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1 Result and Discussion

We consider a discrete-time infinite horizon model with an adapted d-dimen-
sional process S = (S;) given on a stochastic basis (2, F,F = (Fi)i=01,..., P).
The notations used: M(P), Mioc(P) and P are the sets of d-dimensional
martingales, local martingales and predictable (i.e. (F;_1)-adapted) processes;
H-S5 = ngt H;AS;.

Theorem 1. Let S € Myo.(P). Then there is P ~ P such that S € M(P).

To our knowledge, this result was never formulated explicitly. On the other
hand, it is well-known that if the stopped process ST = (Siar), T € N,
belongs to M,.(P) then there exists Pr~P (and even with bounded density
dPr/dP) such that ST € M(Pr). This assertion is contained in the classical
DMW criteria of absence of arbitrage, see the original paper [1] by Dalang—
Morton-Willinger and more recent presentations in [3] and [4] with further
references wherein. So, the news is: if S € M;,.(P) then the intersection of
the sets of true martingale measures for the processes ST is non-empty.

Theorem 1 can be extracted from the old paper [6] by Schachermayer
which merits a new reading. The proof given here uses the same approach of
geometric functional analysis as in [6]. It is based on separation arguments
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in an ingeniously chosen countably-normed space where the separating func-
tional happens to be the density of the needed martingale measure. The most
involved part of the proof is to check that the conditions of the Krein-Smulian
theorem are verified. Since we assume that S is a local martingale, this can
be done much faster than in the original paper (dealing with no arbitrage
properties of S).

Our result sounds as a purely probabilistic one. It would be desirable to
find a simpler proof which does not rely upon rather delicate theorems from
functional analysis.

2 Prerequisites from Functional Analysis and
Martingales

Let (w;);>0 be an increasing sequence of random variables with wg = 1.

Let L. be the linear space of (classes of) random variables ¢ with finite
norms |||t := Fw|¢| defining the structure of locally convex metrizable
topological vector space. A local base at zero of the topology is the family
of sets Ugx == {€ : ||&llt+ < A}, A > 0, t > 0. The completion &, of the
subspace formed by the elements of L. with respect to the norm ||.||; is just
the Lebesgue space L' (j;) where 1y := w; P. Usually, the dual @} is identified
with L% (u:) but it is more convenient to identify the elements of @; with the
random variables 7 such that n/w; € L (P). In such a case the result of the
action of 1 on & is F¢n. The dual (LL)*, denoted by LS°, is the union of all
@, i.e. the set of random variables 7 for which one can find an integer ¢ > 0
and a constant ¢ such that |n| < cw;. The natural bilinear form (£, n) = E{n
defines on LS the topology o(LS°, Ll) which separates the points of LS. We
denote (L) the set of positive elements of LS°.

Note that B; :={n: |n| < w} is the polar of U; 1, i.e.

By ={n:|E&n| <1VEe U}

The first fact we need is a version of the Kreps—Yan theorem which proof
is literally the same as that given, e.g., in [4] for LP-spaces.

Let C be a convex cone in LS closed in the topology o(L°, LL) and such
that C' 2 —(Ley) 4. If CN(Ly) 4+ = {0} then there exists a probability measure
P ~ P such that the density dP/dP € L. and En <0 for alln € C.

The second fact is the Komlés theorem, [5], A.7.1.

Let (n™) be a bounded in L' sequence of random wvariables. Then there
are a random variable n € L' and a strictly increasing sequence of positive
integers (n') such that for any further subsequence (n'’) the sequence of random
variables (77"”) is Cesaro-convergent a.s. to 7.

Recall that a sequence (a,,) is called Cesaro-convergent if the sequence of
arithmetic means a,, =m~' >, ., aj converges.
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Using the diagonal procedure one can easily deduce from here a slightly
stronger version of the Komlés theorem:

Let (n7), u=1,2,..., be a countable family of sequences which elements be-
long to a bounded subset A of L'. Then there are random variables 1, € L
and a strictly increasing sequence of positive integers (n') such that for any
further subsequence (n'") the sequences of random variables (") are Cesaro-
convergent a.s. to 1.

The third needed fact from the functional analysis is the Krein-Smulian
criterion of o(X*, X)-closedness of convex sets in the setting where X is a
Frechet space and X* is its dual, [2], Th. 3.10.2.

A convex set C in X* is closed for the topology o(X*, X) if and only if
for every balanced convex o(X*, X)-closed equicontinuous subset B of X* the
intersection C' N B is closed for o(X*, X).

For families of linear functionals the equicontinuity is equivalent to the
equicontinuity at zero. It follows that a subset B in X™* is equicontinuous if
and only if it is contained in a polar of a neighborhood of zero. So, in the case
where X = L1 it is sufficient to verify the o(X*, X)-closedness only for the
intersections of C' with the sets A™!B; and, if C is a cone, only with the sets
B;. The following lemma from [6] gives a “practical” condition.

Lemma 1. A convex cone C in LY is o(LS°, LL)-closed if the sets C N By
are closed under convergence almost surely.

