) means simply that the increments of the value pro-

cess are non-negative in the sense of partial orderings, i.e. ∆V̂t ∈ L0(−K̂t,Ft)
for t = 0, 1, ..., T . In general, the solvency cones K̂t depend on time t as well
as on the state of the nature ω — even in the case of constant transaction
costs when the solvency cone K in the monetary representation, i.e. in terms
of the numéraire, is constant.

The hedging theorem for the European contingent claim Ĉ has a form
very similar to that given above for the frictionless market. Namely, assuming
an appropriate no-arbitrage condition and integrability of Ĉ we have that the
set Γ of initial capitals permitting hedging is the set of points v ∈ Rd such
that

vZ0 ≥ EĈTZT ∀Z ∈ Z,

where Z denotes the set of consistent price systems, i.e. martingales Z evolv-
ing in the (positive) duals of the solvency cones, i.e. with Zt ∈ L0(K̂∗t ,Ft).
In the case of frictionless markets with traded numéraire this set Z coincides
with that introduced above2. Note that the hedging theorem for Ameri-
can options is not a straightforward generalization of the hedging theorem
for frictionless case: it has a more complicated structure and involves the
so-called coherent price systems.

In contrast to the frictionless case, the arguments used in the available
proofs of the latter theorem rely upon the convex duality and do not use
order considerations hidden in the concept of Snell envelope. This leads to
the natural and intriguing question whether one can define similar notions in
the context of stochastic set-valued dynamics and associated random pref-
erence relations constituting the mathematical foundations of the theory of

2These forms of the hedging theorem reconciles mathematical finance and mathemat-
ical economics if one believes that the difference between them is in systematic use of
martingale measures for the former and prices for the latter: martingales measures simply
provide stochastic deflators to get consistent price systems from asset quotes.
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markets with transaction costs. It happens that even such an elementary
concept as the essential supremum is not adapted to random vectors, at
least, to our knowledge of the literature. The present study was planned
to fill this lacuna. It was restricted initially to the random partial ordering
defined by proper polyhedral cones corresponding to models with so-called
efficient friction. Very soon it became clear that it is rather natural to put
the question in a much more general abstract framework. This logic lead our
research beyond the scope of mathematical finance and opened perspectives
for potential applications in mathematical economics, vector and set-valued
optimization, risk theory etc.

It is important to note that in multi-asset models with transaction costs
the duals to ordering cones have, in general, more generators than the number
of assets. This implies that the corresponding partial orders do not generate
lattices, i.e. even for a pair of elements their supremum or infimum might
not exist. In this perspective, the assumption that the partially ordered set
is a lattice, frequent in the literature, is too restrictive. Apparent advantage
of our approach is that for any Γ bounded from above the set Esssup Γ exists
and is non-empty for any continuous partial order.

Returning back to the hedging problem under transaction costs it is wor-
thy to recall that finding the set of hedging initial capitals and hedging
strategies are problems of great importance. There is a growing literature
on these issues, in particular, on numerical methods and the modern trend
seems to be the approach based on the set-valued dynamics, see [14] and the
references therein. In the cited paper Löhne and Rudloff suggested a numeri-
cally efficient method of calculating the hedging sets by backward recurrence
and, afterwards, the hedging strategies by forward recurrence using in the
latter procedure also optimization. In the present paper we make an attempt
to contribute to this tendency by looking for the minimal hedging portfolios.

For a fixed contingent claim Ĉ the value (portfolio) process V̂ is called

minimal if at the terminal date V̂T = Ĉ and any value process Ŵ terminating
at Ĉ and dominated by V̂ (i.e. such that V̂t − Ŵt ∈ K̂t for all t) coincides

with V̂ . The problem of interest is whether the minimal portfolios do exist
and how they can be found. We provide a description of the set of minimal
portfolios as the solution of (backward) recursive inclusions involving Esssup.
In this context questions when Esssup does exist and when it is a singleton
are very natural.

Recall that in the case of real numbers the supremum of any subset Γ ⊂ R
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can be defined either as the minimum of its upper bounds or as the maximum
of its closure Γ̄. In the case of linear ordering lifted to the space L0 =
L0(R,FT ) of scalar random variables the essential supremum of a set Γ ⊆ L0

also can be defined in two ways: either as the minimal point of the set of upper
bounds of Γ or, alternatively, as maximal point of the upward completion of Γ
(that is the smallest set containing Γ closed under convergence in probability
and stable under the operation ∧).

In the present paper we study the properties of the set obtained by an
extension of the first approach to the case of partial order. To keep the
presentation readable we do not work here at full generality: our goal is to
fix ideas and built a platform for further studies.

In [11] we discuss extensions to the situation of random preference rela-
tions (preorders) given on a Hausdorff topological space and under weaker
assumptions. The interest to such generalizations is easy to explain. Indeed,
some classical models of mathematical finance suggest infinite and even un-
countable sets of securities (e.g., Vasicek and HJM models of term structure
of interest rates in the theory of bond markets, Dupire model of derivative
market etc.). Their analogs, taking into account transaction costs, involve
cone-valued processes in infinite-dimensional spaces, see very recent works [3]
and [2]. Also our approach to find extensions to random preorders is based
on the passage to the partial order in the quotient space and the latter, in
general, is not a nice one. This gives an extra motivation to go beyond Rd.
We believe that these issues are important but lay apart of the main line and
must be considered separately.

We also relay to [11], and this more important, the development of the
second idea mentioned above. Namely, we provide in the companion paper a
study of properties of sets of maximal points of a suitable completion of Γ at
the higher level of generality. Its main object is a concept which is different
from Esssup Γ and can be viewed as an analog of the Pareto frontier. The
notion happens to be useful in a description of minimal hedging portfolios
in the hedging problem of American options under transaction cost. We
hope that the readers will benefit from splitting of the material into two
papers with similar structure. The present one is intended for the initial
acquaintance with problematics (we avoid discussions of delicate topological
aspects) but we tried to make them both sufficiently self-contained.

The main technical hypothesis we use in this paper is the existence of
countable continuous multi-utility representation (in the terminology of [5]).
For Rd this means that the considered partial orders are continuous, see [11],
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Remark 2.9.
The structure of the paper is the following. In Section 2 we consider a

purely deterministic setting. We give the definition of Sup Γ for Γ ⊆ Rd and
prove a theorem giving a sufficient condition ensuring that it does exist and
(as) a non-empty set. In the case, where the partial order is generated by
a convex closed proper cone this condition is simply the boundedness of Γ
from above in the sense of partial order. We do not insist on any novelty at
this section but the comparison with the literature shows that our approach
and the related techniques are different from those we could find, see, e.g.
[4] and [18] for numerous definitions of supremum-like objects. In Section 3
we define Esssup Γ for Γ ⊆ L0(Rd) and establish its numerous properties. In
particular, we are interested in conditions when it is a singleton. In Section
4 we consider a bit more specific model where the random partial order is
given by a random cone. In Section 5 we give an application to the hedging
problem for European contingent claims under transaction costs providing
a system of backward inclusion to calculate minimal hedging portfolios. In
concluding Section 6 we give an example of construction of dynamic set-
valued risk measure using the notion of Esssup.

