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The Leland strategy of approximate hedging of the call-option under pro-
portional transaction costs prescribes to use, at equidistant instants of
portfolio revisions, the classical Black–Scholes formula but with a suit-
ably enlarged volatility. An appropriate mathematical framework is a
scheme of series, i.e. a sequence of models Mn with the transaction costs
coefficients kn depending on n, the number of the revision intervals. The
enlarged volatility σ̂n, in general, also depends on n. Lott investigated in
detail the particular case where the transaction costs coefficients decrease
as n−1/2 and where the Leland formula yields σ̂n not depending on n. He
proved that the terminal value of the portfolio converges in probability to
the pay-off. In the present note we show that it converges also in L2 and
find the first order term of asymptotics for the mean square error. The
considered setting covers the case of non-uniform revision intervals. We
establish the asymptotic expansion when the revision dates are tn

i = g(i/n)
where the strictly increasing scale function g : [0, 1] → [0, 1] and its in-
verse f are continuous with their first and second derivatives on the whole
interval or g(t) = 1 − (1 − t)β, β ≥ 1.

Key words: Black–Scholes formula, European option, transaction costs,
Leland–Lott strategy, approximate hedging

1. Introduction
1.1 Formulation of the main result

To fix the notation we consider the classical Black–Scholes model, already
under the martingale measure and with the maturity T = 1. So, let S = (S t),
t ∈ [0, 1], be a geometric Brownian motion given by the formula

S t = S 0eσWt− 1
2σ

2t

1
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and satisfying the linear equation

dS t = σS tdWt

with a standard Wiener process W and constants S 0, σ > 0 . Let C(t, x) be the
solution, in the domain [0, 1]×]0,∞[, of the Cauchy problem

(1) Ct(t, x) +
1
2
σ2x2Cxx(t, x) = 0, C(1, x) = (x − K)+,

where K > 0. The function C(t, x) admits an explicit expression and this is the
famous Black–Scholes formula:

(2) C(t, x) = C(t, x, σ) = xΦ(d) − KΦ(d − σ
√

1 − t), t < 1,

where Φ is the Gaussian distribution function with the density ϕ,

(3) d = d(t, x) = d(t, x, σ) =
1

σ
√

1 − t
ln

x
K

+
1
2
σ
√

1 − t.

Define the process

(4) Vt = C(0, S 0) +

∫ t

0
Cx(u, S u)dS u.

In the Ito formula for C(t, S t) the integral over dt vanishes. Hence, Vt = C(t, S t)
for all t ∈ [0, 1]. In particular, V1 = (S 1 − K)+: at maturity the value process V
replicates the terminal pay-off of the call-option.

Modelling assumptions of the above formulation are, between others: friction-
less market and continuous trading. The latter is a purely theoretical invention.
Practically, an investor revises the portfolio at certain dates ti and keeps Cx(ti, S ti )
units of the stock until the next revision date ti+1. The model becomes more real-
istic if the transactions are charged proportionally to their volume. The portfolio
strategy suggested by Leland [6] generates the value process

(5) Vn
t = Ĉ(0, S 0) +

∫ t

0

n∑

i=1

Hn
ti−1

I]ti−1,ti](u)dS u −
∑

ti<t

knS ti |Hn
ti − Hn

ti−1
|,

where Hn
ti = Ĉx(ti, S ti ), ti = i/n, the positive parameter kn = k0n−1/2 is the transac-

tion costs coefficient, and Ĉ(t, x) is the solution of (1) with σ replaced by σ̂ > 0
with

(6) σ̂2 = σ2 + σk0
√

8/π.

That is Ĉ(t, x) = C(t, x, σ̂) and for such a strategy there is no need in a new
software: traders can use their old one, changing only one input parameter, the
volatility.
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In his paper Leland claimed, without providing arguments, that Vn
1 converges

to V1 = (S 1 − K)+ in probability as n → ∞. This assertion was proven by Lott in
his thesis [7] and we believe that the result could be referred to as the Leland–Lott
theorem. In fact, Vn

1 converges also in L2 and the following statement gives the
rate of convergence:

Theorem 1.1. The mean square approximation error of the Leland–Lott strategy
has the following asymptotics:

(7) E(Vn
1 − V1)2 = A1n−1 + o(n−1), n→ ∞,

where the coefficient

(8) A1 =

∫ 1

0


σ4

2
+ σ3k0

√
2
π

+ k2
0σ

2
(
1 − 2

π

) Λtdt

with Λt = ES 4
t Ĉ2

xx(t, S t). Explicitly,

(9) Λt =
K2

2πσ̂
√

1 − t
√

2σ2t + σ̂2(1 − t)
exp

−
(
ln S 0

K − 1
2σ

2t − 1
2 σ̂

2(1 − t)
)2

2σ2t + σ̂2(1 − t)

 .

The main result of this note is slightly more general and covers also a model
with non-uniform grids given as follows.

Let f be a strictly increasing smooth function on [0, 1] with f (0) = 0, f (1) = 1
and let g := f −1 denote its inverse. For each fixed n we define the revision dates
ti = tn

i = g(i/n), 1, ..., n. The enlarged volatility now depends on t and is given by
the formula

(10) σ̂2
t = σ2 + σk0

√
8/π

√
f ′(t)

while the function Ĉ(t, x) given by the formula

Ĉ(t, x) = xΦ(ρ−1
t ln(x/K) + ρt/2) − KΦ(ρ−1

t ln(x/K) − ρt/2), t < 1,

with ρ2
t =

∫ 1
t σ̂

2
sds solves the Cauchy problem

(11) Ĉt(t, x) +
1
2
σ̂2

t x2Ĉxx(t, x) = 0, Ĉ(1, x) = (x − K)+,

The following bounds are obvious:

σ2(1 − t) ≤ ρ2
t ≤ σ2(1 − t) + σk0

√
8/π(1 − t)1/2(1 − f (t))1/2.

Assumption 1: g, f ∈ C2([0, 1]).
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Assumption 2: g(t) = 1 − (1 − t)β, β ≥ 1.
Note that in the second case where f (t) = 1 − (1 − t)1/β the derivative f ′ for

β > 1 explodes at the maturity date and so does the enlarged volatility.

Theorem 1.2. Under any of the above assumptions

(12) E(Vn
1 − V1)2 = A1( f )n−1 + o(n−1), n→ ∞,

where the coefficient

(13) A1( f ) =

∫ 1

0


σ4

2
1

f ′(t)
+ k0σ

3

√
2
π

1√
f ′(t)

+ k2
0σ

2
(
1 − 2

π

) Λtdt,

with Λt = ES 4
t Ĉ2

xx(t, S t). Explicitly,

(14) Λt =
1

2πρt

K2

√
2σ2t + ρ2

t

exp

−
(
ln S 0

K − 1
2σ

2t − 1
2ρ

2
t

)2

2σ2t + ρ2
t

 .

The case f (t) = t corresponds to the uniform grid and A1( f ) = A1.
The above result makes plausible the conjecture that the normalized difference

n1/2(Vn
1 − V1) converges in law. Indeed, this is the case, see [4].

