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Abstract In contrast with the classical models of frictionless financial markets, market

models with proportional transaction costs, even satisfying usual no-arbitrage proper-

ties, may admit arbitrage opportunities of the second kind. This means that there are

self-financing portfolios with initial endowments laying outside the solvency region but

ending inside. Such a phenomenon was discovered by M. Rásonyi in the discrete-time

framework. In this note we consider a rather abstract continuous-time setting and prove

necessary and sufficient conditions for the property which we call No Free Lunch of

the 2nd Kind, NFL2. We provide a number of equivalent conditions elucidating, in

particular, the financial meaning of the property B which appeared as an indispensable

“technical” hypothesis in previous papers on hedging (super-replication) of contingent

claims under transaction costs. We show that it is equivalent to another condition on

the “richness” of the set of consistent price systems, close to the condition PCE intro-

duced by Rásonyi. In the last section we deduce the Rásonyi theorem from our general

result using specific features of discrete-time models.
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1 Introduction

In the recent paper [28] M. Rásonyi discovered that financial market models with pro-

portional transaction costs, even being arbitrage-free in the usual sense, nevertheless,

may admit portfolios ending up, for sure, in the solvency region despite their initial

values lay outside one. Working in the discrete-time framework and assuming the ef-

ficient friction he established some necessary and sufficient conditions for the absence

of these arbitrage opportunities of the second kind1 (shortly: NA2-property). One

of such conditions is the existence of a strictly consistent price system (a martingale

evolving in the interiors of dual of solvency cones) starting from an arbitrary initial

value in the interior. The aim of the present note is to extend Rásonyi’s results to the

continuous-time setting.

To explain the financial motivation of the problem discussed here we recall some

concepts and facts from the arbitrage theory following the book [21], Chs. 2 and 3. This

theory formalizes the concept of arbitrage, that is the existence of portfolio strategies

allowing for non-risky profits. One can imagine two kinds of arbitrage opportunities: 1)

a portfolio starting from the zero initial value and ending up with a positive non-zero

value; 2) a portfolio starting from a strictly negative value (i.e., the investor enters

the market with a debt) and ending up with a positive value. In the common discrete-

time model of frictionless financial market with the price process S = (S1, ..., Sd) the

arbitrage opportunities of the 2nd kind are not interesting and rarely mentioned. The

reason is that the inequality −a+H ·ST ≥ 0, where a > 0, implies that H ·ST ≥ a, i.e.

the strategy H realizing the arbitrage opportunity of the 2nd kind realizes arbitrage

opportunity of the 1st kind (and a good one!). Thus, the conventional NA-property,

usually required from a market model and excluding the arbitrage opportunities of the

1st kind, automatically excludes the arbitrage opportunities of the 2nd kind.

Supposing that the first traded asset is the numéraire, i.e. S1 = 1 and slightly

abusing the financial terminology, we reformulate the classical criterion of absence of

arbitrage as follows:

The NA-property holds if and only if there is a stochastic deflator, i.e. a strictly

positive martingale ρ such that the process Z := ρS is a martingale.

The processes Z can be interpreted as “correct” or “fair” prices of financial se-

curities allowing to compare the today value of securities and their expected future

value. Usually, the stochastic deflators are normalized to have unit initial value and in

this case they are just the densities of equivalent martingale measures involved in the

“standard” formulation of the criterion and playing the fundamental role in the whole

theory of financial markets.

Let us turn to the simplest discrete-time model of financial market with propor-

tional transaction costs. The investor portfolio is now vector-valued and its evolution,

in units of the numéraire, is given by the following controlled difference equation:

∆Vt = diag Vt−1∆Rt + ∆Bt, V−1 = v,

where ∆Ri
t = ∆Si

t/Si
t−1, i ≤ d, is the relative price increment of the ith security,

∆Bt ∈ L0(−Kt,Ft) is the control, and diag x denotes the diagonal operator generated

by the vector x. In other words, the investor action ∆Bt is an Ft-measurable random

1 M. Rásonyi calls this property NGV, No Sure Gain in Liquidation Value, (NSP, No Sure
Profits in the preliminary version of his paper). We prefer a terminology consistent with earlier
works on the large financial markets where a similar phenomenon was observed.
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variable taking values in the cone −Kt. In the model where one can exchange any asset

to any other with losses (see [21], Section 3.1.1), the solvency cones are defined by the

matrices of transaction costs coefficients Λt = (λij
t ):

Kt = cone {(1 + λij
t )ei − ej , ei, 1 ≤ i, j ≤ d}. (1.1)

In the theory, as in practice, the coefficients λij
t ≥ 0 are adapted random processes. The

above dynamics naturally falls into a scope of linear difference equations with controls

constraint to be taken from random cones.

One can express the portfolio dynamics also in “physical units”. It is much simpler.

Assuming that S−1 = S0 = (1, ..., 1) and introducing the diagonal operators

φt := (x1, ..., xd) 7→ (x1/S1
t , ..., xd/Sd

t ),

we have:

∆V̂t = ∆̂Bt, V̂−1 = v,

where V̂t = φtVt, ∆̂Bt ∈ L0(−K̂t,Ft), K̂t = φtKt. Note that, in contrast with Kt,

the cones K̂t are always random, even in the model with constant transaction costs.

So, (K̂t) is an adapted cone-valued process. We shall consider also the adapted cone-

valued process (K̂∗
t ) with K̂∗

t (ω) defined as the (positive) dual cone of K̂t(ω). Though

in financial models the cones K̂t(ω) are polyhedral, for the control theory this looks

too restrictive and the question about possible extensions to a “general” model, with

(K̂t) replaced by an arbitrary adapted cone-valued process (Gt), arises naturally. The

reader should be informed that for this “general” model a few results are available, e.g.,

until recently it was not known whether the principal theorems of [19] and [20] remain

true for it. Only in the recent preprint [26] criterion for NAr-property was extended

to an arbitrary cone-valued processes.

For models with transaction costs one can consider various types of arbitrage op-

portunities of the 1st kind with corresponding no-arbitrage properties. E.g., the weak

no-arbitrage property (NAw) of the market, the most natural one, means that the in-

tersection of the set of terminal values of portfolio processes ÂT
0 = −

∑T
t=0 L0(K̂t,Ft)

with L0(Rd
+,FT ) is a singleton containing only the random variable identically equal to

zero. For the model with a finite number of states of the nature the following criterion

is well-known, [22]:

The NAw-property holds if and only if there is Z belonging to the set MT
0 (K̂∗\{0})

of martingales taking values in the random cones K̂∗
t \ {0}.