2. Supremum with Respect to a Partial Order in Rd

2.1. Basic Concepts

We start with some basic concepts and notations restricting ourselves to
the Euclidean space Rd.

Let � be a partial order in Rd, i.e. a binary relation between certain its
elements, which is reflexive (x � x), transitive (if x � y and y � z then
x � z) and antisymmetric (if x � y and y � x then x = y).

Define an order interval [x, y] := {z ∈ Rd : y � z � x} and extend
naturally the notation by putting

]−∞, x] := {z ∈ Rd : x � z}, [x,∞[:= {z ∈ Rd : z � x}.

The notation Γ � x, where Γ is a set, means that y � x for all y ∈ Γ.
In the same spirit: Γ1 � Γ means that x � y for all x ∈ Γ1 and y ∈ Γ;
[Γ,∞[:= ∩x∈Γ[x,∞) etc. Sometimes we shall use the notation x � z instead
of z � x.
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A partial order is upper semi-continuous (respectively, lower semi-conti-
nuous) if [x,∞[ (respectively, ] −∞, x]) is closed for any x ∈ Rd and semi-
continuous if it is both upper and lower semi-continuous. Finally, it is called
continuous if its graph {(x, y) : y � x} is a closed subset of Rd ×Rd.

We say that a set U of real-valued functions defined on Rd represents the
partial order � if for any x, y ∈ Rd,

x � y ⇔ u(x) ≥ u(y) ∀u ∈ U .

This set U is called multi-utility representation of the partial order. If its
elements are continuous functions, we say that U is a continuous multi-utility
representation of the partial order.

Clearly, any partial order can be represented by the family of indicator
functions U := {I[x,∞[, x ∈ Rd}.

The following statement follows from a more general result due to Evren
and Ok: any continuous partial order admits a continuous multi-utility rep-
resentation (see [5], Th. 1).

Note that an arbitrary family U defines a partial order if the equalities
u(x) = u(y) for all u ∈ U imply that x = y.

The object of our main interest is given by the following

Definition 2.1. Let Γ be a non-empty subset of Rd and let � be a partial
order. We denote by Sup Γ a subset Γ̂ of Rd such that the following conditions
hold:

(a0) Γ̂ � Γ;

(b0) if x � Γ, then there is x̂ ∈ Γ̂ such that x � x̂;

(c0) if x̂1, x̂2 ∈ Γ̂, then x̂1 � x̂2 implies x̂1 = x̂2.

Remark 2.2. Such a set Γ̂, if exists, is necessarily unique as shown in Lemma
3.3. Note that our definition is ”assumption-free” and can be apply to any
Γ 6= ∅ and allows us to formulate the question whether it does exist and is
non-empty. To compare it with concepts in the literature, namely, with those
in [4] let x � y mean that x � y and x 6= y. Define, for a non-empty set A,
the subset

min A := {y ∈ A : the relation z � y hold only if z /∈ A}.

We say that A has the submission property if for any y ∈ A there exists
y0 ∈ min A such that y � y0 (thus, this property assumes that min A 6= ∅).
It is easy to see that if the set [Γ,∞[ satisfies the submission property, then
Sup Γ = min [Γ,∞[.
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The following lemma follows immediately from the continuity assumption.

Lemma 2.3. Let � be a partial order represented by a family of continuous
functions. Let (xn) and (yn) be two sequences of Rd such that yn � xn for all
n. Suppose that these sequences converge, respectively, to x∞ and y∞. Then⋂

n

[xn, yn] ⊆ [x∞, y∞].

Theorem 2.4. Let � be a partial order represented by a countable family
of continuous functions and such that all order intervals [x, y], y � x, are
compacts. If the subset Γ is such that x̄ � Γ for some x̄, then Sup Γ 6= ∅.
Moreover, if Γ is totally ordered, then Sup Γ is a singleton formed by a limit
point of Γ.

Proof. Let U = {uj}j≥1 be a representing family and fix x0 ∈ Γ. Without
loss of generality we may assume that |uj| ≤ 1. We define the function
u(.) =

∑
2−juj(.). Observe that this function is continuous. Put a(x) :=

infy∈[Γ,x] u(y). Since [Γ, x] ⊆ [x0, x], the value a(x) ≥ u(x0). Let yn ∈ [Γ, x]
be a sequence such that u(yn) → a(x). Since [Γ, x], being an intersection of
compacts, is also a compact, we may assume, passing to a subsequence, that
yn → y∞. In virtue of continuity, a(x) = u(y∞).

Define Λ(x) as the set of all y∞ ∈ [Γ, x] with u(y∞) = a(x) and put
Γ̂ :=

⋃
x�Γ Λ(x). By above the properties (a0) and (b0) hold. Let x̂1, x̂2 ∈ Γ̂,

x̂1 � x̂2. There is x1 � Γ such that x̂1 ∈ Λ(x1), i.e. u(x̂1) = a(x1). By
monotonicity, u(x̂1) ≥ u(x̂2). But x̂2 ∈ [Γ, x̂1] ⊆ [Γ, x1] and, therefore,
u(x̂2) ≥ a(x1), i.e. u(x̂1) = u(x̂2). Since uj(x̂1) ≥ uj(x̂2) for all j we have
necessarily that uj(x̂1) = uj(x̂2) for all j. Therefore, x̂1 = x̂2 and (c0) holds.

Finally, suppose that Γ is totally ordered. Define b := supx∈Γ u(x). There
exists xn ∈ Γ such that u(xn)→ b. Since Γ is totally ordered, we can assume
without loss of generality that the sequence (xn) is increasing and satisfy
xn ∈ [x0, x̄]. Arguing as previously, we get that xn → x∞ and b = u(x∞).
Let y ∈ Γ. We have two possibilities. If y ∈ [xn′ , x̄], for some subsequence,
then we obtain that y ∈ [x∞, x̄] by virtue of Lemma 2.3. It follows that
u(y) = u(x∞) hence y = x∞. If y ∈ Γ is such that y � xn′ for some infinite
subsequence (xn′) then y � x∞. We conclude that Sup Γ = {x∞}. 2

Remark 2.5. It is easily seen that the result holds (with the same proof)
not only for Rd but for any topological space such that the order intervals
are sequentially compact.
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Proposition 2.6. Suppose that the partial order is given by a countable
family U = {uj}j≥1 of continuous homogeneous functions. Then all the order
intervals are compacts.

Proof. Let us consider an arbitrary order interval [x, z], z � x, and let
yn ∈ [x, z] be such that |yn| → ∞. Passing to a subsequence we may assume
that a sequence ỹn := yn/|yn| converges to a point ỹ∞ with |ỹ∞| = 1. Due to
the homogeneity, x/|yn| � ỹn � z/|yn| and, therefore,

uj(x/|yn|) ≥ uj(ỹn) ≥ uj(z/|yn|), j ≥ 1.