1.2 Comments on the Grannan–Swindle paper
The Leland method based on the Black–Scholes formula is amongst a few

practical recipes how to price options under transaction costs. It has an advantage
to rely upon well-known and well-understood formulae from the theory of fric-
tionless markets. The method gave rise to a variety of other schemes. Of course,
the precision of the resulting approximate hedging is an important issue, see [5],
[2], [8], [9] and a survey [10] for related development.

The idea to parameterize the non-uniform grids by increasing functions and
consider the family of strategies with the enlarged volatilities given by (10) is due
to Grannan and Swindle, [3]. The mentioned paper claims that the asymptotics
(12) holds for more general option with the pay-off of the form G(S 1). In such a
case the function Ĉ(t, x) is the solution of the Cauchy problem

Ĉt(t, x) +
1
2
σ̂2

t x2Ĉxx(t, x) = 0, Ĉ(1, x) = G(x).

To our opinion, the formulations and arguments given in [3] are not satisfactory.
In particular, the hypothesis that for any nonnegative integers m, n, p

||Ĉ||m,n,p = sup
x>0, t∈[0,1]

xm ∂
n+pĈ(t, x)
∂xn∂tp

 < ∞
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is not fulfilled for the call-option with G(x) = (x − K)+ (even for the uniform
grid): explicit formulae show that derivatives of Ĉ(t, x) have singularities at the
point (1,K). So, the mathematical results of the original paper [3] do not cover
practically interesting cases. Nevertheless, the formula for A1( f ) is used in numer-
ical analysis of the approximate hedging error of call-options. Note also that the
authors of [3] do not care about the eventual divergence of the integral (13) due
to singularities of 1/ f ′ which are not excluded by their assumptions. Neglecting
the singularities may lead to an erroneous answer (recall the unfortunate error in
Leland’s paper corrected in [5]). That is why we are looking here for a rigorous
proof to built a platform for further studies. The asymptotic analysis happens to be
more involved comparatively with the arguments in [3] and we restrict ourselves
to the case of the classical call-option.

The paper [3] contains another interesting idea: to minimize the functional
A1( f ) with respect to the scale f in a hope to improve the performance of the
strategy by an appropriate choice of the revision dates1. We alert the reader that
the reduction to a classical variational problem is not correct as well as the derived
Euler–Lagrange equation. That is why the whole paper [3] can be considered
only as one giving useful heuristics but leaving open mathematical problems of
practical importance.

2. Proof of Theorem 1.2
2.1 Preparatory Manipulations

First of all, we represent the deviation of the approximating portfolio from the
pay-off in an integral form which is instructive how to proceed further.

Lemma 2.1. We have the representation Vn
1 − V1 = Fn

1 + Fn
2 where

Fn
1 = σ

n∑

i=1

Z ti

ti−1

(Ĉx(ti−1, S ti−1 ) − Ĉx(t, S t))S tdWt,

Fn
2 = k0

√
2
π
σ

Z 1

0
S 2

t Ĉxx(t, S t)
√

f ′(t)dt − k0√
n

n−1∑

i=1

|Ĉx(ti, S ti ) − Ĉx(ti−1, S ti−1 )|S ti .

1Even in the frictionless case the choice of an optimal scale to minimize the hedging error is an im-
portant and nontrivial problem, especially, for irregular pay-off functions, see, e.g., [1] and references
wherein.
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Proof. Applying the Ito formula and taking into account that the functions C(t, x)
and Ĉ(t, x) satisfy the Cauchy problems with the same terminal condition, we get:

Ĉ(0, S 0) −C(0, S 0) = C(1, S 1) −C(0, S 0) − [Ĉ(1, S 1) − Ĉ(0, S 0)]

=

∫ 1

0
Cx(t, S t)dS t −

∫ 1

0
Ĉx(t, S t)dS t

+

∫ 1

0

1
2

(σ̂2
t − σ2)S 2

t Ĉxx(t, S t)dt.

Taking the difference of (4) and (5) with t = 1 and using the above formula, we
obtain the required representation. �

Note that the sum in the expression for Fn
2 does not include the term with

i = n. Having in mind singularities of derivatives at the maturity, it is convenient
to isolate the last summands in other sums and treat them separately.

A short inspection of the above formulae using the well-known helpful heuris-
tics ∆S t ≈ σS t∆Wt ≈ σS t

√
dt reveals that the main contributions in the first or-

der Taylor approximations of increments originate from the derivatives in x. This
consideration allows us to specify the principal terms of a particularly transparent
structure. Namely, we put

Pn
1 :=

n−1∑

i=1

σĈxx(ti−1, S ti−1 )S 2
ti−1

Z ti

ti−1

(1 − S t/S ti−1 )S t/S ti−1 dWt,

Pn
2 := k0

n−1∑

i=1

Ĉxx(ti−1, S ti−1 )S 2
ti−1

[
σ

√
2/π

√
f ′(ti−1)∆ti − |S ti/S ti−1 − 1|/√n

]
.

To establish Theorem 1.2 we check that nE(Pn
1 + Pn

2)2 → A1( f ) as n → ∞ and
the residual terms Rn

i := Fn
i − Pn

i are negligible, i.e. nE(Rn
i )2 = o(1).

The first residual term is of the following form:

(15) Rn
1 =

(
Rn

1n − Rn
1t − (1/2)R̃n

1)σ,

where

Rn
1n =

∫ 1

tn−1

(Ĉx(tn−1, S tn−1 ) − Ĉx(t, S t))S tdWt,

Rn
1t =

n−1∑

i=1

Ĉxt(ti−1, S ti−1 )
∫ ti

ti−1

(t − ti−1)S tdWt,

R̃n
1 =

n−1∑

i=1

∫ ti

ti−1

Ũ i
tdWt,
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where

Ũ i
t = Ĉxxx(t̃i−1, S̃ ti−1 )(S t − S ti−1 )2S t + Ĉxtt(t̃i−1, S̃ ti−1 )(t − ti−1)2S t

+2Ĉxxt(t̃i−1, S̃ ti−1 )(t − ti−1)(S t − S ti−1 )S t,

t̃i−1 and S̃ ti−1 are random variables with values in the intervals [ti−1, ti] and
[S ti−1 , S t], respectively. The structure of the above representation of Rn

1 is clear:
the term Rn

1n corresponds to the n-th revision interval (it will be treated separately
because of singularities at the left extremity of the time interval), the term Rn

1t in-
volving the first derivatives of Ĉx in t at points (ti−1, S ti−1 ) comes from the Taylor
formula and the “tilde” term is due to the remainder of latter.