Remarkably, this assertion holds for arbitrary Ω for two-asset model, [9], but fails

to be true for models with a larger number of assets, [30]. In the latter paper it was

shown that the condition MT
0 (ri K̂∗) 6= ∅, i.e. the existence of a martingale evolving

in relative interiors of the dual cones, admits, for any number of assets, an equiva-

lent characterization as the robust no-arbitrage property NAr expressing the fact that

NAw-property holds also for smaller transaction costs.

An inspection of results obtained for discrete-time models shows that the elements

of MT
0 (K̂∗ \ {0}) and MT

0 (ri K̂∗) referred to as consistent price systems and strictly

consistent price systems, respectively, play a fundamental role in the theory: they are

direct generalizations of the stochastic deflators defined above because in the absence

of transaction costs the random cones K̂∗
t are reduced to the random rays R+St. Note

that the condition MT
0 (ri K̂∗) 6= ∅ ensures the closedness of AT

0 , but MT
0 (K̂∗\{0}) 6= ∅
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does not — even for two-asset model (examples by Rásonyi and Grigoriev, see [27], [9],

and [21], Section 3.2.3).

In contrast with the theory of frictionless market, no-arbitrage properties of the 1st

kind, even the robust no-arbitrage property, do not eliminate the existence of an arbi-

trage opportunity of the 2nd kind. The latter is defined as the value process (Vt)t=s,...,T

such that Vs /∈ Gs (a.s.) but VT ∈ GT . The Rásonyi theorem claims that for the “gen-

eral” model with efficient friction (i.e. when all cones Gt are proper) and Rd
+ ⊆ Gt the

absence of arbitrage opportunities of the 2nd kind is equivalent to the “richness” of the

set of strictly consistent price systems formally expressed as the following condition

“Prices Consistently Extendable”:

PCE For any s and η ∈ L1(int G∗
s ,Fs), there is Z ∈ MT

s (int G∗) such that

Zs = η.

Of course, such an important result immediately leads to a question about its

counterpart for continuous-time models. As it is well-known, the corresponding the-

ory, even for the frictionless markets, is much more complicated and involves delicate

topological properties and specific admissibility restrictions on portfolio processes. The

stochastic deflators (density processes of local martingale measures) remain the fun-

damental objects but the existence of one is no more equivalent to the NA-property

but to the NFL-property (“No Free Lunch”) introduced by Kreps. The latter involves

the σ{L∞, L1}-closure Āw of the set A of bounded hedgeable contingent claims. In

general, elements of this closure can not be characterized as limits of weakly* conver-

gent sequences of elements of A and a financial interpretation of the NFL-property

is not satisfactory (though strongly enrooted in the financial literature, see, e.g. [13]

and references therein). For some particular models it is known that NFL-property is

equivalent to the NFLVR-property which definition uses the norm-closure of Ā and

which admits a transparent financial interpretation, [6], [14]. It is worth to emphasize

that results of such type are not easy to obtain and satisfactory analogues for markets

with friction are not known to the date, see [10], [11], [4] for recent progress in this

direction.

Though difficult, the theory of continuous trading under transaction costs is rapidly

growing. To avoid the transformation of this introduction to a general survey of the

field, we mention only a few relevant publications. First, we attract the reader’s atten-

tion to the recent articles [2], [7], [1] making clear that in the case where the prices

have jumps it is more natural to model the value processes as làdlàg and not càdlàg or

càglàd as in the early papers (this was already observed in works on optimal control

but in a rather implicit way). Second, we give references to the recent papers study-

ing the question when the set MT
0 (int K̂∗) is non-empty or, more generally, when a

martingale selector of a set-valued process does exist: [11], [29].

One of the difficulties of continuous-time setting is due to the fact that even for

constant transaction costs the cone-valued processes (K̂t) and (K̂∗
t ) may have jumps.

To get satisfactory hedging (super-replication) theorems for European and American

options one needs to impose certain regularity properties of these processes and their

generators as well as to use rather sophisticated definitions of the value processes.

Moreover, some extra properties on the structure of the set of consistent price systems

seems to be unavoidable. One of such properties is the condition B which requires

that the set of consistent price systems should be rich enough to test the evolution of

the portfolio in the solvency region: the inequalities VtZt ≥ 0 for all Z have to imply

that Vt ∈ K̂t (it was tacitly assumed in [24], appeared explicitly in [2] and used also
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in [21]). Another delicate property is the admissibility of strategies. It happens that

the boundedness from below of value processes expressed in terms of the numéraire,

a common assumption in the theory of frictionless markets, is not a good one. It is

replaced by the boundedness from below of portfolio process with accounting in the

“physical units”. Since portfolios are vector-valued, one uses a partial ordering induced

by solvency cones. This requires also an appropriate modification of the notion of Fatou-

convergence.

The aim of the present note is to relate B with the condition MCPS (“Many

Consistent Price Systems”) close to PCE. The difference with the latter is that the

prices should be extended to consistent (but not necessarily strictly consistent) price

systems. Being inspired by Ràsonyi’s work, we give an equivalent characterization of B

in terms of a certain no-arbitrage property of the second kind involving weak* closure

in the same line as was suggested by Kreps in his seminal work. In our study we follow

the ideology of Kreps’ NFL, the No Free Lunch condition. The question whether one

can use in our context the norm-closure remains open.

The preliminary version of the paper used the framework developed in the pa-

pers [24], [2] and [7] and the results obtained there in. Unfortunately, this approach

happened to be not adequate to the problems discussed here because it requires a

lengthy repetition of rather “technical” definitions and hypotheses on the structure of

cone-valued processes and portfolios.

That is why we opted to work here in a very general “abstract” mathematical

setting using only a few comprehensive hypotheses. These hypotheses are fulfilled for

the basic models in continuous as well as in discrete time. The chosen approach allows us

not to enter in the discussion of specific models but, by providing necessary references,

to arrive quickly to the essence of our note. We introduce the notion No Free Lunch

of the Second Kind, NFL2, named in an obvious allusion with a concept NAA2 that

have been studied in the theory of large financial markets, [15], [16]. We establish

several necessary and sufficient conditions for this property (Theorem 2.2). Our main

conclusion is that the condition B, which appeared in all previous studies on the

superreplication problems as a technical one, is equivalent to a financially meaningful

condition, namely, to the absence of asymptotic arbitrage opportunities of the second

kind. Under the assumption that the set of hedgeable claims is Fatou closed (this

property always holds in the basic models of financial markets with transaction costs)

we prove that B holds if and only if the condition MCPS is fulfilled.

2 Main Result

Let
(
Ω,F = F , (Ft)t≤T , P

)
be a continuous-time stochastic basis verifying the usual

conditions. We are given a pair of set-valued adapted processes G = (Gt)t∈[0,T ] and

G∗ = (G∗
t )t∈[0,T ] whose values are closed cones in Rd in duality, i.e.