Taking the limit, we obtain that uj(ỹ∞) = 0 for all j, i.e. ỹ∞ = 0. A
contradiction. So, the order interval [x, z] is bounded, hence, compact. 2

2.2. Partial Order in Rd Defined by a Cone

In this paper oriented towards financial applications we are interested
mainly by the partial order defined by a closed proper convex cone G ⊆ Rd.
In this case, the relation x � 0 means that x ∈ G, and y � x means that
y − x � 0, i.e. y ∈ x + G. Obviously, it is homogeneous: y � v implies
that λy � λx for any λ ≥ 0. Also if y � x, v � u, then x + v � y + u.
The order intervals [x,∞[= x+G and ]−∞, x] = x−G are closed. Hence,
the partial order is semicontinuous. In fact, it is continuous since its graph
{(x, y) : y − x ∈ G} is a closed subset of Rd ×Rd.

By the classical separation theorem the cone G is the intersection of
the family of closed half-spaces L = {x ∈ Rd : lx ≥ 0} containing G. Its
complement Gc is the union of the open half-spaces Lc. In Rd any covering of
an open set contains a countable subcovering. Hence, there exists a countable
family of vectors lj such that G = ∩j{x ∈ Rd : ljx ≥ 0}. It follows that a
countable family of linear functions uj(x) = ljx represents the partial order
defined by G. So, the partial order defined by a closed proper convex cone
G ⊆ Rd can be generated by a countable family of linear functions. Clearly,
the converse is true.

For the partial order given by a cone G the properties defining the set
Γ̂ = Sup Γ can be reformulated in geometric terms as follows:

(a′0) Γ̂− Γ ⊆ G;

(b′0) if x− Γ ⊆ G, then there is x̂ ∈ Γ̂ such that x− x̂ ∈ G;

(c′0) if x̂1, x̂2 ∈ Γ̂, then x̂1 − x̂2 /∈ G \ {0}.
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Notation. To distinguish partial orders generated by various cones (a typical
situation in financial applications) we shall use sometimes the notation �G.

As corollary of Theorem 2.4 we have the following result:

Theorem 2.7. Let � be the partial order generated by a closed proper convex
cone G ⊆ Rd. If Γ ⊆ Rd is such that x̄ � Γ (i.e. x̄ − Γ ⊆ G) for some
x̄ ∈ Rd, then Sup Γ 6= ∅.

Remark 2.8. Any subset G ⊂ Rd with G + G ⊆ G and G ∩ (−G) = {0}
allows us to define a partial order by putting x � y if x− y ∈ G. Supremum
of sets for such partial orders may have rather exotic features. For example,
let d = 2 and

G := {(0, 0)} ∪ {(x, y) ∈ Z2
+ : x+ y ≥ 2}.

Under the corresponding partial order, for the set Γ := {(0, 0), (4,−1)} con-
sisting from two points we have Sup Γ = {(4, 1); (4, 2); (5, 0); (5, 1); (6, 0)} .

Remark 2.9. Let us consider the triangle Γ generated by the points (0, 0),
(1, 0), and (0, 1) in R2 where the partial order is generated by R2

+. In our
definition Sup Γ = {(1, 1)}, i.e. it contains the minimum of upper bounds. It
lays outside of Γ. On the other hand, the segment with extremities at (1, 0)
and (0, 1) consisting of maximal points of Γ looks also as a good candidate
for a supremum. In the companion paper we analyze in details objects of
this type in the stochastic setting and provide an application to hedging of
American optons.

Remark 2.10. In the literature one can find also other definitions of supre-
mum for partial order. E.g., in the book by Löhne [13] there is a definition
adapted to the needs of the vector optimization theory. For the case of Rd

with the partial order given by a convex cone G 6= Rd with non-empty inte-
rior it can be described as follows. First, it is defined the lower closure of A
as the set

Cl−A := {x ∈ Rd : x− intG ⊆ A− intG}
and the set of weak maximal points of A

wMaxA := {x ∈ A : (x+ intG) ∩ A = ∅}.

Finally, SupwA := wMax Cl−A. For the cone G = Rd
+ and A = −Rd we

have that Cl−A = A and SupwA = wMaxA = −∂Rd
+. According to our

definition SupA = {0}.
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3. Essential Supremum in L0(Rd)

3.1. Setting

Let (Ω,F , P ) be a probability space. Let H be a sub-σ-algebra of F . We
consider in the space L0(Rd,F) of d-dimensional random variables a partial
order defined by a countable family U = {uj : j = 1, 2, ...} of functions
uj : Ω×Rd → R with the following properties:

(i) uj(., x) ∈ L0(R,F) for every x ∈ Rd;
(ii) uj(ω, .) is continuous for almost all ω ∈ Ω.

Namely, for elements γ1, γ2 ∈ L0(Rd,F), the relation γ2 � γ1 means that
uj(γ2) ≥ uj(γ1) (a.s.) for all j.

Definition 3.1. Let Γ be a subset of L0(Rd,F). We denote by H-Esssup Γ
a subset Γ̂ of L0(Rd,H) such that the following conditions hold:

(a) Γ̂ � Γ;

(b) if γ ∈ L0(Rd,H) and γ � Γ, then there is γ̂ ∈ Γ̂ such that γ � γ̂;

(c) if γ̂1, γ̂2 ∈ Γ̂, then γ̂1 � γ̂2 implies γ̂1 = γ̂2.

If H-Esssup Γ is a singleton, we denote by H-esssup Γ its unique element.
Since in this section H is fixed, we shall omit this symbol and write simply
Esssup Γ and esssup Γ. When needed, we note Esssup UΓ where U is the
family of functions representing the partial order.

We define Essinf UΓ := Esssup −U(Γ) and essinf UΓ := esssup −U(Γ).
Note that for every ω (except a null set) the countable family of functions

{uj(ω, .)} defines a partial order in Rd. In the sequel we associate with an
order interval [γ1, γ2] in L0(Rd,F) the order intervals [γ1(ω), γ2(ω)] in Rd

corresponding to these families.

Remark 3.2. Let d = 1 and � is the usual total order on the real line.
Then F-Esssup Γ = {F-esssup Γ} where F-esssup Γ is the classical essential
supremum of Γ. Also in the scalar case, if Γ = {ξ} and the σ-algebra H is
trivial, then H-Esssup Γ = {vraimax ξ}.

3.2. Elementary Properties

In this subsection, we consider a partial order � in L0(Rd,F) represented
by a countable family of functions satisfying (i), (ii).

12



Lemma 3.3. The set Esssup Γ is uniquely defined.

