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1 Result and Discussion

We consider a discrete-time infinite horizon model with an adapted d-dimen-
sional process S = (St) given on a stochastic basis (Ω,F ,F = (Ft)t=0,1,..., P ).
The notations used: M(P ), Mloc(P ) and P are the sets of d-dimensional
martingales, local martingales and predictable (i.e. (Ft−1)-adapted) processes;
H · St =

∑
j≤t Hj∆Sj .

Theorem 1. Let S ∈Mloc(P ). Then there is P̃ ∼ P such that S ∈M(P̃ ).

To our knowledge, this result was never formulated explicitly. On the other
hand, it is well-known that if the stopped process ST = (St∧T ), T ∈ N,
belongs to Mloc(P ) then there exists P̃T ∼ P (and even with bounded density
dP̃T /dP ) such that ST ∈ M(P̃T ). This assertion is contained in the classical
DMW criteria of absence of arbitrage, see the original paper [1] by Dalang–
Morton–Willinger and more recent presentations in [3] and [4] with further
references wherein. So, the news is: if S ∈ Mloc(P ) then the intersection of
the sets of true martingale measures for the processes ST is non-empty.

Theorem 1 can be extracted from the old paper [6] by Schachermayer
which merits a new reading. The proof given here uses the same approach of
geometric functional analysis as in [6]. It is based on separation arguments
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in an ingeniously chosen countably-normed space where the separating func-
tional happens to be the density of the needed martingale measure. The most
involved part of the proof is to check that the conditions of the Krein–S̆mulian
theorem are verified. Since we assume that S is a local martingale, this can
be done much faster than in the original paper (dealing with no arbitrage
properties of S).

Our result sounds as a purely probabilistic one. It would be desirable to
find a simpler proof which does not rely upon rather delicate theorems from
functional analysis.

2 Prerequisites from Functional Analysis and
Martingales

Let (wt)t≥0 be an increasing sequence of random variables with w0 = 1.
Let L1

w be the linear space of (classes of) random variables ξ with finite
norms ||ξ||t := Ewt|ξ| defining the structure of locally convex metrizable
topological vector space. A local base at zero of the topology is the family
of sets Ut,λ := {ξ : ||ξ||t < λ}, λ > 0, t ≥ 0. The completion Φt of the
subspace formed by the elements of L1

w with respect to the norm ||.||t is just
the Lebesgue space L1(µt) where µt := wtP . Usually, the dual Φ∗t is identified
with L∞(µt) but it is more convenient to identify the elements of Φ∗t with the
random variables η such that η/wt ∈ L∞(P ). In such a case the result of the
action of η on ξ is Eξη. The dual (L1

w)∗, denoted by L∞w , is the union of all
Φ∗t , i.e. the set of random variables η for which one can find an integer t ≥ 0
and a constant c such that |η| ≤ cwt. The natural bilinear form 〈ξ, η〉 = Eξη
defines on L∞w the topology σ(L∞w , L1

w) which separates the points of L∞w . We
denote (L∞w )+ the set of positive elements of L∞w .

Note that Bt := {η : |η| ≤ wt} is the polar of Ut,1, i.e.

Bt = {η : |Eξη| ≤ 1 ∀ ξ ∈ Ut,1}.

The first fact we need is a version of the Kreps–Yan theorem which proof
is literally the same as that given, e.g., in [4] for Lp-spaces.

Let C be a convex cone in L∞w closed in the topology σ(L∞w , L1
w) and such

that C ⊇ −(L∞w )+. If C∩(L∞w )+ = {0} then there exists a probability measure
P̃ ∼ P such that the density dP̃/dP ∈ L1

w and Ẽη ≤ 0 for all η ∈ C.
The second fact is the Komlós theorem, [5], A.7.1.
Let (ηn) be a bounded in L1 sequence of random variables. Then there

are a random variable η ∈ L1 and a strictly increasing sequence of positive
integers (n′) such that for any further subsequence (n′′) the sequence of random
variables (ηn′′) is Cesaro-convergent a.s. to η.

Recall that a sequence (am) is called Cesaro-convergent if the sequence of
arithmetic means ām = m−1

∑
k≤m ak converges.
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Using the diagonal procedure one can easily deduce from here a slightly
stronger version of the Komlós theorem:

Let (ηn
u), u=1,2,..., be a countable family of sequences which elements be-

long to a bounded subset A of L1. Then there are random variables ηu ∈ L1

and a strictly increasing sequence of positive integers (n′) such that for any
further subsequence (n′′) the sequences of random variables (ηn′′

u ) are Cesaro-
convergent a.s. to ηu.

The third needed fact from the functional analysis is the Krein–S̆mulian
criterion of σ(X∗, X)-closedness of convex sets in the setting where X is a
Frechet space and X∗ is its dual, [2], Th. 3.10.2.

A convex set C in X∗ is closed for the topology σ(X∗, X) if and only if
for every balanced convex σ(X∗, X)-closed equicontinuous subset B of X∗ the
intersection C ∩B is closed for σ(X∗, X).

For families of linear functionals the equicontinuity is equivalent to the
equicontinuity at zero. It follows that a subset B in X∗ is equicontinuous if
and only if it is contained in a polar of a neighborhood of zero. So, in the case
where X = L1

w it is sufficient to verify the σ(X∗, X)-closedness only for the
intersections of C with the sets λ−1Bt and, if C is a cone, only with the sets
Bt. The following lemma from [6] gives a “practical” condition.

Lemma 1. A convex cone C in L∞w is σ(L∞w , L1
w)-closed if the sets C ∩ Bt

are closed under convergence almost surely.