G∗
t (ω) = {y ∈ Rd : yx ≥ 0 ∀x ∈ Gt(ω)}.

“Adapted” means that the graphs

{
(ω, x) ∈ Ω × Rd : x ∈ Gt(ω)

}

are Ft ⊗B(Rd)-measurable.
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We assume that all cones Gt are proper, i.e. Gt ∩ (−Gt) = {0} or, equivalently,

int G∗
t 6= ∅. In financial context this means that the efficient friction condition (EF) is

fulfilled, i.e. the market does not admit loops of transaction-free exchanges. We assume

also that Gt dominates Rd
+, i.e. G∗

t \{0} ⊂ int Rd
+.

In a more specific financial setting (see [24], [2], [7], [1], [27], [10]), the cones Gt are

the solvency cones K̂t provided that the portfolio positions are expressed in physical

units.

For each s ∈]0, T ] we are given a convex cone YT
s of optional Rd-valued processes

Y = (Yt)t∈[s,T ] with Ys = 0.

It is assumed that YT
s is stable under multiplication by the positive bounded Fs-

measurable random variables, i.e. by the elements of the set L∞
+ (Fs) = L∞(R+,Fs).

Moreover, if sets An ∈ Fs form a countable partition of Ω and Y n ∈ YT
s , then∑

n Y nIAn ∈ YT
s .

The following notations will be used in the sequel:

– for d-dimensional processes Y and Y ′ the relation Y ≥G Y ′ means that the differ-

ence Y − Y ′ evolves in G, that is Yt − Y ′
t ∈ Gt a.s. for every t;

– 1 stands for a vector (1, ..., 1) ∈ Rd
+;

– YT
s,b denotes the subset of YT

s formed by the processes Y dominated from below

in the sense of partial ordering generated by G, i.e. such that there is a constant κ

such that the process Y + κ1 evolves in G;

– YT
s,b(T ) is the set of random variables YT where Y ∈ YT

s,b;

– AT
s,b(T ) = (YT

s,b(T ) − L0(GT ,FT )) ∩ L∞(Rd,FT ) and AT
s,b

(T )
w

is the closure of

this set in σ{L∞, L1};
– MT

s (G∗) is the set of all d-dimensional martingales Z = (Zt)t∈[s,T ] evolving in G∗,

i.e. such that Zt ∈ L0(G∗
t ,Ft).

Throughout the note we assume the following standing hypotheses on the sets

YT
s,b:

S1 EξZT ≤ 0 for all ξ ∈ YT
s,b(T ), Z ∈ MT

s (G∗), s ∈ [0, T [.

S2 ∪t≥sL∞(−Gt,Ft) ⊆ YT
s,b(T ) for each s ∈ [0, T ].

The hypotheses S1 and S2 adopted in this note allows us to avoid the annoying

repetitions and do not provide the full description of continuous-time models with

transaction costs.

It is important to know only that these conditions are fulfilled for the known models,

see [24], [2], [7]. Recall that in these financial models S1 holds because if one calculates

the current portfolio value using a price system (that is a process from MT
s (G∗)) the

resulting scalar process is a supermartingale. The following example illustrates this.

Example. Let consider the simplest continuous-time analogue of the model de-

scribed in the introduction where the solvency cones Kt, t ∈ [0, T ], are given by the

formula (1.1) (this model sometimes referred to as the model of a currency market).

Now Gt = K̂t = φtKt. Define the elements of YT
s as adapted processes Y of bounded

variation with Ys = 0 and such that Ẏt ∈ −K̂t where Ẏ = Y/d||Y || and ||Y || is the

total variation of Y . Take Z ∈ MT
s (K̂∗). By the product formula we have that

ZY = Y− · Z + ZẎ · ||Y ||,

where the first integral in the right-hand is a local martingale while the second is a

decreasing process. In the case where Y ∈ YT
s,b, that is Yt + κ1 ∈ K̂t for some κ > 0,
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the process ZY dominates the martingale −κZ1. Hence, it is a supermartingale and

EZT YT ≤ 0. Thus, the hypothesis S1 is fulfilled. The hypothesis S2 holds since K̂

contains Rd
+.

It is easily seen that in the above arguments only the duality of cones was used.

They also can be extended to more sophisticated definitions of value processes as in

[2], [7].

The hypothesis S2 expresses the fact that an investor has a right to take any

position less advantageous than zero and keeps it until the end of the planning horizon.

It is fulfilled in all financial models.

Now we introduce other properties of interest: No Free Lunch, No Free Lunch of

the 2nd Kind, Many Consistent Price Systems.

NFL AT
s,b

(T )
w
∩ L∞(Rd

+,FT ) = {0} for each s ∈ [0, T [.

NFL2 For each s ∈ [0, T [ and ξ ∈ L∞(Rd,Fs)

(ξ + AT
s,b

(T )
w

) ∩ L∞(Rd
+,FT ) 6= ∅

only if ξ ∈ L∞(Gs,Fs).

MCPS For any η ∈ L1(int G∗
s ,Fs), there is Z ∈ MT

s (G∗ \ {0}) with Zs = η.

Finally, we recall one more condition:

B If ξ is an Fs-measurable Rd-valued random variable such that Zsξ ≥ 0 for any

Z ∈ MT
s (G∗), then ξ ∈ Gs (a.s.).

The following assertion is a version of FTAP for the considered setting:

Proposition 2.1 NFL ⇔ MT
0 (G∗\{0}) 6= ∅.

Proof. (⇐) Let Z ∈ MT
0 (G∗\{0}). Then the components of ZT are strictly positive

and EZT ξ > 0 for all ξ ∈ L∞(Rd
+,FT ) except ξ = 0. On the other hand, EξZT ≤ 0

for all ξ ∈ YT
s,b(T ) and so for all ξ ∈ AT

s,b
(T )

w
.

(⇒) The Kreps–Yan theorem on separation of closed cones in L∞(Rd,FT ) implies

the existence of η ∈ L1(int Rd
+,FT ) such that Eξη ≤ 0 for every ξ ∈ AT

s,b
(T )

w
, hence,

by virtue of the hypothesis S2, for all ξ ∈ L∞(−Gt,Ft). Let us consider the martingale

Zt = E(η|Ft), t ≥ s, with strictly positive components. Since EZtξ = Eξη ≥ 0,

t ≥ s, for every ξ ∈ L∞(Gt,Ft), it follows that Zt ∈ L1(G∗
t ,Ft) and, therefore,

Z ∈ MT
s (G∗\{0}). 2

Now we formulate the main result of this note where the equivalence of two central

terms in the chain is a corollary of the above proposition.