It is important to note that the integrals involving in the definition of Pn
1 de-

pend only on the increments of the Wiener process on the intervals [ti−1, ti] and,
therefore, are independent on the σ-algebras Fti−1 . This helps to calculate the ex-
pectation of the squared sum: according to Lemma 2.2 below it is the sum of
expectations of the squared terms. We define Pn

2 in a way to enjoy the same prop-
erty. The second residual term includes the term Rn

2n corresponding to the last
revision interval; the term Rn

21 represents the approximation error arising from re-
placement of the integral by the Riemann sum; the remaining part of the residual
we split in a natural way into summands Rn

22 and Rn
23. After these explanations we

write the second residual term as follows:

(16) Rn
2 =

(
Rn

2n + Rn
21 + Rn

22 + Rn
23 + Rn

24
)
k0,

with

Rn
2n =

√
2
π
σ

Z 1

tn−1

S 2
t Ĉxx(t, S t)

√
f ′(t)dt,

Rn
21 =

√
2
π
σ

n−1∑

i=1

Z ti

ti−1

(
S 2

t Ĉxx(t, S t)
√

f ′(t) − S 2
ti−1

Ĉxx(ti−1, S ti−1 )
√

f ′(ti−1)
)
dt,

Rn
22 =

1√
n

n−1∑

i=1

Ĉxx(ti−1, S ti−1 )|S ti−1 − S ti |(S ti−1 − S ti ),

Rn
23 =

1√
n

n−1∑

i=1

[...]i(S ti − S ti−1 ),

Rn
24 =

1√
n

n−1∑

i=1

[...]iS ti−1 ,

where

(17) [...]i = Ĉxx(ti−1, S ti−1 )|S ti − S ti−1 | − |Ĉx(ti, S ti ) − Ĉx(ti−1, S ti−1 )|.



January 16, 2009 17:38 Proceedings Trim Size: 9in x 6in LottJapan

8

2.2 Tools
In our computations we shall use frequently the following two assertions. The

first one is a standard fact on square integrable martingales in discrete time.

Lemma 2.2. Let M = (Mi) be a square-integrable martingale with respect to a
filtration (Gi), i = 0, ..., k, and let X = (Xi) be a predictable process with EX2 ·
〈M〉k < ∞. Then

E(X · Mk)2 = EX2 · 〈M〉k =

k∑

i=1

EX2
i (∆Mi)2,

where, as usual, ∆〈M〉i := E((∆Mi)2|Gi−1),

X · Mk :=
k∑

i=1

Xi∆Mi, X2 · 〈M〉k :=
k∑

i=1

X2
i 〈M〉i.

Lemma 2.3. Suppose that g′, f ′ ∈ C([0, 1]). Let p > 0 and a ≥ 0. Then

n−1∑

i=1

(∆ti)p+a

(1 − ti)p =


O(n1−p−a), p < 1,
O(n−a ln n), p = 1,
O(n−a), p > 1.

If g(t) = 1 − (1 − t)β, β ≥ 1, then

n−1∑

i=1

(∆ti)p+a

(1 − ti)p =


O(n1−p−a), p < 1 + a(β − 1),
O(n−aβ ln n), p = 1 + a(β − 1),
O(n−a), p > 1 + a(β − 1).

Proof. We consider first the case where g′, f ′ ∈ C([0, 1]), i.e. g′ is not only
bounded but also bounded away from zero. By the finite increments formula
∆ti = g′(xi)n−1 where xi ∈ [(i − 1)/n, i/n] and, hence, ∆ti ≤ const n−1. Applying
again the finite increments formula and taking into account that min g′(t) > 0, it is
easy to check that there is a constant c such that

1 − ti−1

1 − ti
≤ c, 1 ≤ i ≤ n − 1.

Thus,
n−1∑

i=1

∆ti
(1 − ti)p ≤ c

n−1∑

i=1

∆ti
(1 − ti−1)p ≤ c

∫ tn−1

0

dt
(1 − t)p .

Since
n−1 min g′(t) ≤ 1 − g(1 − 1/n) ≤ n−1 max g′(t),

the asymptotic of the last integral is O(1), if p < 1 (the integral converges), O(ln n),
if p = 1, and O(np−1), if p > 1,. This implies the claimed property.
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In the second case where g(t) = 1 − (1 − t)β, β ≥ 1, we have

n−1∑

i=1

(∆ti)p+a

(1 − ti)p =
βp+a

np−1+a

n−1∑

i=1

(1 − xi)(β−1)(p+a)

(1 − i/n)βp

1
n
.

The sum in the right-hand side is dominated, up to a multiplicative constant, by

n−1∑

i=1

1
(1 − (i − 1)/n)p+a−βa

1
n
≤

∫ 1−1/n

0

dt
(1 − t)p+a−βa .

Using the explicit formulae for the integral we infer that the required property
holds whatever are the parameters p > 0, a ≥ 0, and β ≥ 1. �
2.3 Explicit Formulae and Useful Bounds

We consider the function Ĉ(t, x) corresponding to the “artificial”, in general,
time-varying volatility. This function, solving the Cauchy problem (11), is given
by the formula

(18) Ĉ(t, x) = xΦ(d̂(t, x)) − KΦ(d̂(t, x) − ρt), t < 1,

where

(19) d̂(t, x) :=
1
ρt

ln
x
K

+
1
2
ρt

and ρt > 0,

(20) ρ2
t :=

∫ 1

t
σ̂2

sds =

∫ 1

t
(σ2 + σk0

√
8/π

√
f ′(s))ds.

It is easy to verify that

Ĉx(t, x) = Φ(d̂(t, x)),

Ĉxx(t, x) =
1

xρt
ϕ(d̂(t, x)).

The first and the second derivatives of d̂(t, x) in t are, respectively,

d̂t(t, x) =
σ̂2

t

2ρ3
t

ln
x
K
− σ̂2

t

4ρt
=
σ̂2

t

2ρ2
t

(
d̂(t, x) − ρt

)
,

d̂tt(t, x) =
σk0
√

2/π f ′′(t)

2ρ2
t

√
f ′(t)

(
d̂(t, x) − ρt

)
+

3σ̂4
t

4ρ4
t

(
d̂(t, x) − ρt

)
+
σ̂4

t

4ρ3
t
.
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For the analysis of residual terms we need also the following derivatives:

Ĉxt(t, x) =
σ̂2

t

2ρ2
t

(
d̂(t, x) − ρt

)
ϕ(d̂(t, x)),

Ĉxxx(t, x) = − 1
x2ρ2

t

(
d̂(t, x) + ρt

)
ϕ(d̂(t, x)),

Ĉxtt(t, x) =

[
d̂tt(t, x) − σ̂4

t

4ρ4
t

(
d̂(t, x) − ρt

)2d̂(t, x)
]
ϕ(d̂(t, x)),

Ĉxxt(t, x) =
1
x

[
σ̂2

t

2ρ3
t

+
σ̂2

t

2ρ3
t

(
d̂(t, x) − ρt

)
d̂(t, x)

]
ϕ(d̂(t, x)),

Ĉxxxx(t, x) =
1

x3ρ3
t

[
2ρt

(
d̂(t, x) + ρt

) − 1 +
(
d̂(t, x) + ρt

)
d̂(t, x)

]
ϕ(d̂(t, x)).