Proof. Let us consider two subsets Γ̂1 and Γ̂2 satisfying (a)–(c). Consider
γ̂1 ∈ Γ̂1. Since γ̂1 dominates the set Γ, there exists γ̂2 ∈ Γ̂2 with γ̂1 � γ̂2.
Similarly, there exists γ̂′1 ∈ Γ̂1 satisfying γ̂2 � γ̂′1. Then, γ̂1 � γ̂′1. But (c)
implies that γ̂1 = γ̂′1. Hence, γ̂1 = γ̂′1 = γ̂2, i.e. γ̂1 ∈ Γ̂2. So, Γ̂1 ⊆ Γ̂2 and, by
symmetry, Γ̂1 = Γ̂2. 2

Lemma 3.4. The set Esssup Γ is decomposable, i.e. for any γ̂1, γ̂2 ∈ Esssup Γ
and B ∈ H, we have γ̂1IB + γ̂2IBc ∈ Esssup Γ.

Proof. Let us consider the set Γ̃ := Esssup Γ ∪ {γ̂1IB + γ̂2IBc}. This set
satisfies (a)–(c). By the previous lemma, Γ̃ = Esssup Γ. 2

Lemma 3.5. Let � be a partial order in L0(Rd,F) represented by a countable
family of linear functions (in x-variable) satisfying (i), (ii). If Esssup Γ is
neither an empty set nor a singleton, then Esssup Γ is infinite.

Proof. Suppose that Esssup Γ = {γ̂1, γ̂2, · · · , γ̂m} where γ̂i 6= γ̂j if i 6=
j. The linearity ensures that the random variable (1/k)γ̂1 + (1 − 1/k)γ̂2

dominates Γ for each k ∈ N. The property (b) implies the existence of an
integer Nk ∈ {1, · · · ,m} such that (1/k)γ̂1 + (1− 1/k)γ̂2 � γ̂Nk

. Using again
the linearity and the property (c) we deduce that the index Nk is not equal
to 1 or 2 (otherwise, γ̂1 = γ̂2). Hence, there exists j ∈ {3, · · · ,m} and an
infinite subsequence (k′) such that Nk′ = j for all k′. By letting k′ tend
to infinity, we infer that γ̂2 � γ̂j. therefore, by (c), we have γ̂2 = γ̂j. A
contradiction. 2

Example. The linearity assumption above is important. Indeed, let us
consider the partial order in R2 given by the family U = {u1, u2, u3}, where
u1(x) = ax, u2(x) = bx with a = (1/

√
2, 1/
√

2), b = (0, 1), and u3(x) = |x|.
Let Γ = {0, p} where p = (−1/

√
2,−1/

√
2). Then x � Γ if and only if

ax ≥ 0, bx ≥ 0, and |x| ≥ 1. That is x ∈ G and |x| ≥ 1, where G is the cone
{x : ax ≥ 0, bx ≥ 0}. One can easily check that Sup Γ = {A,B} where
A = (−1/

√
2, 1/
√

2), B = (1, 0), see Figure 1.
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Figure 1: The grey-coloured domain corresponds to the set of all points dominating Γ =
{0, p}, hence, Sup Γ = {A,B}.

Lemma 3.6. Assume that the essential supremum of any finite subset of
L0(Rd,F) is a singleton. For Γ ⊆ L0(Rd,F), let the upward completion be
defined as

Γup := {esssup {γj1 , · · · , γjn} : γjk ∈ Γ, n ∈ N} . (3.1)

Then
Esssup Γ = Esssup Γup.

Proof. Put Γ̂ := Esssup Γup. Since Esssup Γup � esssup {γ} � γ whatever
is γ ∈ Γ, the set Γ̂ satisfies the property (a). Let γ ∈ L0(Rd,H) be such that
γ � Γ. In particular, γ dominates the elements γjk ∈ Γ, 1 ≤ k ≤ n. By the
assumption the essential supremum of the latter is a singleton. Therefore,
γ � Γup. Thus, there is an element γ̂ ∈ Esssup Γup such that γ � γ̂. That
is Γ̂ satisfies the property (b). Finally, let γ̂1, γ̂2 ∈ Esssup Γup be such that
γ̂1 � γ̂2. By definition of Esssup we have that γ̂1 coincides with γ̂2 and (c)
also holds. 2

14



3.3. Existence

Theorem 3.7. Let � be a partial order in L0(Rd,F) represented by a count-
able family of functions satisfying (i), (ii) and such that all order intervals
[γ1(ω), γ2(ω)], γ2 � γ1, are compacts a.s. If a non-empty subset Γ is such
that γ̄ � Γ for some γ̄ ∈ L0(Rd,H), then H-Esssup Γ 6= ∅.

Proof. Let U = {uj}j≥1 be a representing family. Without loss of gener-
ality we may assume that |uj| ≤ 1. Put

u(ω, z) :=
∑
j≥1

2−juj(ω, z).

The function z 7→ u(ω, z) is continuous and its absolute value is bounded by
unit. Fix arbitrary γ0 ∈ Γ. Take γ ∈ L0(Rd,H) such that γ � Γ. For any
ζ ∈ L0([Γ, γ],H) the mapping ω 7→ u(ω, ζ(ω)) is an F -measurable random
variable taking values in the interval [−1, 1]. Put

a(γ) := inf
ζ∈L0([Γ,γ],H)

Eu(ζ)

and consider a sequence ζn ∈ L0([Γ, γ],H) such that a(γ) = limnEu(ζn).
Without loss of generality we may assume that the sequence of random

variables u(ζn) is such that the conditional expectations E(u(ζn)|H) are de-
creasing. Indeed, we can replace the sequence ζn by the sequence ζ ′n by
putting ζ ′1 = γ, and defining recursively the random variables

ζ ′n := ζ ′n−1I{E(u(ζ′n−1)|H)≤E(u(ζn)|H)} + ζnI{E(u(ζ′n−1)|H)>E(u(ζn)|H)}, n ≥ 2.

Due to the assumption of the theorem, the order intervals [γ0(ω), γ(ω)] are
compact (a.s.). It follows that supn |ζn| <∞ a.s. By virtue of the lemma on
converging subsequences (Lemma 2.1.2 [10]) there exists a strictly increasing
sequence of H-measurable integer-valued random variables τk such that the
sequence ζτk converges a.s. to some ζ such that Γ � ζ � γ. The monotonicity
implies that

E(u(ζτk)|H) =
∑
m≥k

E(u(ζm)|H)I{τk=m} ≤ E(u(ζk)|H).

It follows that
Eu(ζτk) ≤ Eu(ζk).
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Using the continuity of u(ω, .) and the Lebesgue theorem on dominated con-
vergence we have:

Eu(ζ) = E lim
k
u(ζτk) ≤ lim

k
Eu(ζk) = a(γ).