Theorem 2.2 The following relations hold:

MCPS ⇒ {B, MT
0 (G∗\{0}) 6= ∅} ⇔ {B, NFL} ⇒ B ⇔ NFL2.

If, moreover, the sets YT
s,b(T ) are Fatou-closed for any s ∈ [0, T [, then the first two

conditions are equivalent.
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In the above formulation the Fatou-closedness means that the set YT
s,b(T ) contains

the limit of any a.s. convergent sequence of its elements provided that the latter is

bounded from below in the sense of partial ordering induced by GT . In the presence

of the condition B this property is fulfilled for the continuous-time financial models

considered in [24], [2] (Th.14), [21] (Lemmas 3.6.6, 3.6.16). Establishing the Fatou-

closedness of YT
s,b(T ) is the most difficult part of proofs of hedging theorems relying

upon continuity properties of the cone-valued processes G. Discussion of the latter is

beyond the scope of the present study.

The role of the condition B in the theory of financial markets merits to be discussed

in detail. The concept of the Fatou convergence (and related definitions) was widely

used already in the analysis of frictionless markets, see [6] and references therein. It

was related with the definition of an admissible strategy as that for which the (scalar)

value process is bounded from below by a constant. The first attempt to extend it

in a straightforward way to the simplest market model with constant proportional

transaction costs was done in the paper [17] where the admissible portfolio processes,

expressed in terms of the numéraire, were bounded from below in the sense of partial

ordering induced by K by a constant vector. Such a straightforward definition happens

to be not satisfactory: the hedging theorem in [17] covers only the case of bounded

price processes because its proof requires the buy-and-hold strategies. In the next

paper [18] it was suggested to consider as admissible the strategies whose portfolio

processes in physical values are bounded from below by a constant in the sense of partial

orderings induced by (random) cones K̂t. This concept of numéraire-free admissibility

is commonly accepted now though other forms are also discussed in the literature, see

recent studies [2], [1], [8], [11], [3], [4]. Retrospectively, it was observed that a similar

concept was introduced in the theory of frictionless markets by C. Sin in his thesis [32].

He discovered that it leads to the existence of equivalent martingale measure (hence,

to strictly consistent price systems in the terminology adopted here) and not to just a

local martingale related with the traditional definition of admissibility, see Ch. VII in

[31] for a detailed discussion.

In the concluding section of this note we discuss in detail the discrete-time model

which can be formally imbedded into considered general framework but possesses a

number of specific features. We consider various no-arbitrage properties having trans-

parent financial interpretations. In particular, we prove that for the discrete-time model

all five properties in the formulation of Theorem 2.2 are equivalent without additional

assumptions. Our results in this section can be considered as complementary to those of

M. Rásonyi, [28]. His theorem establishes the equivalence of the condition NA2 (which

is weaker than NFL2) and PCE (which is stronger than MCPS and could be called

MSCPS with the extra S for “Strictly”). Thus, all these conditions are equivalent.

3 Proof of the Main Result

MCPS ⇒ {B, MT
0 (G∗\{0}) 6= ∅}.

Let ξ be Fs-measurable random variable such that Zsξ ≥ 0 for any martingale

Z ∈ MT
s (G∗). Since MCPS holds, we have that ηξ ≥ 0 for all η ∈ L1(int G∗

s ,Fs),

hence for all η ∈ L0(G∗
s ,Fs). This implies that ξ ∈ Gs (a.s.) and the condition B

holds. Since int G∗
s of the Fs-measurable mapping G∗

s is also Fs-measurable, it admits

an Fs-measurable selector which serves, by MCPS, as starting value of a martingale

from MT
s (G∗\{0}). 2
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B ⇒ NFL2.

Let ξ ∈ L∞(Rd,Fs) and let V ∈ AT
s,b

(T )
w

be such that ξ + V ∈ L∞(GT ,FT ). For

any Z ∈ MT
s (G∗) and Γ ∈ Fs the process ZIΓ ∈ MT

s (G∗) and we have:

0 ≤ EZT (ξ + V )IΓ = EZsξIΓ + EZT IΓ V ≤ EZsξIΓ

because EZT IΓ V ≤ 0 due to the hypothesis S1. Thus, EZsξIΓ ≥ 0 for every Γ ∈ Fs,

i.e. Zsξ ≥ 0. By virtue of B the random variable ξ ∈ L∞(Gs,Fs) and we conclude. 2

NFL2 ⇒ B.

Let ζ ∈ L∞(Rd
+). We define the convex set

Γζ :=
{

x ∈ Rd : ζ − x ∈ AT
s,b

(T )
w}

and the closed convex set

Dζ := {x ∈ Rd : EZsx ≥ EZT ζ ∀Z ∈ MT
s (G∗)}.

Lemma 3.1 Γζ = Dζ .

Proof. The argument is standard but we sketch it for the sake of completeness. The

inclusion Γζ ⊆ Dζ is obvious. For the converse, let us consider a point x ∈ Dζ such that

ζ − x /∈ AT
s,b

(T )
w

. Using the Hahn–Banach theorem, we separate ζ − x and AT
s,b

(T )
w

by a hyperspace given by some η ∈ L1(Rd) and define the martingale Zζ
t = E(η|Ft)

for which EZζ
T

ξ ≤ 0 for all ξ from AT
s,b(T ). By our hypothesis S2 the latter set is

rich enough to ensure that Zζ ∈ MT
s (G∗). The point ζ − x lays in the interior of the

complementary subspace, i.e. the inequality EZ
ζ
T (ζ − x) > 0 holds. This contradicts

to the definition of Dζ . Thus, Γζ = Dζ . 2

Suppose that ξ ∈ L∞(Rd,Fs) is such that Zsξ ≥ 0 for any Z ∈ MT
s (G∗). It follows

that 0 ∈ D−ξ and, by the above lemma, −ξ ∈ AT
s,b

(T )
w

. The last property means that

0 = ξ − ξ ∈ (ξ + AT
s,b

(T )
w

) ∩ L∞(Rd
+).

In virtue of the condition NFL2, this may happen only if ξ ∈ Gs a.s. So, the condition

B is fulfilled. 2

To finish the proof it remains to establish the following implication:

{B, NFL} ⇒ MCPS

Now we are working assuming that the sets YT
s,b(T ) are Fatou-closed. The idea of

the proof is to replace the cone Gs by a larger cone G̃s, dual to R+η, check that for

the extended model the set of hedgeable contingent claims ÃT
s,b(T ) is weakly* closed

(the Fatou-closedness intervenes here, Lemmas 3.4 and 3.5) and the NFL-property is

fulfilled (Lemma 3.6). To carry out this plan, we need of sequences of consistent price

systems whose initial values converge to η in L1 while the terminal values converge to

an element of L1(G∗
T \ {0}). The existence of such sequences is established in Lemmas

3.2 and 3.3.