Note that under any of our assumptions on the scale transformation the ratio
σ̂2

t /ρ
2
t has a singularity c(1 − t)−1 as t → 1. Since for every p ≥ 0 the function

|y|pϕ(y) is bounded, we obtain from the above formulae the following estimates:

|Ĉxt(t, x)| ≤ κ 1
1 − t

,(21)

|Ĉxxx(t, x)| ≤ κ 1
x2(1 − t)

,(22)

|Ĉxtt(t, x)| ≤ κ 1
(1 − t)2 ,(23)

|Ĉxxt(t, x)| ≤ κ1
x

1
(1 − t)3/2 ,(24)

|Ĉxxxx(t, x)| ≤ κ 1
x3(1 − t)3/2 .(25)

Now we obtain a formula which gives, in particular, an expression for Λt.
Let ξ ∈ N(0, 1) and let a , 0, b, c be arbitrary constants. Then

(26) Eecξe−(aξ+b)2
=

1√
2a2 + 1

exp
{
− b̃2

2a2 + 1
+ b̃2 − b2

}
.

where b̃ := b − c/(2a).
The distribution of the random variable 2πS p

t Ĉ2
xx(t, S t) is the same as of

S p−2
0 e−

1
2 (p−2)σ2tρ−2

t ectξe−(atξ+bt)2

where ct = (p − 2)σt1/2, at = 1
ρt
σt1/2,

bt =
1
ρt

(
ln

S 0

K
− 1

2
σ2t

)
+

1
2
ρt, b̃t = bt − 1

2
(p − 2)ρt.
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Since

b̃2
t − b2

t = −(p − 2)
[(

ln
S 0

K
− 1

2
σ2t

)
+ ρ2

t −
1
4

pρ2
t

]
,

we obtain from above that

(27) ES p
t Ĉ2

xx(t, S t) =
1

2πρt

K p−2

√
2σ2t + ρ2

t

e−Bt ,

where

(28) Bt :=

(
ln S 0

K − 1
2σ

2t − 1
2 (p − 3)ρ2

t

)2

2σ2t + ρ2
t

− (p − 2)(p − 4)
4

ρ2
t .

In particular, with p = 4, we have the following formula:

(29) Λt =
1

2πρt

K2

√
2σ2t + ρ2

t

exp

−
(
ln S 0

K − 1
2σ

2t − 1
2ρ

2
t

)2

2σ2t + ρ2
t

 .

It is easily seen that Λt is a continuous function on [0, 1[ tending to infinity as
t → 1. The singularity at infinity is integrable since

(30)
1
κ

1
(1 − t)1/4 ≤ Λt ≤ κ 1

(1 − t)1/2

for some constant κ > 0 (of course, under Assumption 1 we have the lower bound
of the same order as the upper one).

It is worth to notice that the upper bound above is better than one could get
using the straightforward estimate Ĉ2

xx(t, x) ≤ κ/(x2ρ2
t ).

Sharper bounds for the expectations will be of frequent use in our analysis. To
get them we observe that for p ∈ R, m ≥ 0, r > 0, and r′ ∈]0, r[ we have the
bound

ES p
t d̂m(t, S t)ϕ(rd̂(t, S t)) ≤ κES p

t ϕ(r′d̂(t, S t)).

Exploiting again the identity (26) to estimate the right-hand side we get the in-
equality

ES p
t d̂m(t, S t)ϕ(rd̂(t, S t)) ≤ κρt.
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Using the expressions for the derivatives of Ĉ we obtain the following bounds:

ES p
t Ĉ2m

xt (t, S t) ≤ κ 1
(1 − t)2m−1/2 ,(31)

ES p
t Ĉ2m

xxx(t, S t) ≤ κ 1
(1 − t)2m−1/2 ,(32)

ES p
t Ĉ2m

xxt(t, S t) ≤ κ 1
(1 − t)3m−1/2 ,(33)

ES p
t Ĉ2m

xxxx(t, S t) ≤ κ 1
(1 − t)3m−1/2 ,(34)

where the constant κ depends on p and m.
2.4 Analysis of the Principal Terms

Let us check that nE(Pn
1 + Pn

2)→ A1( f ) as n→ ∞. To this aim we put

P̃n
1 :=

1
2
σ2

n−1∑

i=1

Ĉxx(ti−1, S ti−1 )S 2
ti−1

[
∆ti − (∆Wti )

2],

P̃n
2 := k0σn−1/2

n−1∑

i=1

Ĉxx(ti−1, S ti−1 )S 2
ti−1

[ √
2/π

√
∆ti − |∆Wti |

]
,

where, as usual, ∆ti := ti − ti−1 and ∆Wti := Wti − Wti−1 . It is sufficient to verify
that nE(P̃n

1 + P̃n
2)2 → A1( f ) while nE(Pn

j − P̃n
j )

2 → 0, j = 1, 2.
Recall that E(ξ2 − 1)2 = 2 and E|ξ|3 = 2E|ξ| = 2

√
2/π for ξ ∈ N(0, 1). Using

Lemma 2.2 we obtain the representation

nE(P̃n
1 + P̃n

2)2 =
σ4

2
n

n−1∑

i=1

Λti−1 (∆ti)2 + k0σ
3

√
2
π

n1/2
n−1∑

i=1

Λti−1 (∆ti)3/2

+k2
0σ

2
(
1 − 2

π

) n−1∑

i=1

Λti−1∆ti.

By the finite increments formula ∆ti = g(i/n) − g((i − 1)/n) = g′(xi)/n where
xi ∈ [(i − 1)/n, i/n]. We substitute this expression into the sums above. Let us
introduce the function Fn (depending on p) by the formula

Fn(t) :=
n−1∑

i=1

Λg((i−1)/n)[g′(xi)]pI[(i−1)/n,i/n[(t).

For p ≥ 1 we have:

n−1∑

i=1

Λg((i−1)/n)[g′(xi)]p 1
n

=

∫ 1

0
Fn(t)dt →

∫ 1

0
Λg(t)[g′(t)]pdt.
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The needed uniform integrability of the sequence {Fn} with respect to the
Lebesgue measure follows from the de la Vallée-Poussin criterion because the
estimate Λt ≤ κ(1 − t)−1/2 and the boundedness of g′ imply that

∫ 1

0
F3/2

n (t)dt ≤ const
∫ 1

0

dg(t)
(1 − g(t))3/4 = const

∫ 1

0

ds
(1 − s)3/4 < ∞.

By the change of variable, taking into account that g′(t) = 1/ f ′(g(t)), we trans-
form the limiting integral into the form used in the formulations of the theorem:

∫ 1

0
Λg(t)[g′(t)]pdt =

∫ 1

0
Λg(t)[g′(t)]p−1dg(t) =

∫ 1

0
Λt[ f ′(t)]1−pdt.

The first claimed property on the convergence to A1( f ) is verified.
Using again Lemma 2.2 we get that

E(Pn
1 − P̃n

1)2 = σ2
n−1∑

i=1

Λti−1

∫ ti

ti−1

E
[( S t

S ti−1

− 1
) S t

S ti−1

− σ(Wt −Wti−1 )
]2

dt.

It is a simple exercises to check that

E((eσt1/2ξ− 1
2σ

2t − 1)eσt1/2ξ− 1
2σ

2t − σt1/2ξ)2 = O(t2), t → 0.

Therefore,

nE(Pn
1 − P̃n

1)2 ≤ const n
n−1∑

i=1

Λti−1 (∆ti)3 → 0, n→ 0.

The sum Pn
2 is not centered and, therefore, Lemma 2.2 cannot be directly ap-

plied. Let us check that under our assumptions the bias is negligible. Indeed,
put

Pn
2
′

= k0n−1/2
n−1∑

i=1

Ĉxx(ti−1, S ti−1 )S 2
ti−1

[
E|S ti/S ti−1 − 1| − |S ti/S ti−1 − 1|

]
.