Proof. Note that C'N By is (LS, L )-closed if and only if (w;'C) N By is
o (L5 (1), L' (s))-closed. But o(L® (), L' (1)) and o(L> (), L(sie)) co-
incides on By. This means that (w; 'C) N By can be viewed as a subset of the
Hilbert space in which for the convex subsets the weak closure coincides with
the strong closure. So, (w; *C) N By is o(L>® (), L' (ut))-closed if and only if
(w; *C) N By is strongly closed in L?(p;). An L?(p,)-convergent sequence in
(w; *C)N By is convergent in probability, so admits a subsequence convergent
pui-almost surely, so P-a.s. and, by the assumption, its limit is an element of
the considered set. O

Finally, we recall the very first theorem (due to P.-A. Meyer) from the
chapter on martingales in Shiryaev’s textbook [7], Th. VII.1.1, see also [3]:

Let X = (Xi)t=0,1,... be an adapted process with X = 0. Then the following
conditions are equivalent:

(a) X is a local martingale;

(b) X is a generalized martingale, i.e. E(|X¢y1]|Ft) <00, E(X¢41|Fe) = X
for allt > 0.

This characterization of discrete-time local martingales holds, clearly, also
in the case when Xj is integrable. It makes obvious the following assertion:

A local martingale X = (Xy)i<7 with Xo € L' and X7 > 0 is a martingale.

Indeed, by consecutive conditioning, X; > 0 for all ¢ < T'. By the Fatou
lemma, a positive local martingale is a supermartingale. So, the integrability
property of X, relaxed in the definition of generalized martingale, is fulfilled.
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3 Proof

Put wy := 1 + max,<¢ |S,|. Let W denote the class of processes H € P for
which there exist a date ¢ = tg and a constant ¢y such that H - .S, > cygw;
for all w > t. For such a process there is a finite limit H - So. Indeed, the
process M, := H - S, — cgwy, u > t, is a positive generalized martingale and
so is the process M, := M, /(1 4 |M;]). The latter, starting from a bounded
random variable, is a martingale and, therefore, admits a finite limit at infinity.
Suppose that H-S, > ¢ where cis a constant. Then H-S,, > E(H -S| Fy) > ¢
for all u > t. It follows that H - S is a martingale dominating c. In particular,
if H-Ss > 0, then this martingale is identically equal to zero.

We introduce the set R,y formed by the random variables H - S, H € W,
and the set Ay, := Ryy — LY. By the above observation, Ayy N LY = {0} and,
consequently, Ay N(L35)+ = {0}. It remains to prove that Cyy := Ay NLS is
closed for the topology o(LS°, L1 ) because the cited version of the Kreps—Yan
theorem provides a separating measure P which is a martingale one: whatever
are u and I" € F,, the random variables £I-(S,4+1 — S,) belong to Cy, and
have zero I:’—expectations.

We check the closedness using Lemma 1 and the following simple remark.
Let to a positive integer and let ¢ € L(F;,). By the DMW theorem there
exists a probability measure P’ ~ P with the density dP’/dP € L*(F,)
such that the process (Sy)u<i, is a P’-martingale and E’|¢| < co. Note that
S remains a local martingale with respect to P’. It follows that if H € W and
H-Sy > ¢ then H- S, > FE'((|F,) for all u > tg, hence, for all u > 0, and
the whole process H - S is a P’-martingale.

Consider a sequence &" € (w;}lCW) N By convergent a.s. to some £. By
definition, there are H™ € W such that H" - Soo > £"wy, > —wy,. Using the
above remark with ( = —w,, and passing to an equivalent probability measure
we may assume without loss of generality that wy, € L', the processes H" - S
are martingales and H" - S > —M where M,, = E(wy,|F,). It follows that
E|H"™ - Su| < 2Bw;, for every u. So, the extended version of the Komlds
theorem is applicable. Replacing the initial H™ and £™ by the arithmetic means
along the subsequence claimed in this theorem, we may assume, avoiding new
notations, that for each u the sequence H™ - S, converges a.s. to an integrable
random variable. Using the closedness of the space of discrete-time stochastic
integrals we infer that there exists a predictable process H such that H"-S,, —
H - S, as. for all finite dates u. Obviously, H - S,, > E(w¢,&|Fy) > —M,, and,
by the Lévy theorem, H - S; > &w,,. Note that M; = wy, for t > ¢y. Thus,
¢ e (w;OlC’W) N DBy, i.e. the set (w;}lCW) N By is closed under convergence a.s.
and we conclude. O



A Local Martingale is a Martingale under an Equivalent Probability 5
References

1. Dalang R.C., Morton A., Willinger W. Equivalent martingale measures and
no-arbitrage in stochastic securities market models. Stochastics and Stochastic
Reports, 29 (1990), 185-201.

2. Horvéath J. Topological Vector Spaces and Distributions. V.1. Addison-Wesley
Publishing Company, Reading, Massachusetts, 1966.

3. Jacod J., Shiryaev A.N. Local martingales and the fundamental asset pricing
theorem in the discrete-time case. Finance and Stochastics, 2 (1998), 3, 259-273.

4. Kabanov Yu.M., Stricker Ch. A teachers’ note on no-arbitrage criteria.
Séminaire de Probabilités XXXV, Lect. Notes in Math., 1755, Springer, Berlin—
Heidelberg—New York, 2001, 149-152.

5. Kabanov Yu.M., Pergamenshchikov S. Two-scale Stochastic Systems. Asymp-
totic Analysis and Control. Springer, Berlin—Heidelberg—New York, 2003.

6. Schachermayer W. Martingale measures for discrete-time processes with infinite
horizon. Mathematical Finance, 4 (1994), 1, 25-55.

7. Shiryaev A.N. Probability. Springer, Berlin—Heidelberg—New York, 1984.