Thus,
a(γ) = Eu(ζ). (3.2)

We denote by Λ(γ) the set of all random variables ζ ∈ L0([Γ, γ],H) verifying
(3.2) and define the set

Γ̂ :=
⋃

γ∈L0([Γ,∞[,H)

Λ(γ). (3.3)

It remains to show that this set satisfies (a)–(c). Obviously, Γ̂ � Γ, i.e. (a)
holds. If ζ ∈ L0([Γ,∞[,H), then ζ � Λ(ζ) by construction, i.e. (b) holds.

At last, consider ζ̂1, ζ̂2 ∈ Γ̂ with ζ̂1 ∈ Λ(γ1) and ζ̂2 ∈ Λ(γ2), γ1, γ2 ∈ [Γ,∞[,

such that ζ̂1 � ζ̂2. Suppose that ζ̂1 6= ζ̂2 and, hence, there is i for which
ui(ζ̂1) − ui(ζ̂2) ≥ 0 and the inequality is strict on a non-null set. It follows
that there exists a non-null set B ∈ H on which

E(ui(ζ̂1)− ui(ζ̂2)|H) > 0.

Observe that for all j

uj(ζ̂2IB + ζ̂1IBc) = uj(ζ̂2)IB + uj(ζ̂1)IBc

and
E(uj(ζ̂2IB + ζ̂1IBc)|H) = E(uj(ζ̂2)|H)IB + E(uj(ζ̂1)|H)IBc

for all j. It follows that

a(γ1) = Eu(ζ̂1) > Eu(ζ̂2IB + ζ̂1IBc) (3.4)

where ζ̂2IB + ζ̂1IBc ∈ [Γ, ζ̂1] ⊆ [Γ, γ1]. This is a contradiction. Hence, (c) also
holds. 2

Lemma 3.8. Let � be a partial order represented by a countable family of
functions satisfying (i), (ii) and such that all order intervals [γ1(ω), γ2(ω)],
γ2 � γ1, are compacts a.s. Suppose that for any γ̂1, γ̂2 ∈ L0(Rd,F), the set
Essinf {γ̂1, γ̂2} is either singleton or empty. Then, for any Γ ⊆ L0(Rd,F)
the set Esssup Γ is either singleton or empty.
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Proof. Suppose that some Γ ⊆ L0(Rd,F) is such that Esssup Γ contains
two different points γ̂1 and γ̂2. By the existence Theorem 3.7 above the set
Essinf {γ̂1, γ̂2} is non-empty and, by the hypothesis, it is a singleton formed
by some element γ∗. If γ ∈ Γ, then γ � {γ̂1, γ̂2} and, therefore, γ � γ∗,
i.e. γ∗ � Γ. Hence, there exists γ̂ ∈ Esssup Γ such that γ∗ � γ̂. Therefore,
{γ̂1, γ̂2} � γ̂ implying that γ̂1 = γ̂ and γ̂2 = γ̂. A contradiction. 2

3.4. More Properties of Esssup

To relate our result with the classical concept of essential supremum of
a set of scalar random variables, it is more convenient to consider the space
L0(R ∪ {+∞},F). The natural partial order in this case can be given by a
single function, e.g., u(x) = x or any increasing strictly monotone function;
the choice u(x) = arctan x is convenient since the latter is bounded.

Lemma 3.9. Let Γ 6= ∅ be a subset of L0(R∪ {+∞},F). Then H-Esssup Γ
is a singleton. In particular, H-Esssup Γ={H-esssup Γ}.

Proof. Working with u(x) = arctanx we observe that the arguments
of the previous theorem (with the random variable γ̄ identically equal to
infinity) require no changes. It is easy to see that a(γ) does not depend on
γ � Γ. Finally, there exists only one element ζ ∈ L0([Γ,∞],H) such that
(3.2) holds (otherwise we could diminish the value of the right-hand side by
ζ ∧ ζ ′). 2

Remark 3.10. We have H-esssup Γ � F-esssup Γ.

Proposition 3.11. Let � be a partial order in L0(Rd) represented by a
countable family U of functions satisfying (i), (ii). Let Γ ⊆ L0(Rd,H) be a
totally ordered subset such that there exists γ ∈ L0(Rd,H) with Γ � γ. Then
Esssup Γ is a singleton esssup Γ. Moreover, there is a strictly increasing
sequence of H-measurable integer-valued random variables τn such that (γτn)
converges increasingly to esssup Γ a.s.

Proof. Put b := supγ∈ΓEu(γ) where u is defined above. Take γn ∈ Γ such
that Eu(γn) ↑ b. The set Γ being totally ordered, we may assume without
loss of generality that (γn) is order increasing. Since γn ∈ [γ1, γ], we infer that
lim infn |γn| <∞. In virtue of Lemma 2.1.2 [10] there is a strictly increasing
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sequence of H-measurable integer-valued random variables τn such that (γτn)
converges a.s. to some γ̂ � γ. Recall that

γτn =
∑
m≥n

γmI{τn=m} ∈ L0(Rd,H).

Since both sequences (γn) and (τn) are increasing, we deduce that the se-
quence (γτn) is also increasing. As τn ≥ n, we get that γτm � γn if m ≥ n
implying that γ̂ � γn for every n and, also b = Eu(γ̂). It follows that
Esssup Γ = {γ̂}. Indeed, if γ � Γ , then γ � {γτn : n ∈ N} and, taking the
limit, we get that γ � γ̂, i.e. the singleton {γ̂} satisfies (a)–(c). 2

3.5. Properties of Esssup for Homogeneous Generating Functions

In this subsection we shall work assuming that the functions defining
the partial order are linear (in x variable). For a set Γ ⊆ L0(Rd,F) and
λ ∈ L0(R+,H), we define the set λΓ := {λγ : γ ∈ Γ}.

Lemma 3.12. Let � be a partial order in L0(Rd,F) represented by a count-
able family U of homogeneous functions satisfying (i), (ii). Let a set Γ ⊆
L0(Rd,F) be such that Esssup Γ 6= ∅. If λ ∈ L0(R+,H), then

Esssup (λΓ) = λEsssup Γ.

Proof. Let Γ̂λ := λEsssup Γ. Since multiplication on elements of L0(R+,H)

preserves the order, we have Γ̂λ � λΓ. Let γ ∈ L0(Rd,H) and γ � λΓ. Take
an arbitrary element γ̃0 ∈ Esssup Γ. Then

γ1 := λ−1γI{λ6=0} + γ̃0I{λ=0} � Γ

and, in virtue of the property (b) for Γ, there is γ̂ ∈ Esssup Γ such that

γ1 � γ̂. It follows that γ � λγ̂ ∈ Γ̂λ. Finally, let γ̂1, γ̂2 ∈ Γ̂λ be such that
γ̂1 � γ̂2. By definition of Γ̂λ we have that γ̂i = λγ̃i, where γ̃i ∈ Esssup Γ,
i = 1, 2. Also,

γ̄i := γ̃iI{λ 6=0} + γ̃0I{λ=0} ∈ Esssup Γ.

and γ̄1 � γ̄2. The property (c) for Γ implies that γ̄1 = γ̄2. Hence, γ̂1 = γ̂2.
Therefore, the set Γλ satisfies all the conditions defining Esssup (λΓ). 2

We introduce the following condition:

(iii) There is γ0 ∈ L0(Rd,H) such that {ζ ∈ L0(Rd,F) : |ζ| ≤ 1} � γ0.
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Proposition 3.13. Let � be a partial order in L0(Rd,F) represented by a
countable family U of homogeneous functions satisfying (i), (ii), (iii). Let
Γ ⊆ L0(Rd,F) and |Γ| := {|γ| : γ ∈ Γ}. Suppose that ξ := esssup |Γ| < ∞
a.s. Then Esssup Γ is not empty.