We have:

n1/2||Pn
2 − Pn

2
′||L2 ≤ k0

n−1∑

i=1

Λ
1/2
ti−1

Bi,

where
Bi :=

∣∣∣∣σ
√

2/π
√

n f ′(ti−1)∆ti − E|S ti/S ti−1 − 1|
∣∣∣∣.

Using the Taylor formula it is easy to verify that for u > 0

E|euξ− 1
2 u2 − 1| = 2[Φ(u/2) − Φ(−u/2)] =

√
2/πu + O(u3), u→ 0,
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It follows that

Bi = σ
√

2/π(∆ti)1/2
∣∣∣∣
√

n f ′(ti−1)∆ti − 1| + O((∆ti)3/2).

By the Taylor formula

∆ti = g(i/n) − g((i − 1)/n) = g′((i − 1)/n)
1
n

+
1
2

g′′(yi)
1
n2 ,

where the point yi ∈ [(i − 1)/n, i/n]. Since the function f is the inverse of g we
have f ′(ti−1) = 1/g′((i−1)/n). Using these identities and the elementary inequality
| √1 + a − 1| ≤ |a| for a ≥ −1 we obtain that

Bi ≤ const
|g′′(yi)|

g′((i − 1)/n)
(∆ti)1/2 1

n
+ O((∆ti)3/2).

Fix ε ∈]0, 1/4[. Substituting the finite increments formula ∆ti = g′(xi)/n with an
intermediate point xi in [(i − 1)/n, i/n], we infer that

Bi ≤ const an
g′(xi)

[1 − g((i − 1)/n)]3/4−ε
1
n

+ O((∆ti)3/2).

where

an =
1

n1/2 sup
i≤n−1

sup
xi,yi

|g′′(yi)|[1 − g((i − 1)/n)]3/4−ε

g′((i − 1)/n)(g′(xi))1/2 .

Recall that
n−1∑

i=1

g′(xi)
[1 − g((i − 1)/n)]1−ε

1
n
→

∫ 1

0

dg(t)
[1 − g(t)]1−ε =

∫ 1

0

dt
(1 − t)1−ε < ∞

and an → 0 under each of our assumptions. These observations lead to the con-
clusion that

n−1∑

i=1

Λ
1/2
ti−1

Bi → 0.

Thus, we have the convergence nE(Pn
2 − Pn

2
′)2 → 0.

Noticing that

E(|euξ− 1
2 u2 − 1| − u|ξ|)2 = O(u4), u→ 0,

we infer that

E
[(

E|S ti/S ti−1 − 1| − |S ti/S ti−1 − 1|
)
− σ

(
E|∆Wti | − |∆Wti |

)]2
= O((∆ti)2).

Using again Lemma 2.2 we get that

nE(Pn
2
′ − P̃n

2)2 ≤ const
n−1∑

i=1

Λti−1 (∆ti)2 → 0, n→ ∞.

It follows that nE(Pn
2 − P̃n

2)2 → 0 and the proof of the second claimed property is
completed.
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2.5 Analysis of the Residual Rn
1

1. Calculating the expectation of the squared stochastic integral we obtain that

E(Rn
1n)2 =

∫ 1

tn−1

E(Ĉx(tn−1, S tn−1 ) − Ĉx(t, S t))2S 2
t dt ≤ κn(1 − tn−1),

where κn is the supremum of the integrand over [tn−1, 1]. Note that the process
d̂(t, S t) diverges a.s. when t → 1. On the set where it diverges to −∞, we have
Ĉx(t, S t) = Φ(d̂(t, S t)) → 0 while Ĉx(t, S t) → 1 a.s. on the complement of this
set. It follows that κn → 0. Since 1 − tn−1 ≤ κn−1 (due to the boundedness of g′),
we conclude that nE(Rn

1n)2 → 0.
2. Let us consider the term

Rn
1t =

n−1∑

i=1

Ĉxt(ti−1, S ti−1 )
∫ ti

ti−1

(t − ti−1)S tdWt.

According to (31)

EĈ2
xt(t, S t)S 2

t ≤ κ
1

(1 − t)3/2 .

Therefore,

E(Rn
1t)

2 =

n−1∑

i=1

EĈ2
xt(ti−1, S ti−1 )S 2

ti−1

∫ ti

ti−1

(t − ti−1)2E(S t/S ti−1 )2dt

≤ const
n−1∑

i=1

(∆ti)3

(1 − ti−1)3/2 = O(n−3/2), n→ ∞,

in virtue of Lemma 2.3. Hence, nE(Rn
1t)

2 → 0.
3. Now we estimate the expectation E(R̃n

1)2 corresponding to the terms arising
from the residual in the Taylor formula for Ĉx. We have:

E(R̃n
1)2 =

n−1∑

i=1

∫ ti

ti−1

E(Ũ i
t)

2dt.

Since (a+b+c)2 ≤ 3(a2+b2+c2), it is sufficient to check that each of the following
sums converge to zero as o(n−1):

Σn
1 =

n−1∑

i=1

∫ ti

ti−1

EĈ2
xxx(t̃i−1, S̃ ti−1 )(S t − S ti−1 )4S 2

t dt,

Σn
2 :=

n−1∑

i=1

∫ ti

ti−1

EĈ2
xtt(t̃i−1, S̃ ti−1 )(t − ti−1)4S 2

t dt,

Σn
3 :=

n−1∑

i=1

∫ ti

ti−1

EĈ2
xxt(t̃i−1, S̃ ti−1 )(t − ti−1)2(S t − S ti−1 )2S 2

t dt.
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Taking into account that yϕ(y) is bounded, d̂(t, x)ϕ(d̂(t, x)) → 0 as t → 1
whatever is x , K, and S 1 , K (a.s), we deduce from the explicit formula for
Ĉxxx that for any ε > 0, m ≥ 1, there exists a ∈]0, 1[ such that

(35) E|Ĉxxx(t̃i−1, S̃ ti−1 )|2m ≤ ε 1
(1 − ti)2m

for every ti−1 ≥ a. For ti−1 < a the above expectation is bounded by a constant
which does not on n.

Let ξ ∼ N(0, 1) and let b ∈ [0, 1]. Using the elementary bound

|ebx − 1| ≤ b(e|x| − 1)

which follows from the Taylor expansion, we obtain, for m ≥ 1, the estimate

E(euσξ−(1/2)σ2u2 − 1)2m ≤ κu2m

where the constant κ depends on m and σ. Applying the Cauchy–Schwarz in-
equality and this estimate we get that

E(S t − S ti−1 )2mS p
t ≤ κ(t − ti−1)m.

Manipulating again with the Cauchy–Schwarz inequality we obtain with the help
of the above bounds that

Σn
1 ≤ κ

∑

ti−1<a

(∆ti)3 + κε

n−1∑

i=1

(∆ti)3

(1 − ti)2 .

The first sum in the right-hand side is of order O(n−2). According to Lemma
2.3 the second one is of order O(n−1). Since ε > 0 is arbitrary, it follows that
limn nΣn

1 = 0.

