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1 Introduction

In the classical arbitrage theory it is usually assumed that the investor makes
his decisions using all market information and the majority of no-arbitrage
criteria are developed in this framework. However, even though there is
a vast amount of information available, an investor may base his decision
only on a part of this information. On the other hand, mathematically, such
an important feature as partial information used in the investor’s decisions
can be easily modelled, namely, by a subfiltration G = (Gt) of the main
filtration F = (Ft) describing the information flow. What are consequences
of such modelling for the arbitrage theory?
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Until recently, the only result in this more general framework was an ex-
tension of the Dalang–Morton–Willinger theorem for the model of the fric-
tionless financial market in discrete-time given in the paper [7]. It happens
that the no arbitrage property (shortly, NA-property) for the price process
S holds if and only if there is a bounded strictly positive F-martingale ρ such
that the optional projection (ρS)o is a G-martingale, i.e. Ẽ(St+1−St|Gt) = 0
where P̃ := ρT P . On the other hand, the “global” (multi-step) NA-property
is no longer equivalent to the NA-properties for all one-step sub-models.
This explains why such a natural generalization was not obtained earlier:
all proofs (of the“only if” part) except that given in [6] use a reduction to
the one-step case.

The study of no-arbitrage properties for markets with friction was initi-
ated by Jouini and Kallal [3] for a model with bid-ask spread and developed
further in a number of papers: [4], [8], [5], [2] and others. There are several
concepts of the no-arbitrage property. Equivalent conditions for them can
be formulated in terms of the existence of martingales evolving in the duals
to solvency cones (in the space used to represent the investor’s positions in
physical units) or in the interiors of these duals.

It is natural to consider as an arbitrage opportunity a self-financing
portfolio strategy (with zero initial capital) yielding a positive outcome on
a set of positive probability with no losses elsewhere. The absence of such
“strict” arbitrage opportunities, i.e. the relation R̂T ∩L0(Rd

+) = {0} where
R̂T is the set of the terminal values of portfolios, is called weak no-arbitrage
property (shortly, NAw-property). For the case of finite Ω the criterion for
the NAw-property was obtained in [4]: the latter holds if and only if there
is a martingale evolving in the duals to solvency cones. For general Ω this
equivalence holds only for the two-asset model, see [2]. An evaluation of the
portfolio results without taking into account the transaction costs (as could
be done by auditors) leads to a larger set of weak arbitrage opportunities.
Their absence is referred to as strict no-arbitrage property, NAs. In the case
of arbitrary Ω and “efficient friction”, i.e. non-emptiness of the interiors of
dual cones, NAs is equivalent to the existence of a martingale evolving in
these interiors, see [5]. Without further assumptions, as was shown first in
[8], the existence of a martingale evolving in relative interiors of duals to
the solvency cones is equivalent to the so-called robust no-arbitrage property,
NAr. The latter means that there are no-arbitrage opportunities in strict
sense even for smaller transaction costs.

The setting of market models with friction where the investor’s informa-
tion may be different from that given by the main filtration was investigated
by Bruno Bouchard [1] who discovered some new phenomena. He showed
that models with transaction costs and partial information not only ne-
cessitate important changes in the description of value processes but also
appropriate modifications of the basic concepts. In particular, one cannot
work on the level of portfolio positions, represented by a point in Rd, but
has to remain on the primary level, of the investor’s decisions (orders), i.e.
in a space of much higher dimension. In the model with partial information
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there is a difference between the investor’s orders “exchange 1000 dollars
for euros” and “exchange dollars to increase the holding in euros by 1000
euros”: they are of a different nature. For the first type of orders the investor
controls the decrease of the dollar holdings (hence, his debts), while for the
second type, due to limited information, he may have no idea what is the
resulting value of the eventually short position in dollars.

The model of [1] can be classified as that of a barter market but it
covers also the case of the model with a numéraire by introducing auxiliary
“fictive” assets. Bouchard suggested the coding of orders by real-valued
d × d-matrices (with zero diagonal) where the sign of each entry serves
as in indicator of the order type (“to send” or “to get” an increment).
His main result is the criterion for the NAr-property of the market for a
partially informed investor. It is necessary to recall that in models with full
information there is no difference between “barter markets” and “financial
markets”. In the theory of markets with transaction costs it happens that
it is much easier to analyze models where holdings are expressed in terms
of physical units rather than in units of a numéraire. In the development of
this idea in some recent papers, e.g., [8] and [2] the initial set-up is that of
a “barter market”, i.e. “conversion” matrices (πij

t ) are specified. This is by
no means a restriction: in the models with full information one can always
construct prices St and matrices λij

t of transaction costs coefficients (of
course, not uniquely). However, the setting based on prices and transaction
costs coefficients may lead to an information structure which seems not to
be covered by models based on conversion matrices.

The aim of the present work is to simplify and extend the approach of
[1] to include explicitly models with a numéraire. To this end we use an
alternative coding of the investor’s order and enjoy from the very begin-
ning the linear structure of the problem which leads to a more transparent
presentation. Our results include a criterion for the NAw-property for the
case of finite Ω (extending the criterion of [4]) and the criteria for the NAr-
property which is a generalization of those of [8] and [5]. We conclude with
a version of the hedging theorem for the situation with partial information.