Proof. Consider Γ̃ := (1 + ξ)−1Γ. By (iii), Γ̃ � γ0 where γ0 ∈ L0(Rd,H).
Applying Theorem 3.7, we deduce that Esssup Γ̃ is not empty. It follows
that Esssup Γ is not empty and is given by Esssup Γ = (1+ ξ) Esssup Γ̃. This
identity follows from Lemma 3.12. 2

It is easily seen that the above results hold also when all functions of the
representing family are (positive) homogeneous of order γ 6= 0.

Lemma 3.14. Let � be a partial order in L0(Rd,F) represented by a count-
able family U of linear functions satisfying (i), (ii), and (iii) and let Γ ⊆
L0(Rd,F). Then

F-esssup |Γ| <∞ ⇔ there are γ1, γ2 ∈ L0(Rd,F) such that γ1 � Γ � γ2.

Proof. (⇒) By the above proposition there are γ1 ∈ F -Essinf Γ 6= ∅ and
γ2 ∈ F -Esssup Γ 6= ∅ with the needed property.

(⇐) Suppose that the set B := {F -esssup |Γ| = ∞} is non-null. Take
a sequence γn ∈ Γ such that |γn| ↑ F -esssup |Γ|. Let us define the random
variables γ̃n := γn(|γn|+ 1)−1, γ̃n1 := γ1(|γn|+ 1)−1, and γ̃n2 := γ2(|γn|+ 1)−1.
Using Lemma 2.1.2 [10] we may assume that γ̃n → γ̃ with |γ̃| = 1 on B. On
the other hand, in virtue of (ii), we have that γ̃n1 � γ̃n � γ̃n2 for all n. It
follows that γ̃ = 0 on the set B. A contradiction. 2

4. Essential Supremum in L0(Rd) with Respect to a Random Cone

4.1. Setting

Let (Ω,F , P ) be a complete probability space and let ω 7→ G(ω) ⊆ Rd

be a measurable set-valued mapping whose values are closed convex cones.
The measurability is understood as the measurability of the graph, i.e. we
assume that

graph G := {(ω, x) ∈ Ω×Rd : x ∈ G(ω)} ∈ F ⊗ B(Rd).

The positive dual G∗ of G is defined as the mapping whose values are closed
convex cones

G∗(ω) := {x ∈ Rd : xy ≥ 0, ∀y ∈ G(ω)},
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where xy is the scalar product. Note that 0 ∈ L0(G,F) 6= ∅.
The fundamental fact of the theory of set-valued analysis is that any mea-

surable mapping whose values are closed subsets admits a Castaing represen-
tation (see, e.g. [15]). In our case this means that there exists a countable
set of measurable selectors ξi of G such that G(ω) = {ξi(ω) : i ∈ N} for all
ω ∈ Ω. Thus,

graph G∗ = {(ω, y) ∈ Ω×Rd : yξi(ω) ≥ 0, ∀i ∈ N} ∈ F ⊗ B(Rd),

i.e. G∗ is a measurable mapping and admits a Castaing representation, i.e.
there exists a countable set of measurable selectors ηi of G∗ such that we
have G∗(ω) = {ηi(ω) : i ∈ N} for all ω ∈ Ω. Since G = (G∗)∗,

G(ω) = {(ω, x) ∈ Ω×Rd : ηi(ω)x ≥ 0, ∀i ∈ N}. (4.1)

From now on we suppose that the values of G are proper cones, i.e.
G ∩ (−G) = {0} a.s. (or, equivalently, intG∗ 6= ∅). In the terminology of
mathematical finance this property is called the efficient friction condition.

Under the adopted hypothesis the relation γ2− γ1 ∈ G a.s. defines a par-
tial order γ2 � γ1 in L0(Rd,F). Moreover, the countable family of functions
uj(ω, x) = ηj(ω)x where ηj is a Castaing representation of G∗, represents the
partial order defined by G. So, the above theory can be applied.

Notation. Let H is a sub-σ-algebra of F and let Γ ⊆ L0(Rd,F). We
shall use sometimes the notation (H, G)-Esssup Γ instead of H-Esssup Γ to
indicate that partial order is generated by the random cone G.

Note that in some cases we may dispose an additional information about
the measurability of G.

Of course, if the partial order is given by a countable family of functions
(ω, x) 7→ ηi(ω)x, then we can generate it by a random cone G given by (4.1).
It is worth noting that in applications the partial order is usually given by a
random cone rather than by a representing family.

Since in the considered case the order intervals [γ1(ω), γ2(ω)] are com-
pacts, the set (H, G)-Esssup Γ exists if Γ is bounded from above with respect
to the partial order (i.e. there is γ̄ ∈ L0(Rd,H) such that γ̄ − Γ ∈ G).

4.2. Properties

In the following the partial order � is defined by the random cone G.
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Lemma 4.1. Suppose that the representation (4.1) is given by d elements
ηi ∈ L0(G∗,H) such that the vectors ηi(ω) form a basis in Rd for almost
all ω and G∗ = cone {ηi, 1 ≤ i ≤ d}. Let Γ ⊆ L0(Rd,F) be such that
(H, G)-Esssup Γ is a singleton {γ̄}. Then ηiγ̄ = (H,R+)-Esssup (ηiΓ) for all
i ≤ d.

Proof. Let us consider η := ηi for some i = 1, · · · , d. Since γ̄ � Γ,
we have the inequalities ηγ̄ ≥ ηγ for all γ ∈ Γ. Therefore, ηγ̄ ≥ (H,R+)-
Esssup (ηΓ). Suppose that the inequality above is strict on a non-null set.
Without loss of generality we may assume that η1 = η. Let us consider a
H-measurable random vector ξ with |ξ| = 1 such that ξ(ω) is orthogonal to
the linear subspace generated by ηi(ω), i = 2, ..., d, for almost all ω. We may
always assume that ηξ ≥ 0. We can find a non-zero H-measurable random
variable α ≥ 0 such that

η(γ̄ − αξ) ≥ (H,R+)-Esssup (ηΓ).