Similarly to the bound (35), we can establish that for any ε > 0 there is a
threshold a ∈]0, 1] such that for any ti−1 ≥ a the following inequalities hold:

(36) E|Ĉxxt(t̃i−1, S̃ ti−1 )|2m ≤ ε 1
(1 − ti)3m

and

(37) E|Ĉxtt(t̃i−1, S̃ ti−1 )|2m ≤ ε 1
(1 − ti)4m .

With these bounds we prove, making obvious changes in arguments, that
limn nΣn

2 = 0 and limn nΣn
3 = 0.
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2.6 Analysis of the Residual Rn
2

1. Noting that ||S 2
t Ĉxx(t, S t)||L2 = Λ

1/2
t , we have:

||Rn
2n)||L2 ≤ c

∫ 1

tn−1

Λ
1/2
t

√
f ′(t)dt ≤ c

(∫ 1

tn−1

Λtdt
)1/2

(1 − f (tn−1))1/2

with c =
√

2/πσ. Since f (tn−1) = f (g((n − 1)/n)) = 1 − 1/n and the function Λ is
integrable, it follows that nE(Rn

2n)2 → 0.
2. The term Rn

21 describes the error in approximation of an integral by Riemann
sums. To analyze the approximation rate we need the following auxiliary result.

Lemma 2.4. Let X = (Xt)t∈[0,1] be a process with

dXt = µtdt + ϑtdWt, X0 = 0,

where µ = (µt)t∈[0,1] and ϑ = (ϑt)t∈[0,1] are predictable processes such that

∫ 1

0
(|µt | + ϑ2

t )dt < ∞.

Let Xn
t :=

∑n
i=1 Xti−1 I]ti−1,ti](t). Then

E
(∫ 1

0
(Xt − Xn

t )dt
)2

≤ 2
∫ 1

0

n∑

i=1

(ti − u)2I]ti−1,ti](u)Eϑ2
udu

+2


∫ 1

0

n∑

i=1

(ti − u)I]ti−1,ti](u)(Eµ2
u)1/2du


2

.

Proof. It is sufficient to work assuming that the right-hand side of the inequality is
finite and consider separately the cases where one of the coefficients is zero. Let
us start with the case where µ = 0. Using the stochastic Fubini theorem, we have:

∫ ti

ti−1

(Xt − Xti−1 )dt =

∫ ti

ti−1

∫ ti

ti−1

ϑuI]ti−1,t](u)dWudt =

∫ ti

ti−1

(ti − u)ϑudWu.

It follows that

E
(∫ 1

0
(Xt − Xn

t )dt
)2

=

∫ 1

0

n∑

i=1

(ti − u)2I]ti−1,ti](u)Eϑ2
udu.

In the case where ϑ = 0 we have, this time by the ordinary Fubini theorem, that
∫ ti

ti−1

(Xt − Xti−1 )dt =

∫ ti

ti−1

(ti − u)µudu
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and this representation allows us to transform the left-hand side of the required
inequality to the following form:

∫ 1

0

∫ 1

0

n∑

i, j=1

(ti − u)(t j − v)I]ti−1,ti](u)I]t j−1,t j](v)Eµuµvdudv.

Using the Cauchy–Schwarz inequality Eµuµv ≤ (Eµ2
u)1/2(Eµ2

v)1/2 and once again
the Fubini theorem we obtain the needed bound. �

Note that

E(Rn
21)2 = E

(∫ tn−1

0
(Xt − Xn

t )dt
)2

where Xt := S 2
t Ĉxx(t, S t)

√
f ′(t) has the coefficients

ϑt =
[
2S tĈxx(t, S t) + S 2

t Ĉxxx(t, S t)
] √

f ′(t)σS t,

µt =
1
2

[
2Ĉxx(t, S t) + 4S tĈxxx(t, S t) + S 2

t Ĉxxxx(t, S t)
] √

f ′(t)σ2S 2
t

+
1
2

S 2
t Ĉxx(t, S t)

f ′′(t)√
f ′(t)

+ S 2
t Ĉxxt(t, S t)

√
f ′(t).

In the case where g′ is bounded away from zero (hence, f ′ is bounded), the
estimates (27) and (32) imply that Eϑ2

t ≤ κ/(1 − t)3/2. If also f ′′ is bounded, then
the estimates (27) and (32) – (34) ensure that Eµ2

t ≤ κ/(1 − t)5/2.
Applying the previous lemma we have:

E(Rn
21)2 ≤ κ

n−1∑

i=1

(∆ti)3

(1 − ti)3/2 + κ


n−1∑

i=1

(∆ti)2

(1 − ti)5/4


2

.

According to Lemma 2.3 the right-hand side is O(n−3/2) as n→ ∞.
In the case where g(t) = 1 − (1 − t)β, β > 1, we obtain in the same way that

Eϑ2
t ≤ κ/(1 − t)5/2−1/β, Eµ2

t ≤ κ/(1 − t)7/2−1/β, and

E(Rn
21)2 ≤ κ

n−1∑

i=1

(∆ti)3

(1 − ti)5/2−1/β + κ


n−1∑

i=1

(∆ti)2

(1 − ti)7/4−1/(2β)


2

.

By Lemma 2.3 the first sum in the right-hand side can be of order O(n−2),
O(n−2 ln n), or O(n−(β/2+1)), that is o(n−1) as n → ∞. The second sum can be
O(n−1), O(n−1 ln n), or O(n−(β/4+1/2)), i.e. o(n−1/2). In all cases nE(Rn

21)2 → 0.

3. The analysis of the term Rn
22 is based on the first claim of Lemma 3.1 given

in the section on asymptotics of Gaussian integrals.
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We need to check that

E


n−1∑

i=1

Ĉxx(ti−1, S ti−1 )S 2
ti−1

(S ti/S ti−1 − 1)2sign (S ti/S ti−1 − 1)


2

tends to zero.
For the expectation of the sum of squared terms we have:

n−1∑

i=1

Λti−1 E(S ti/S ti−1 − 1)4 = O(n−1),

since
E
(
euξ− 1

2 u2 − 1
)4

= O(u4), u→ 0,

Λt is an integrable function on [0, 1], and g′(t) is bounded.
Let us consider a “generic” cross term with indices i < j. It can be split

in the product of two independent random variables. The expectation of the
first one, (S t j/S t j−1 − 1)2sign (S t j/S t j−1 − 1), by virtue of Lemma 3.1 is dom-
inated by κ∆t3/2

j where κ is a constant. The second one is the product of

Ĉxx(ti−1, S ti−1 )S 2
ti−1

(S ti/S ti−1 − 1)2sign (S ti/S ti−1 − 1) and Ĉxx(t j−1, S t j−1 )S 2
t j−1

and we
dominate the absolute value of its expectation using the Cauchy–Schwarz inequal-
ity which gives the following bound:

Λ
1/2
ti−1

(
E(S ti/S ti−1 − 1)4)1/2

Λ
1/2
t j−1
≤ κΛ1/2

ti−1
Λ

1/2
t j−1

∆ti.

Since the function Λ
1/2
t is integrable and g′ is bounded, this implies that the sum

of absolute values of the expectations of the cross terms decreases to zero as n−1/2

and, hence, n(Rn
22)2 = O(n−1/2).