Lemma 3.2 Assume that B and NFL hold. Then for any η ∈ L1(intG∗
s ,Fs) there

exists a sequence Zn ∈ MT
s (G∗\{0}) such that Zn

s → η in L1.
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Proof. Suppose that η ∈ L1(int G∗
s ,Fs) does not belong to the set M̄s, the closure in L1

of the convex cone Ms :=
{

Zs : Z ∈ MT
s (G∗\{0})

}
. By the Hahn–Banach theorem,

there exists ξ ∈ L∞(Gs,Fs) such that

sup
Z∈MT

s (G∗\{0})
EZsξ < Eηξ.

Since the set MT
s (G∗\{0}) is a cone, the left-hand side of the above inequality is zero.

We take a martingale Z̃ ∈ MT
s (G∗\{0}) existing by virtue of Proposition 2.1. For

any Z ∈ MT
s (G∗), Γ ∈ Fs and k > 0 the process ZIΓ +k−1Z̃ belongs to MT

s (G∗\{0})
and E(ZsIΓ +k−1Z̃s)ξ ≤ 0. We deduce from here that Zsξ ≤ 0 for every Z ∈ MT

s (G∗).

The condition B implies that ξ ∈ −Gs a.s. leading to a contradiction since Eηξ > 0.

Hence, η ∈ M̄s, i.e. there exists a sequence Zn ∈ MT
s (G∗\{0}) such that Zn

s → η in

L1. 2

Since the components of Zn in the above are positive, the expectations of compo-

nents of the vector Zn
T coincide with the expectation of components of Zn

s . It follows

that the sequence Zn
T is bounded in L1 and the Komlós theorem can be applied. Re-

placing the original sequence by a sequence of Césaro means from the latter theorem

we obtain a sequence in MT
s (G∗\{0}) which terminal values converge a.s. to a random

variable ZT ∈ L1(G∗
T ). The following lemma shows that we could do better.

Lemma 3.3 Assume that B and NFL hold. Then for any η ∈ L1(intG∗
s ,Fs) there

exists a sequence Zn ∈ MT
s (G∗\{0}) such that Zn

s → η in L1 and Zn
T → ZT a.s.

where ZT ∈ L1(G∗
T \ {0}).

Proof. Let η ∈ L1(intG∗
s ,Fs). We may assume without loss of generality that we have

E|η| ≤ 1/2. We start with an arbitrary Z̃1 ∈ MT
s (G∗\{0}) 6= ∅. Using the measurable

selection, we find α1
s ∈ L0(]0, 1[,Fs) such that the difference η − α1

sZ̃1
s ∈ int G∗

s a.s.

The process α1
sZ̃1 ∈ MT

s (G∗\{0}); we may assume that E|η − α1
sZ̃1

s | ≤ 1.

Now, we proceed by induction. Put Z̄1 := α1
sZ̃1. Since η − Z

1
s ∈ int G∗

s a.s., we

apply Lemma 3.2 and find Z̃2 ∈ MT
s (G∗\{0}) such that

E|η − Z
1
s − Z̃2

s | ≤ 1/2.

Using measurable selection, we find α2
s ∈ L0(]0, 1[,Fs) such that

η − Z̄1
s − α2

sZ̃2
t ∈ int G∗

s

where

α2
sZ̃2 ∈ MT

s (G∗\{0}).

We put Z̄2 := Z̄1 + α2
sZ̃2. Let us suppose that we have already defined the processes

Z̄n−1 =
∑n−1

i=1 αi
sZ̃i, Z̃n−1 where Z̃i ∈ MT

s (G∗\{0}) and αi
s ∈ L0(]0, 1[,Fs) such

that

η − Z
n−1
s ∈ int G∗

s a.s., E|η − Z̄n−2
s − Z̃n−1

s | ≤ 2−(n−1).

By Lemma 3.2 there is Z̃n ∈ MT
s (G∗\{0}) such that

E|η − Z̄n−1
s − Z̃n

s | ≤ 2−n

and, by virtue of measurable selection arguments, there is αn
s ∈ L0(]0, 1[,Fs) such that

η − Z̄n−1
s − αn

s Z̃n
s ∈ int G∗

s , αn
s Z̃n ∈ MT

s (G∗\{0}).
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We put Z̄n := Z̄n−1 + αn
s Z̃n and the induction step is done.

Due to our standing assumption G∗
T \{0} lays in the interior of Rd

+. It follows

that Z̄n−1
T is a componentwise increasing sequence bounded in L1 and, therefore, this

sequence converges a.s. and in L1 to some random variable Z̄T ∈ L1(G∗
T \{0},FT ).

Automatically, Z̄n−1
t converges (increasingly) to E(Z̄T |Ft) a.s. and in L1 for each

t ≥ s. By construction, Z̄n−1
s + Z̃n

s converges to η in L1. The sequence of terminal

values of martingales Zn := Z̄n−1 + Z̃n evolving in MT
s (G∗\{0}) is bounded in L1

and the Komlós theorem can be applied. That is, passing to a sequence of Césaro, we

may assume without loss of generality that Z̃n
T → Z̃T where Z̃T ∈ L1(G∗

T ,FT ). Hence,

the properties claimed in the lemma holds for the sequence of Zn. 2

We need some further auxiliary results.

For η ∈ L1(int G∗
s ,Fs) we define the random half-space G̃s by putting G̃∗

s = R+η.

Note that (−G̃s) ∩ Gs = {0}.

Let L0
b(Rd) := {ξ ∈ Rd : ∃ κξ such that ξ + κξ1 ∈ GT } and let

ÃT
s,b(T ) :=

(
L0(−G̃s,Fs) + YT

s (T )
)
∩ L0

b(Rd).

Lemma 3.4 Assume that B holds. If the set YT
s,b(T ) is Fatou-closed, then ÃT

s,b(T ) is

also Fatou-closed.

Proof. We consider a sequence Y n
T := ξn

s + γn
T where

ξn
s ∈ L0(−G̃s,Fs), γn

T ∈ YT
s (T )

are such that Y n
T + k1 ∈ GT a.s. for some constant k and Y n

T → YT a.s. Define the set

Γs = {supn |ξn
s | = ∞}. According to the lemma on subsequences (see, e.g. [23]) there

exists a strictly increasing sequence of integer-valued Fs-measurable random variables

θn such that |ξθn
s | → ∞ on Γs.