It follows that γ̄ − αξ � Γ and, hence γ̄ − αξ � γ̄. Thus, we have that
ξ(ω) ∈ G(ω) ∩ (−G(ω)) on the non-null set where α 6= 0, i.e. ξ(ω) = 0 on
this set. This is a contradiction. 2

Remark 4.2. Recall that a closed cone in Rd generates a lattice structure
(i.e. a preorder with respect to which for any two elements have infimum
and supremum) if and only if the dual cone has d independent generators,
see [16] and the correction of the statement in [1]. Thus, the hypotheses of
the above lemma means that L0(Rd,F) is a lattice.

Corollary 4.3. Assume that there are d elements ηi ∈ L0(G∗,H) such that
G∗ = cone {ηi, 1 ≤ i ≤ d} where the vectors ηi(ω) form a basis in Rd

a.s. Suppose that (H, G)-Esssup of any finite subset of L0(Rd,F) is a sin-
gleton. Let Γ ⊆ L0(Rd,F) and let (H, G)-Esssup Γ = {γ̂}. Then for any
η ∈ L0(Rd,H) there exists a sequence γn from the set Γup (defined by (3.1))
such that

ηγ̂ = lim
n
ηγn.

In particular, if Γ = Γup, then ηγ̂ ≤ (H,R+)-esssup (ηΓ).

Proof. By virtue of Lemma 3.6, we may assume without loss of generality
that Γ = Γup, i.e. Γ is directed upwards. Since the vectors ηj(ω) form a basis
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in Rd, η =
∑

j≤d αjηj where αj ∈ L0(R,H). By virtue of the above lemma,

ηγ̂ =
∑
j≤d

αj(H,R+)-esssup (ηjΓ).

For each j, the family ηjΓ is directed upwards. Thus, there are sequences
γjn ∈ Γ such that ηjγ

j
n ↑ (H,R+)-esssup (ηjΓ) a.s. Replacing the sequences

(γjn) by the sequence γn := (H, G)-esssup {γjn : j ≤ d} ∈ Γ, we obtain that
(H,R+)-esssup (ηjΓ) = limn ηjγn. The statement follows from here immedi-
ately. 2

4.3. Polyhedral Ordering Cones G with Linearly Independent Generators

Proposition 4.4. Let G = cone {ξi, i = 1, · · · , N} where ξi ∈ L0(Rd,F)
and, for every ω, the vectors ξi(ω), i = 1, · · · , N , are linearly independent
(so, N ≤ d). Let a non-empty set Γ ⊆ L0(Rd,F) be such that Γ � γ̄ for
some γ̄ ∈ L0(Rd,F). Then F-Esssup Γ is a singleton.

Proof. Without loss of generality we may assume that |ξi| = 1. Let
us consider the F -measurable random linear subspace G − G. Any γ ∈
L0(G−G,F) admits a unique representation γ =

∑N
i=1 α

i(γ)ξi where the co-
efficients αi ∈ L0(R,F); they are all non-negative if and only if γ ∈ L0(G,F).
Invariance under a shift on a fixed random vector allows us to reduce the
problem to the case where 0 ∈ Γ. Since γ̄ − Γ ⊂ L0(G,F), the ”bound”
γ̄ ∈ L0(G,F) and Γ ⊂ L0(G−G,F). Then

α̂i := (R+,F)-esssup {αi(γ), γ ∈ Γ} ≤ αi(γ̄) <∞

(this is nothing but the classical essential supremum). It is easy to check
that F -Esssup Γ = {γ̂} where γ̂ =

∑N
i=1 α̂

iξi. 2

Corollary 4.5. Under the assumptions of the above proposition on G, if a
non-empty set Γ ⊆ L0(Rd,F) is such that (R+,F)-esssup |Γ| < ∞, then
F-Esssup Γ is a singleton.

5. Hedging of European Options in a Discrete-Time Model with
Transaction Costs
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In the model we are given a closed proper convex cone K ⊂ Rd whose in-
terior contains Rd

+\{0} and a stochastic basis (Ω,F ,F = (Ft)t=0,...,T , P ) with
a d-dimensional adapted process S = (St) with strictly positive components.

Define the random diagonal operators

φt : (x1, ..., xd) 7→ (x1/S1
t , ..., x

d/Sdt ), t = 0, ..., T,

and relate with them the random cones K̂t := φtK. We consider the set V̂
of Rd-valued adapted processes V̂ such that ∆V̂t := V̂t − V̂t−1 ∈ −K̂t for all
t and the set V whose elements are the processes V with Vt = φ−1

t V̂t, V̂ ∈ V̂ .

In the context of the theory of markets with transaction costs, K is the
solvency cone in a model with efficient friction corresponding to the descrip-
tion in terms of a numéraire, V is the set of value processes of self-financing
portfolios. The notations with hat correspond to the description of the model
in terms of ”physical” units where the portfolio dynamics is much simpler
because it does not depend on price movements. A typical example is the
model of currency market defined via the matrix of transaction costs coeffi-
cients Λ = (λij) with non-negative entries and λii = 0. In this case

K = cone {(1 + λij)ei − ej, ei, 1 ≤ i, j ≤ d}.

Another example is the commodity market where all transactions are payed
from the money account. In this case

K = cone {γije1 + ei, (1 + γ1i)e1 − ei, (−1 + γj1)e1 + ej, ei, 1 ≤ i, j ≤ d}.

We assumed for simplicity that K is constant. In general, K = (Kt)
is an adapted random process whose values are convex closed proper cones,
e.g., given by an adapted matrix-valued process Λ = (Λt). But even in the

constant case K̂ = (K̂t) is a random cone-valued process. Note that one

can use modeling involving only K̂ defined, e.g., by the bid-ask (adapted
matrix-vaued) process but this is just a different parametrization leading to
the same geometric structure.

In this model the contingent claim is a d-dimensional random vector. We
shall use the notation YT when the contingent claim is expressed in units of
the numéraire and ŶT when it is expressed in physical units. The relation is
obvious: ŶT = φTYT .

The value process V ∈ V is called minimal if VT = YT and any process
W ∈ V such that WT = YT and Wt �K Vt for all t ≤ T coincides with V .
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The questions of interest are whether minimal portfolios do exist and how
they can be found. We denote Vmin the set of all minimal processes. The set
V̂min is defined in the obvious way.

Proposition 5.1. Suppose that L0(K̂t+1,Ft) ⊆ L0(K̂t,Ft), t ≤ T − 1, and

suppose there exits a least one V̂ ∈ V̂ such that V̂T ≥K̂T
ŶT . Then V̂min 6= ∅

and V̂min coincides with the set of solutions of backward inclusions

V̂t ∈ (Ft, K̂t+1)-Esssup {V̂t+1}, t ≤ T − 1, V̂T = ŶT . (5.1)

Moreover, any W ∈ V with WT � YT is such that W �K V for some
V ∈ Vmin.