3. We verify that nE(Rn
23)2 → 0. Recall that

E(S ti − S ti−1 )2m ≤ cm(∆ti)m.

Using (31) we obtain the bound

EĈ2
xt(ti−1, S ti−1 )(∆ti)2(S ti − S ti−1 )2 ≤ c

(∆ti)3

(1 − ti−1)3/2 .

To estimate the terms coming from the residual term of the Taylor expansion we
use the Cauchy–Schwarz inequality and the bounds (22)–(24). This yields in the
following:

EĈ2
xxx(t̃i−1, S̃ ti−1 )(S ti − S ti−1 )6 ≤ c

(∆ti)3

(1 − ti)2 ,

EĈ2
xxt(t̃i−1, S̃ ti−1 )(S ti − S ti−1 )4(∆ti)2 ≤ c

(∆ti)4

(1 − ti)3 ,

EĈ2
xtt(t̃i−1, S̃ ti−1 )(∆ti)4(S ti − S ti−1 )2 ≤ c

(∆ti)5

(1 − ti)4 .
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We dominate the L2-norm of n1/2Rn
23 by the sum of the L2-norm of the random

variables [...]i(S ti − S ti−1 ), where [...]i is defined in (17). Taking into account that
Ĉxx(t, x) > 0 and using the inequality ||a| − |b|| ≤ |a − b| we can write that

||[...]i(S ti − S ti−1 )||L2 ≤ c
(
||Ĉxt(ti−1, S ti−1 )(ti − ti−1)(S ti − S ti−1 )||L2 + ...

)

where we denote by dots the L2-norms of the residual term in the first order Taylor
expansion of the difference Ĉx(ti, S ti ) − Ĉx(ti−1, S ti−1 ). Summing up and using the
above estimates we conclude, applying Lemma 2.3, that the right-hand side of the
above inequality tends to zero as n→ ∞ and we conclude.

4. It remains to check that nE(Rn
24)2 → 0 and this happens to be the most

delicate part of the proof. The expression for nE(Rn
24)2 involves the sum of ex-

pectations of squared terms and the sum of expectations of cross terms which we
analyze separately.

For the squared terms the arguments are relatively straightforward. We apply
the Ito formula to the function Ĉx(t, x). Using the positivity of Ĉxx(t, x) and the
inequality ||a| − |b|| ≤ |a − b| we dominate the absolute value of the square bracket
[...]i in the definition of Rn

24, given by the formula (17), by the absolute value of

∫ ti

ti−1

(Ĉxx(ti−1, S ti−1 ) − Ĉxx(t, S t))dS t −
∫ ti

ti−1

(
Ĉxt(t, S t) +

σ2

2
S 2

t Ĉxxx(t, S t)
)
dt.

We check that

n−1∑

i=1

ES 2
ti−1

∫ ti

ti−1

(Ĉxx(ti−1, S ti−1 ) − Ĉxx(t, S t))2S 2
t dt = O(n−1/4),(38)

n−1∑

i=1

∆tiES 2
ti−1

∫ ti

ti−1

(Ĉ2
xt(t, S t) + S 4

t Ĉ2
xxx(t, S t))dt = O(n−1/2).(39)

A generic term of the first sum is dominated by

∆tiE sup
t≤1

S 4
t sup

ti−1≤t≤ti
(Ĉxx(t, S t) − Ĉxx(ti−1, S ti−1 ))2.

The Cauchy–Schwarz inequality allows us to separate the terms under the sign
of expectation and reduce the problem to the estimation of the forth power of the
difference Ĉxx(t, S t) − Ĉxx(ti−1, S ti−1 ). The Ito formula transforms this difference
into the sum of a stochastic integral and an ordinary integral. Using consecutively



January 16, 2009 17:38 Proceedings Trim Size: 9in x 6in LottJapan

21

the Burkholder and Cauchy–Schwarz inequalities and the bound (32) we have:

E sup
t∈[ti−1,ti]

[∫ t

ti−1

Ĉxxx(u, S u)S udS u

]4

≤ c4E
[∫ ti

ti−1

Ĉ2
xxx(u, S u)S 4

udu
]2

≤ c4∆tiE
∫ ti

ti−1

Ĉ4
xxx(u, S u)S 8

udu

≤ c
(∆ti)2

(1 − ti)7/2 .

To estimate the ordinary integral we use the Jensen inequality for f (x) = x4 and
the bounds (33) and (34) and get that

E sup
t∈[ti−1,ti]

[∫ t

ti−1

(
Ĉxxt(u, S u) +

1
2
σ2S 2

uĈxxxx(u, S u)
)
du

]4

≤ c
(∆ti)4

(1 − ti)11/2 .

Using these estimates we obtain that the sum in (38) is dominated, up to a
multiplicative constant, by

n−1∑

i=1

[
(∆ti)2

(1 − ti)7/4 +
(∆ti)3

(1 − ti)11/4

]

and the claimed asymptotics follows from Lemma 2.3.
Finally, similar arguments using the inequalities (31) and (32) give us the sec-

ond asymptotic formula.
From the same estimates we obtain that

n−1∑

i=1

(
ES 2

ti−1
[...]2

i
)1/2 ≤ c

n−1∑

i=1

∆ti
(1 − ti)7/8 + c

n−1∑

i=1

(∆ti)3/2

(1 − ti)11/8 .

The second sum in the right-hand side converges to zero while for the first one we
can say only that it is dominated by a convergent integral. Using this observation
we conclude that the sum of expectations of cross terms over indices i, j with i < j
and t j > a also can be done arbitrary small by choosing a sufficiently close to one.

Unexpectedly, the most difficult part of the proof is in establishing the con-
vergence to zero of the sum of cross terms corresponding to the dates of revisions
before a < 1, i.e. bounded away from the singularity.

Using the Taylor expansion we can reduce the problem to the case where the
difference Ĉx(ti, S ti ) − Ĉx(ti−1, S ti−1 ) is replaced by terms involving the derivatives
Cxx(ti−1, S ti−1 ), Cxt(ti−1, S ti−1 ) and Cxxx(ti−1, S ti−1 ).

To formulate the claim we introduce “reasonable” notations. Put

αi := Ĉxx(S ti−1 , ti−1)S 2
ti−1

( S ti

S ti−1

− 1
)
,

βi := S ti−1Ĉxt(S ti−1 , ti−1)∆ti +
1
2

S 3
ti−1

Ĉxxx(S ti−1 , ti−1)
( S ti

S ti−1

− 1
)2
,
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γi := |αi + βi| − |αi|. Let us define also the random variable χi := sign (αiβi) and
the set Ai := {|βi| < |αi|}.

The assertion needed to conclude is the lemma below. It is based on asymp-
totic analysis of expectations of some Gaussian integrals which are given in the
next section and the following identities:

|α + β| − |α| = |β|χIA + |β|I{χ>0}IAc + (|β| − 2|α|)I{χ≤0}IAc

= |β|χ + 2(|β| − |α|)I{χ≤0}IAc − |β|I{χ=0}IAc

where α, β are arbitrary random variables, χ := sign (αβ), A := {|β| < |α|}.
Lemma 2.5. For every fixed a ∈]0, 1[

∣∣∣∣
∑

i< j, t j≤a

Eγiγ j

∣∣∣∣ = o(1), n→ ∞.