Proof. Note that C ∩ Bt is σ(L∞w , L1
w)-closed if and only if (w−1

t C) ∩ B0 is
σ(L∞(µt), L1(µt))-closed. But σ(L∞(µt), L1(µt)) and σ(L∞(µt), L2(µt)) co-
incides on B0. This means that (w−1

t C)∩B0 can be viewed as a subset of the
Hilbert space in which for the convex subsets the weak closure coincides with
the strong closure. So, (w−1

t C)∩B0 is σ(L∞(µt), L1(µt))-closed if and only if
(w−1

t C) ∩ B0 is strongly closed in L2(µt). An L2(µt)-convergent sequence in
(w−1

t C)∩B0 is convergent in probability, so admits a subsequence convergent
µt-almost surely, so P -a.s. and, by the assumption, its limit is an element of
the considered set. 2

Finally, we recall the very first theorem (due to P.-A. Meyer) from the
chapter on martingales in Shiryaev’s textbook [7], Th. VII.1.1, see also [3]:

Let X = (Xt)t=0,1,... be an adapted process with X0 = 0. Then the following
conditions are equivalent:

(a) X is a local martingale;
(b) X is a generalized martingale, i.e. E(|Xt+1||Ft) <∞, E(Xt+1|Ft) = Xt

for all t ≥ 0.
This characterization of discrete-time local martingales holds, clearly, also

in the case when X0 is integrable. It makes obvious the following assertion:
A local martingale X = (Xt)t≤T with X0 ∈ L1 and XT ≥ 0 is a martingale.
Indeed, by consecutive conditioning, Xt ≥ 0 for all t ≤ T . By the Fatou

lemma, a positive local martingale is a supermartingale. So, the integrability
property of Xt, relaxed in the definition of generalized martingale, is fulfilled.
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3 Proof

Put wt := 1 + maxr≤t |Sr|. Let W denote the class of processes H ∈ P for
which there exist a date t = tH and a constant cH such that H · Su ≥ cHwt

for all u ≥ t. For such a process there is a finite limit H · S∞. Indeed, the
process Mu := H · Su − cHwt, u ≥ t, is a positive generalized martingale and
so is the process M̃u := Mu/(1 + |Mt|). The latter, starting from a bounded
random variable, is a martingale and, therefore, admits a finite limit at infinity.
Suppose that H ·S∞ ≥ c where c is a constant. Then H ·Su ≥ E(H ·S∞|Fu) ≥ c
for all u ≥ t. It follows that H ·S is a martingale dominating c. In particular,
if H · S∞ ≥ 0, then this martingale is identically equal to zero.

We introduce the set RW formed by the random variables H ·S∞, H ∈ W,
and the set AW := RW −L0

+. By the above observation, AW ∩L0
+ = {0} and,

consequently, AW∩(L∞W)+ = {0}. It remains to prove that CW := AW∩L∞w is
closed for the topology σ(L∞w , L1

w) because the cited version of the Kreps–Yan
theorem provides a separating measure P̃ which is a martingale one: whatever
are u and Γ ∈ Fu the random variables ±IΓ (Su+1 − Su) belong to CW and
have zero P̃ -expectations.

We check the closedness using Lemma 1 and the following simple remark.
Let t0 a positive integer and let ζ ∈ L0(Ft0). By the DMW theorem there
exists a probability measure P ′ ∼ P with the density dP ′/dP ∈ L∞(Ft0)
such that the process (Su)u≤t0 is a P ′-martingale and E′|ζ| < ∞. Note that
S remains a local martingale with respect to P ′. It follows that if H ∈ W and
H · S∞ ≥ ζ then H · Su ≥ E′(ζ|Fu) for all u ≥ tH , hence, for all u ≥ 0, and
the whole process H · S is a P ′-martingale.

Consider a sequence ξn ∈ (w−1
t0 CW) ∩ B0 convergent a.s. to some ξ. By

definition, there are Hn ∈ W such that Hn · S∞ ≥ ξnwt0 ≥ −wt0 . Using the
above remark with ζ = −wt0 and passing to an equivalent probability measure
we may assume without loss of generality that wt0 ∈ L1, the processes Hn ·S
are martingales and Hn · S ≥ −M where Mu = E(wt0 |Fu). It follows that
E|Hn · Su| ≤ 2Ewt0 for every u. So, the extended version of the Komlós
theorem is applicable. Replacing the initial Hn and ξn by the arithmetic means
along the subsequence claimed in this theorem, we may assume, avoiding new
notations, that for each u the sequence Hn ·Su converges a.s. to an integrable
random variable. Using the closedness of the space of discrete-time stochastic
integrals we infer that there exists a predictable process H such that Hn ·Su →
H ·Su a.s. for all finite dates u. Obviously, H ·Su ≥ E(wt0ξ|Fu) ≥ −Mu and,
by the Lévy theorem, H · St ≥ ξwt0 . Note that Mt = wt0 for t ≥ t0. Thus,
ξ ∈ (w−1

t0 CW)∩B0, i.e. the set (w−1
t0 CW)∩B0 is closed under convergence a.s.

and we conclude. 2
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Séminaire de Probabilités XXXV, Lect. Notes in Math., 1755, Springer, Berlin–
Heidelberg–New York, 2001, 149-152.

5. Kabanov Yu.M., Pergamenshchikov S. Two-scale Stochastic Systems. Asymp-
totic Analysis and Control. Springer, Berlin–Heidelberg–New York, 2003.

6. Schachermayer W. Martingale measures for discrete-time processes with infinite
horizon. Mathematical Finance, 4 (1994), 1, 25-55.

7. Shiryaev A.N. Probability. Springer, Berlin–Heidelberg–New York, 1984.