Put

ξ̃n
s :=

ξθn
s

|ξθn
s | ∨ 1

IΓs
, γ̃n

T :=
γθn

T

|ξθn
s | ∨ 1

IΓs
, Ỹ n

T :=
Y θn

T

|ξθn
s | ∨ 1

IΓs
.

The sequence Ỹ n
T is bounded from below (in the sense of partial ordering induced

by GT ). Since ξ̃n
s takes values in the unit ball, this implies that the sequence γ̃n

T is

bounded from below and its elements belong to YT
s,b(T ) (note that the random variable

γθn

T
=

∑
k γk

T I{θn=k} ∈ YT
s (T ) due to our assumption). Applying again the lemma on

subsequences (this time to (ξ̃n
s )) and taking into account that Ỹ n

T → 0 we may assume

without loss of generality that

ξ̃n
s → ξ̃s ∈ L∞(−G̃s,Fs), γ̃n

T → γ̃T = −ξ̃s.

Due to the Fatou-closedness of YT
s,b(T ), we have that γ̃T ∈ YT

s,b(T ).

Let Z ∈ MT
s (G∗) and let Γ ∈ Fs. It follows from the hypothesis S1 that

0 = EZT IΓ (ξ̃s + γ̃T ) ≤ EZT IΓ ξ̃s = EZsIΓ ξ̃s.

Therefore, ZsIΓ ξ̃s ≥ 0 and, by virtue of the condition B, ξ̃s ∈ L∞(Gs,Fs). Hence,

ξ̃s ∈ L∞((−G̃s) ∩ Gs,Fs), i.e. ξ̃s = 0 a.s. But |ξ̃s| = 1 on Γs. Thus, P (Γs) = 0.
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We may assume, passing to a subsequence, that ξn
s → ξs and γn

T → γT a.s. In the

same spirit as above we define Ȳ n
T = ξ̄n

s + γ̄n
T where

ξ
n
s :=

ξn
s

|ξn
s | + 1

∈ L∞(−G̃s,Fs), γn
T :=

γn
T

|ξn
s | + 1

∈ YT
s,b(T ).

By virtue of the Fatou-closedness of Ys
b (T ) we obtain that

γn
T → γT =

γT

|ξs| + 1
∈ YT

s,b(T ).

Thus, YT = ξs + (1 + |ξs|) γT is an element of ÃT
s,b(T ). 2

Lemma 3.5 Assume that B holds. If the set YT
s,b(T ) is Fatou-closed, then the set

ÃT
s,b(T ) ∩ L∞ is Fatou-dense in ÃT

s,b(T ).

Proof. Let YT = ξs + γT ∈ ÃT
s,b(T ) and YT + κ1 ≥GT

0. Put

Y n
T := YT I{|YT |≤n} − κ1I{|YT |>n}.

From the identity YT −Y n
T = (YT + κ1)I{|YT |>n} ∈ GT we obtain that Y n

T ∈ ÃT
s,b(T ).

Clearly, Y n
T form a sequence Fatou-convergent to YT . 2

By virtue of the above lemmas we obtain the following dual characterization of the

Fatou-closed set ÃT
s,b(T ) (see, e.g. Appendix in [24] and A.5 in [21]):

ÃT
s,b(T ) =

{
ξ ∈ L0

b(Rd) : Eξη ≤ sup
X∈ÃT

s,b
(T )

EXη, ∀η ∈ L1(G∗
T )

}
. (3.2)

In particular, it is closed in σ{L∞, L1}.

Lemma 3.6 Assume that B holds. If the set YT
s,b(T ) is Fatou-closed, then

ÃT
s,b(T ) ∩ L∞(Rd

+) = {0}.

Proof. Let us consider

YT := ξs + γT ∈ ÃT
s,b(T ) ∩ L∞(Rd

+).

Using the notation introduced above we rewrite YT in the form

YT := (1 + |ξs|)
(
ξs + γT

)

where γT ∈ YT
s,b(T ) and ξ ∈ L∞(−G̃s,Fs). For the sequence Zn from Lemma 3.3 we

have by the Fatou lemma that

0 ≤ E
(
ξs + γT

)
ZT ≤ lim inf

n
(EξsZn

T + EγT Zn
T )

where

EξsZ
n
T = EξsZ

n
s → Eξsη ≤ 0

and EγT Zn
T ≤ 0 under the condition S1. This implies that YT = 0 a.s. 2

With the above lemma we get the implication B ⇒ MCPS by a standard ar-

gument. Indeed, the Kreps–Yan separation theorem ensures the existence of random
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variable ZT ∈ L1(intRd
+,FT ) such that EZT ξ ≤ 0 for all ξ ∈ ÃT

s,b(T ). Define the mar-

tingale Zt := E(ZT |Ft), s ≥ t, whose components are strictly positive. Since ÃT
s,b(T )

contains L∞(−Gt,Ft) for t ≥ s and L∞(−G̃s,Fs), we infer that Zt ∈ L1(G∗
t ,Ft)

for t ≥ s and Zs ∈ L1(R+η,Fs). Since ZT is defined up to a scalar strictly positive

multiplier, we choose it to have the equality Zs = η and get a process claimed in the

condition MCPS. 2

Theorem 2.2 is proven. 2

4 Discrete-Time Model

Let us consider a general discrete-time model with YT
s (T ) = −

∑T
t=s L0(Gt,Ft) where

Gt ∩ (−Gt) = {0}. All required hypotheses are fulfilled. The only non-trivial one, S1

follows from the following statement (Lemma 4 in [19]):

Lemma 4.1 Let Z be an Rd-valued martingale and let ΣT := ZT

∑T
s=0 ξs where

ξs ∈ L0(Rd,Fs) are such that Zsξs ≤ 0. If EΣ−
T

< ∞, then all products Zsξs are

integrable, ΣT is integrable and EΣT ≤ 0.

For this model (which can be imbedded, as a very particular case, into our continuous-

time framework) all five conditions of Theorem 2.2 are equivalent without extra hy-

potheses: the implication B ⇒ MCPS holds without assuming the Fatou-closedness.

The goal of this section is to show that our arguments can be appropriately modified

using the specific feature of the discrete-time case to avoid this assumption. On the

way we establish some other interesting properties of the model.

First, we recall the following property of Rd-valued martingales in discrete time.

Lemma 4.2 Let M = (Mt)t=0,...,T be a martingale and let P̃ ∼ P . Then there exists

an adapted strictly positive bounded process α = (αt) such that αM is a bounded P̃ -

martingale.