Proof. Let Ŵ ∈ V̂ be such that ŴT �K̂T
ŶT . Since ∆ŴT ∈ −K̂T , we have

ŴT−1 �K̂T
ŴT . By definition of (FT−1, K̂T )-Esssup and Theorem 3.7, we

obtain that ŴT−1 �K̂T
V̂T−1 for some V̂T−1 ∈ (FT−1, K̂T )-Esssup {ŶT} 6= ∅.

Therefore, by the hypothesis, ŴT−1 �K̂T−1
V̂T−1 . Continuing the backward

induction, we obtain that Ŵt �K̂t
V̂t where V̂t satisfies (5.1). We deduce that

any portfolio Ŵ ∈ V̂min satisfy (5.1). The same backward induction allows

us to conclude that any V̂ ∈ V̂ which satisfies (5.1) is minimal. 2

Remark 5.2. The hypothesis L0(K̂t+1,Ft) ⊆ L0(K̂t,Ft), t ≤ T − 1, of the
above proposition is equivalent to the absence of arbitrage opportunities of
the second kind, see [10], Th. 3.2.20. Note that it is always fulfilled when the
price process S admits an equivalent martingale measure. This hypothesis
is essential for the claimed property. Indeed, with T = 1, suppose that the
inclusion L0(K̂1,F0) ⊆ L0(K̂0,F0) does not hold. In this case, we may find

Ŵ0 ∈ L0(K̂1,F0) such that Ŵ0 /∈ K̂0. With the payoff ŶT = 0, we easily
obtain that the only minimal value process which satisfies (5.1) is given by
V̂1 = V̂0 = 0. If the assertion of Proposition 5.1 holds, the value process (Ŵ0,
Ŵ1 = 0) should satisfy Ŵ0 � V̂0, i.e. Ŵ0 ∈ K̂0 and we get a contradiction.

In the above result we do not use the specificity of the model and it can
be extended without any changes to an ”abstract case” where K̂ = (K̂t) is
replaced by an adapted cone-valued process G = (Gt).

Remark 5.3. In general, the essential supremum in the formula (5.1) is
not a singleton. Take for instance the simple case where Ω := {ω1, ω2} and
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T = 1. Consider F0 := {∅,Ω} and F1 is the σ-algebra of all subsets of

Ω. Suppose that K̂0 = K̂1(ω1) and K̂1(ω2) 6= K̂0. As illustrated in the

picture below, if V̂1 = AI{ω1}+BI{ω2}, then (F0, K̂1)-Esssup {V̂1} = Λ where

Λ := (A + K̂0) ∩ (B + K̂1(ω2)) . Indeed, the set of all deterministic points

V0 ≥K̂1
V̂1 is Λ and neither of them can be ”reduced” in the direction of K̂1

since K̂1(ω2) ∩ K̂1(ω1) = {0}.

Figure 2: The grey-coloured domain corresponds to the set Λ := (F0, K̂1)-Esssup {V̂1}
where V̂1 = AI{ω1} + BI{ω2}.

6. Set-Valued Dynamic Risk Measures

One of interesting recent new ideas in the theory of financial markets with
transaction costs is the introduction of set-valued risk measures, see [9], [8],
[6]. In the following illustrative examples we show that the notion Esssup
can be used to construct such risk measures in dynamic setting.

Let us consider the model described in the previous section assuming that
transaction costs coefficients are constant and the efficient friction condition
holds. We denote by � the order in L0(Rd,FT ) defined by the solvency cone
K.
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We denote by D the set of X ∈ L0(Rd,FT ) such that X � −kSt, t ≤ T ,
for some k ≥ 0.

Let X be a vector-valued random variable X ∈ L0(Rd,FT ). It models the
value at date T of some multi-asset financial portfolio, the investment of a
company at date T . A dynamic set-valued measure of risk ρ = (ρt) is a family
of set-valued mappings defined on D. The mapping ρt associates with X ∈ D
a non-empty set ρt(X) ⊂ L0(Rd,Ft), interpreted as positions ξ, when added
to X, make the total position X + ξ acceptable by the regulator/supervisor
at date t. The acceptable positions are given by the solvency cone K, i.e.
they are such that ρt(X) +X � 0 or ρt(X) +X ⊆ K.

The natural requirements on such a risk measure are the following prop-
erties that can be described as follows:

(r0) ρt(0) � 0;.

(r1) If X � 0 and X ∈ D, then there exists a process (ξt) such that
ξt ∈ ρt(X) and ξt � 0 for all t ≤ T .

(r2) for any (ξ, η) ∈ ρt(X) × ρt(Y ) there is ζ ∈ ρt(X + Y ) such that
ζ � ξ + η.

(r3) If λ ∈ L0(R+,Ft) and X ∈ D, then ρt(λX) = λρt(X).

(r4) If X ∈ D and a ∈ L0(Rd,Ft), then ρt(X + a) = ρt(X)− a.

Proposition 6.1. The mapping ρt(X) := Ft-Esssup {−X} defines a dy-
namic set-valued risk measure on D.

Proof. In virtue of Theorem 3.7 the set Ft-Esssup {−X} is non-empty
(though not necessary a singleton). Properties (r0), (r1), and (r4) are obvious,
(R3) follows from Lemma 3.12. Finally, if ξ,∈ ρt(X) and η ∈ ρt(Y ), that is
ξ + X ∈ K and η + Y ∈ K, then ξ + η + X + Y ∈ K a.s. In other words,
ξ + η ≤ −(X + Y ). According to the property (b) in Definition 3.1, there is
ζ � ξ + η in Ft-Esssup {−(X + Y )}. Thus, (r2) also holds. 2

The definition of set-valued dynamic risk measures can be extended in an
natural way to be applied to sets of random vectors. Let Γ be a non-empty
subset of D. It can be interpreted as the set of potential investors position
at time T . A dynamic set-valued measure of risk R = (Rt) is a family of
set-valued mappings defined on such subsets of D and associating with Γ a
non-empty set Rt(Γ) ⊂ L0(Rd,Ft). The interpretation: the total positions
from Γ+Rt(Γ) are acceptable by the regulator/supervisor at date t, i.e. they
are elements, i.e. they are such that ρt(X) +X � 0.
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For a dynamic set-valued measure defined on sets of random vectors the
following properties should be fulfilled:

(R0) Rt({0}) � 0;.

(R1) If Γ � 0 and Γ ⊆ D, then there exists a process (ξt) such that
ξt ∈ Rt(X) and ξt � 0 for all t ≤ T .

(R2) for any (ξ, η) ∈ ρt(Γ1) × ρt(Γ2) there is ζ ∈ Rt(Γ1 + Γ2) such that
ζ � ξ + η.

(R3) If λ ∈ L0(R+,Ft) and Γ ∈ D, then Rt(λΓ) = λRt(X).

(R4) If Γ ⊆ D and a ∈ L0(Rd,Ft), then Rt(X + a) = Rt(X)− a.

As above we have:

Proposition 6.2. The mapping Rt(Γ) := Ft-Esssup {−Γ} defines a dynamic
set-valued risk measure on subsets of D.
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