Proof. The routine estimation |Eγiγ j| ≤ E|γi||γ j| does not work in our case. But
for i < j

|Eγiγ j| = |E(γiE(γ j|Ft j−1 ))| ≤ E
(|γi||E(γ j|Ft j−1 )|) ≤ E

(|βi||E(γ j|Ft j−1 )|).

According to the above identity,

|E(γ j|Ft j−1 )| ≤ |E(|β j|χ j|Ft j−1 )| + 2E(|β j|IAc
j
|Ft j−1 ).

Using Lemma 3.2 of the next section with ηu = S t j/S t j−1 − 1, u = (∆t j)1/2, we
dominate the first term in the right-hand side by

κ
(
S ti−1 |Ĉxt(S ti−1 , ti−1)| + S 3

ti−1
|Ĉxxx(S ti−1 , ti−1)|)(∆t j)3/2

It is easily seen from the explicit formulae that the coefficients above when t j ≤ a
can be dominated uniformly by ca(1 + supt≤1 S t), i.e. by a random variable having
all moments. In the same range of indices we have the bound E(β2

i |Fti−1 ) ≤ ζa(∆ti)2

where ζa a random variable having all moments. It follows from here that
∑

i< j, t j≤a

E
(|βi||E(|β j|χ j|Ft j−1 )|) = O(n−1/2).

We estimate P(Ac
j |Ft j−1 ) applying Lemma 3.3 of the next section with

c1(t j−1) :=
S 3

t j−1
Ĉxxx(S t j−1 , t j−1)

S 2
t j−1

Ĉxx(S t j−1 , t j−1)
, c2(t j−1) :=

S t j−1Ĉxt(S t j−1 , t j−1)

S 2
t j−1

Ĉxx(S t j−1 , t j−1)
,
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and c(t j−1) := 2
(|c1(t j−1)| + |c2(t j−1)| + 1

)
. On the interval [0, a] the continuous

process c(t) can be dominated by a random variable ξa. Fix ε > 0 and choose N
such that P(ξa > N) < ε. Lemma 3.3 implies that

P(Ac
j |Ft j−1 ) ≤ LN(∆t j)1/2I{c(t j−1})≤N + I{c(t j−1)>N}

and, therefore, P(Ac
j) ≤ LN(∆t j)1/2 + ε ≤ 2ε when n is large enough. Using the

Cauchy–Schwarz and Jensen inequalities we get that
∑

i< j, t j≤a

E
(|βi||E(|β j|IAc

j
|Ft j−1 )||) ≤

∑

ti≤a

(Eβ2
i )1/2

∑

t j≤a

(Eβ4
i )1/4(P(Ac

j))
1/4

≤ (2ε)1/4
∑

ti≤a

(Eβ2
i )1/2

∑

t j≤a

(Eβ4
j )

1/4.

Note that both sums in the right-hand side are bounded due to the inequalities
Eβ2

j ≤ κ(∆ti)2 and Eβ4
j ≤ κ(∆ti)4. By the choice of ε the right-hand side can be

made arbitrarily small. Thus, nE(Rn
24)2 → 0. �

3. Asymptotics of Gaussian Integrals
Let ξ ∈ N(0, 1) and let ηu := euξ− 1

2 u2 − 1, u ∈ [0, 1].

Lemma 3.1. The following asymptotical formulae holds as u→ 0:

E[η2
u − η2

−u]I{ηu>0} =
2√
2π

u3 + O(u4),

Eη2
usign ηu =

2√
2π

u3 + O(u4),

Esign ηu = − 1√
2π

u + O(u3).

Proof. Put
Z(u) := (euξ− 1

2 u2 − 1)2 − (e−uξ− 1
2 u2 − 1)2.

Then Z(0) = Z′(0) = Z′′(0) = 0, Z′′′(0) = 12(ξ3 − ξ), and the function Z(4)(u)
is bounded by a random variable having moments of any order. Using the Taylor
formula we obtain that

EZ(u)I{ξ≥ 1
2 u} = 2u3E(ξ3 − ξ)I{ξ≥ 1

2 u} + O(u4), u→ 0,

and we obtain the first formula. The second formula is a corollary of the first one
since

Eη2
usign ηu = EZ(u)I{ξ≥ 1

2 u} − Eη2
uI{|ξ|≤ 1

2 u}
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and the last term is O(u4) as u→ 0. Finally,

Esign ηu = P(ξ > u/2) − P(ξ < u/2) = 2(Φ(0) − Φ(u/2))

= − 1√
2π

u +
1
4
ϕ(ũ)ũu2,

where ũ ∈ [0, u/2]. �

Lemma 3.2. There exists a constant κ such that for any real A

(40)
∣∣∣E|η2

u − Au2|sign(η2
u − Au2)ηu

∣∣∣ ≤ κ(1 + |A|)u3.

Proof. Note that |x| sign xy = x sign y. Therefore the left-hand side of (40) is
dominated by ∣∣∣Eη2

usign ηu

∣∣∣ + |A|u2
∣∣∣Esign ηu

∣∣∣
and the result holds by virtue of the previous lemma. �

Lemma 3.3. For every N > 0 there is a constant LN such that for all u ∈ [0, 1]

P(|c1η
2
u + c2u2| > |ηu|) ≤ LN I{c≤N}u + I{c>N}.

for any constants c1, c2 and c := 2(|c1| + |c2| + 1).

Proof. Suppose that N ≥ c > 2, the only case where the work is needed. It is easy
to see that

P(|c1η
2
u + c2u2| > |ηu|) ≤ P((c/2)η2

u + (c/2)u2 > |ηu|)
≤ P(c|ηu| > 1) + P(|ηu| < cu2).

The probabilities in the right-hand side as functions of c are increasing and it
remains to dominate their values at the point c = N. The required bound holds for
the first probability in the right-hand side (and even with a constant which does not
depend on N). Indeed, using the Chebyshev inequality, finite increments formula,
and the bound ϕ(x) ≤ 1/

√
2π we have:

P(N|ηu| > 1) ≤ 1
N

E|ηu| ≤ 1
2

E|ηu| = Φ(u/2) − Φ(−u/2) ≤ 1√
2π

u.

For u ≥ 1/
√

2N the second probability is dominated by linear functions with
LN ≥

√
2N. For u < 1/

√
2N we write it as

P(u/2 ≤ ξ < (1/u) ln(1 + Nu2) + u/2) + P((1/u) ln(1 − Nu2) + u/2 < ξ < u/2).

Using again the finite increments formula we obtain that

P(u/2 ≤ ξ < (1/u) ln(1 + Nu2) + u/2) ≤ 1√
2π

Nu.
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On the interval ]0, 1/
√

2N[ we have the bound (1/u) ln(1 − Nu2) ≥ −κNu where
κ > 0 is the maximum of the function − ln(1 − x)/x on the interval ]0, 1/2]. It
follows that

P((1/u) ln(1 − Nu2) + u/2 < ξ < u/2) ≤ 1√
2π
κNu.

Thus, the second probability also admits a linear majorant on the whole interval
[0, 1]. �
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