Proof. Put ζ := 1 + supt≤T |Mt|. By the “easy” part of the Dalang–Morton–Willinger

criteria (see, e.g., [23]), the Rd+1-valued martingale (1, M) satisfies the NA-property

(the first component serves as the numéraire). The latter, being invariant under equiv-

alent change of measure, holds also with respect to the probability P ′ := cζ−1P where

c = 1/Eζ−1. Using again the same theorem, we find a bounded density process ρt > 0

such that ρtMt is a P ′-martingale or, equivalently, the process M ′
t = E(ζ−1|Ft)ρtMt

is a bounded P -martingale. Applying the NA-criteria to (1, M ′) with respect to P̃ , we

find a bounded P̃ -martingale ρ̃ > 0 such that ρ̃tM
′
t is P̃ -martingale and we get the

result with αt = ρ̃tE(ζ−1|Ft)ρt. 2

Now we introduce several conditions with interesting relations between them.

Bp If ξ ∈ L0(Rd,Fs) and Zsξ ≥ 0 for any Z ∈ MT
s (G∗) with ZT ∈ Lp, then

ξ ∈ Gs (a.s.), s = 0, ..., T .

Note that B1 is just B and, by the above lemma, B ⇔ B∞. So, all these condi-

tions with p ∈ [1,∞] are equivalent, and moreover, they are invariant with respect to

equivalent change of probability measure.

NAAp AT
0,b

(T )
Lp

∩ Lp(Rd
+,FT ) = {0}.

Accordingly to the existing terminology it is natural to call NAA0 by No Asymp-

totic Arbitrage (of the 1st Kind) — NAA and reserve for NAA∞ the name No Free
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Lunch with Vanishing Risk — NFLVR. Apparently, these two conditions are measure-

invariant: they remain the same under equivalent change of probability measure.

Less trivial is the following fact.

Lemma 4.3 The conditions NAAp for p ∈ [1,∞[ are measure-invariant and any

of them is equivalent to NAA0 as well as to the condition NFL (which, in turn, is

equivalent, to the existence of a bounded process Z in MT
s (G∗ \ {0}).

Proof. We apply the Kreps–Yan theorem in Lp, p ∈ [1,∞[, and conclude, in the same

way as in the proof of Proposition 2.1, that NAAp holds if and only if there is a

martingale Z ∈ MT
0 (G∗ \ {0}) with |ZT | ∈ Lq = (Lp)∗. By virtue of Lemma 4.2

the latter condition implies that for any P̃ ∼ P there exists a bounded martingale

Z ∈ MT
0 (G∗ \ {0}, P̃ ).

Obviously, NAA0 implies the condition NAA1(P̃ ) whatever is P̃ ∼ P . To prove

the converse implication, we suppose that NAA1 holds and consider the sequence

ξn ∈ AT
0,b(T ) converging in probability to ξ ∈ L0(Rd

+,FT ). Taking a subsequence, we

assume without loss of generality that ξn → ξ a.s. This sequence converges to ξ in

L1(P̃ ) where P̃ = c exp{− supn |ξn|}P . The measure invariance of NAA1 ensures that

ξ = 0 and, therefore, NAA0 holds.

At last, comparing the result of Proposition 2.1 with the equivalent characterization

of NAA1 we obtain the remaining statement of the lemma. 2

Clearly, for the considered discrete-time model the L0-closures of AT
s,b(T ) and

YT
s (T ) coincide. Let us check that NFL2 implies that YT

s (T ) is closed in L0. Indeed,

for s = T the claim is obvious. Suppose that it holds for s ≥ r + 1. Let

ζn = ξn
r + ... + ξn

T , ξn
t ∈ L0(−Gt,Ft), t ≥ r, (4.3)

and let ζn → ζ a.s. Put Γ := {lim infn |ξn
r | < ∞}. If P (Γ ) = 1, then, applying the

lemma on subsequences, one can find a strictly increasing sequence of integer-valued

Fr-measurable random variables τn such that ξτn
r tends a.s. to some ξr ∈ L0(−Gr,Fr).

Using the induction hypothesis we get from here that ζ ∈ YT
r (T ). So, it remains to

check that the complement of Γ is a null set. Suppose that it is not the case. Without

loss of generality we may assume that all ξn
t equal to zero on Γ . Dividing the equality

(4.3) by 1 ∨ |ξn
r | and applying again the lemma on subsequences, now to the random

variables ξn
r /(1 ∨ |ξn

r |), we obtain, passing to a limit, that

ξ̃r + ... + ξ̃T = 0

for some ξ̃t ∈ L0(−Gt,Ft), t ≥ r with |ξr| = 1 on Γ c a.s. By the NFL2-property this

may happen only if ξ̃r ∈ L0(Gr,Fr). Since −Gr ∩ Gr = {0}, we get that P (Γ c) = 0.

The last arguments (with an obvious modification) show that NFL2 implies that

YT
0 (T ) ∩ L0(Rd

+,FT ) = {0}, i.e. the NAw-property holds. It follows that for the

discrete-time model we have the implication B =⇒ {B, NFL} which was not claimed

for the continuous-time model.

Following the same logic, we define a family of NAA2 p-conditions.

NAA2 p For each s = 0, 1, ..., T − 1 and ξ ∈ L∞(Rd,Fs)

(ξ + AT
s,b

(T )
Lp

) ∩ L0(Rd
+,FT ) 6= ∅

only if ξ ∈ L∞(Gs,Fs).

Note that replacing L∞ by L0 leads to an equivalent condition.
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Lemma 4.4 The conditions NAA2 p for p ∈ [1,∞[ are measure-invariant and any of

them is equivalent to NAA2 0 as well as to the condition NFL2 (which, in turn, is

equivalent to the condition B).

Proof. For p ∈ [1,∞[ we have the equivalences

{Bq , NAAp} ⇔ Bq ⇔ NAA2 p.

Their proofs use the same arguments as for corresponding equivalences in Theorem 2.2

but the duality (L∞, L1) should be replaced by the duality (Lp, Lq). But we already

know that Bq ⇔ B ⇔ NFL2 where the last condition is measure-invariant. The

equivalence of NAA2 0 and NAA2 1 can be proven using the change of measure as in

the previous lemma. 2

With these preliminaries we can get the implication B ⇒ MCPS using the same

strategy of the proof as in the general case but without any additional hypothesis.

Lemma 4.5 Assume that B holds. Then for any η ∈ L2(int G∗
s ,Fs) there is a sequence

Zn ∈ MT
s (G∗\{0}) with |Zn

T | ∈ L2 such that Zn
s → η in L2.

The proof of this assertion is the same as of Lemma 3.2 but with the duality

(L2, L2) replacing the duality (L1, L∞). Using Lemma 4.5 and repeating the arguments

of Lemma 3.4 but now in L2-norm instead of L1-norm we get:

Lemma 4.6 Assume that B holds. Then for any η ∈ L∞(int G∗
s ,Fs) there is a se-

quence of martingales Zn ∈ MT
s (G∗\{0}) with |Zn

T | ∈ L2 such that Zn
s → η in L2 and

Zn
T → ZT a.s. where ZT ∈ L2(G∗

T \ {0}).

For η ∈ L∞(int G∗
s ,Fs) we define the random half-space G̃s via its dual G̃∗

s = R+η

and put

ÃT
s (T ) :=

(
L∞(−G̃s,Fs) + YT

s,b(T )
)
∩ L2(Rd).

Lemma 4.7 Assume that B holds. Then

ÃT
s (T )

L2

∩ L2(Rd
+) = {0}.

Proof. Take an element YT from the set in the left-hand side of the above inequality.

There exists a sequence

Y n
T = ξn

s + γn
T ∈ ÃT

s (T )

with

ξn
s ∈ L∞(−G̃s,Fs), γn

T ∈ YT
s,b(T ) ∩ L2

such that converging Y n
T → YT in L2 and a.s. We claim that there is a subsequence for

which supn |ξn
s | < ∞ a.s. Indeed, suppose that it is not the case. Applying the lemma

on subsequences, we may assume without loss of generality that there exists a non-null

set As on which limn |ξn
s | → ∞. Noting that

ξ̃n
s :=

ξn
s

|ξn
s | + 1

IAs
∈ L∞(−G̃s,Fs), γ̃n

s :=
γn

T

|ξn
s | + 1

IAs
∈ YT

s,b(T ) ∩ L2,

we consider the sequence Ỹ n
T := ξ̃n

s + γ̃n
s converging to zero a.s.

Applying again the lemma on subsequences may assume that

ξ̃n
s → ξ̃s ∈ L∞(−G̃s,Fs), γ̃n

T → γ̃T = −ξ̃s ∈ L∞(Fs) a.s..
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Thus, ξ̃s + γ̃n
T → 0 a.s. By virtue of condition NAA2 0 (equivalent to B) ξ̃s ∈ Gs a.s.

also. That is, ξ̃s ∈ (−G̃s) ∩ Gs = 0. This is a contradiction, because |ξ̃s| = 1 on As.

Put AM
s := {supn |ξn

s | ≤ M} and fix ε > 0. Let us consider the sequence of

martingales Zn given by Lemma 4.6. By the Fatou lemma, there exists n0 = n0(ε)

such that for all n ≥ n0 we have the inequality

EYT ZT IAM
s

≤ ε + EYT Zn
T IAM

s
.

Since Zn
T ∈ L2, one can find mn such that

EYT Zn
T IAM

s
≤ ε + EY mn

T Zn
T IAM

s
.

The hypothesis S1 applied to (Y mn

T
− ξmn

s )IAM
s

implies that

EY mn

T Zn
T IAM

s
≤ Eξmn

s Zn
s IAM

s
≤ Eξmn

s (Zn
s − η)IAM

s
.

Since Zn
s → η in L2 and ξmn

s is bounded on AM
s we obtain, due the arbitrariness of ε,

that EYT ZT IAM
s

= 0. This leads to the equality YT ZT = 0. Because the components

of ZT are strictly positive, this is possible only if YT = 0. 2

Using the same arguments as at the concluding step of the proof of Theorem 2.2

but now based on the Kreps–Yan theorem in L2, we deduce from the last lemma that

the condition MCPS is fulfilled.

Thus, for the discrete-time model with efficient friction we have that

MCPS ⇔ {B, MT
0 (G∗\{0}) 6= ∅} ⇔ {B, NFL} ⇔ B ⇔ NFL2

Formally, all properties above are different from those introduced in [28] where the main

result is the equivalence PCE ⇔ NGV. The formulation of the latter property — No

Sure Gain in Liquidation Value — is the following (with AT
s :=

∑T
t=s L0(−Gt,Ft)):

NGV For each s ∈ [0, T [ and ξ ∈ L0(Rd,Fs)

(ξ + AT
s ) ∩ L0(Rd

+,FT ) 6= ∅

only if ξ ∈ L0(Gs,Fs).

However, this equivalence follows from two simple observations.

First, NFL2 ⇔ NGV. Indeed, due to Lemma 4.4 and the coincidence of L0-

closures of AT
s and AT

s (T ), NFL2 is equivalent to the property:

NGV′ For each s ∈ [0, T [ and ξ ∈ L0(Rd,Fs)

(ξ + AT
s

L0

) ∩ L0(Rd
+,FT ) 6= ∅

only if ξ ∈ L0(Gs,Fs).

The latter is obviously stronger than NGV. On the other hand, successive appli-

cation of NGV in combination with the efficient friction condition implies that the

identity
∑T

t=s ξt = 0 with ξt ∈ L0(−Gt,Ft) may hold only if all ξt = 0. Therefore, AT
s

is closed in probability, [20] (Lemma 2), [21] (Lemma 3.2.8).

Second, PCE ⇔ MCPS. The implication ⇒ is trivial. The inverse implication can

be proven by backward induction. Indeed, for s = T there is nothing to prove. Suppose

that for s = t + 1 ≤ T the claim holds. In particular, there is Z̃ ∈ MT
t+1(int G)

with |Z̃t+1| = 1. Put Z̃t := E(Z̃t+1|Ft). Let η ∈ L1(Ft, Gt) with |η| = 1. Take
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α be the Ft-measurable random variable equal to the half of the distance of ηt to

∂Gt. Then η − αZ̃t ∈ L1(intGt,Ft). By MCPS there exists Z ∈ MT
t (G \ {0}) with

Zt ∈ MT
t (G \ {0}) and Zt = η − αZ̃t. Since Z + αZ̃ ∈ MT

t (intG) and Zt + αZ̃t = η,

we conclude.

Thus, our arguments in the discrete-time case lead to a new proof of the Rásonyi

theorem (except the assertion that the “global” NGV is equivalent to one-step NGV

conditions for each t).

Remark. As was indicated by the referee, the conclusion on the equivalence of

conditions listed above can be obtained by combining the Rásonyi theorem with the

chain of implications

MCPS ⇒ {B, MT
0 (G∗\{0}) 6= ∅} ⇒ {B, NFL} ⇒ B ⇒ NFL2

which was proven without using the Fatou-closedness.
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de Probabilités XXXVII, Lecture Notes in Math., 1934, Springer, Berlin–Heidelberg–
New York, 2008, 439–442.

26. Pennanen T., Penner I. Hedging of claims with physical delivery under convex transaction
costs. SIAM Journal on Financial Mathematics. To appear.
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