One should take into account that we are dealing here with a highly styl-
ized mathematical model where orders should be executed, independently
of the realized price movements. This means that we are working within
the framework of linear control system. The practical situations might be
much more complicated and depend on a market microstructure. Certain
financial markets are organized as auctions where investors indicate reser-
vation prices, when selling, and limit prices, when buying. A trading system
equilibrates the supply and demand, generating asset prices. For example,
during the following trading cycle, an order to buy may not be executed
or executed partially if the price goes up above the limit price. Of course,
an analysis of models incorporating such features as liquidity constraints,
constrained orders etc. is of great interest and could be a subject of further
studies.
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Comment on notations: as usual L0(R+,Ft) is the set of positive Ft-
measurable random variables (note that we prefer to say “positive” rather
than “nonnegative”) and, consistently, M(intRd

+,F) stands for the set of
martingales with strictly positive components; 1 :=

∑
ei = (1, ..., 1).

2 Examples and mathematical framework

Example 1. Let us consider the barter market which is described by an F-
measurable conversion (“bid-ask”) process Π = (πij

t ) taking values in the
set of strictly positive d × d matrices such that πij

t πji
t ≥ 1. The entry πij

t

stands for a number of units of the ith asset needed to exchange, at time t,
for one unit of the jth asset. The above inequality means that exchanging
one unit of the ith asset for 1/πij

t units of the jth asset with simultaneous
exchange back of the latter quantity results in decreasing of the ith position.

In the case of fully informed investor, the portfolio process is generated
by an F-adapted process (ηij

t ) with values in the set Md
+ of positive d × d

matrices; the entry ηij
t ≥ 0 is the investor’s order to increase the position j

on ηij
t units by converting a certain number of units of the ith asset. The

investor has a precise idea about this “certain number”: it is πij
t ηij

t . The
situation is radically different when the information available is given by
a smaller filtration G, i.e. ηij

t is only Gt-measurable. The decrease of the
i-th asset implied by such an order, being Ft-measurable, is unknown to
the investor. However, one can easily imagine a situation where the latter
is willing to control the lower level of investments in some assets in his
portfolio. This can be done by using the G-adapted order process (η̃ij

t )
with the element η̃ij

t representing the number of units of the ith asset to be
exchanged for the jth asset – the result of this transaction yields an increase
of the jth position in η̃ij

t /πij
t units and, in general, now this quantity is

unknown to the investor at time t. Of course, orders of both types, “to get”,
“to send”, can be used simultaneously. In other words, the investor’s orders
form a G-adapted process [(ηij

t ), (η̃ij
t )] taking values in the set of positive

rectangular matrices Md×2d
+ = Md

+ ×Md
+. The dynamics of the portfolio

processes is given by the formula

∆V̂t = ∆̂B
1

t + ∆̂B
2

t , (2.1)

where the coordinates of ∆̂B
1

t and ∆̂B
2

t are

∆̂B
1,i

t :=
d∑

j=1

[ηji
t − πij

t ηij
t ],

∆̂B
2,i

t :=
d∑

j=1

[η̃ji
t /πji

t − η̃ij
t ].

Let (eij) ∈ Md
+ be a matrix with all zero entries except the entry (i, j)

which is equal to unity. The union of the elementary orders [(eij), 0] and
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[0, (eji)] forms a basis in Md×2d. The execution of the order [(eij), (eji)]
(buying a unit of the jth asset in exchange for the ith asset and then
exchanging it back) leads to a certain loss in the ith position while others
remain unchanged, i.e. ∆V̂ i

t ≤ 0, ∆V̂ j
t = 0, j 6= i. This observation will be

used further, in the analysis of the NAr property.

Example 2. Let us turn back to our basic model which is defined by
a price process S = (St) (describing the evolution of prices of units of
assets in terms of some numéraire, e.g., the euro) and an Md

+-valued process
Λ = (λij

t ) of transaction costs coefficients. This model admits a formulation
in terms of portfolio positions in physical units: one can introduce the matrix
Π by setting

πij
t = (1 + λij

t )Sj
t /Si

t , 1 ≤ i, j ≤ d.

In the full information case the difference between two models is only in
parametrizations: one can introduce in the barter market “money” by tak-
ing as the price process S an arbitrary one evolving in the duals to the
solvency cones and non-vanishing and defining λij

t from the above relations.
On the other hand, from the perspective of partial information, the setting
based on price quotes is more flexible and provides a wider range of possible
generalizations.

Again, assume that the investor’s information is described by a smaller
filtration G while S and Λ are F-adapted (note that these processes may
be adapted with respect to different filtrations).

In contrast to the barter market, the investor now may communicate
orders of four types: in addition to the orders (ηij

t ) and (η̃ij
t ) one can imag-

ine also similar orders, “to get”, “to send”, but expressed in units of the
numéraire and given by G-adapted matrix-valued processes (αij

t ) and (α̃ij
t )

with positive components. The entry αij
t is the increment of value in the

position j due to diminishing the position i, while the entry α̃ij
t is a value

of the ith asset ordered to be exchanged for the jth asset.
The dynamics of value processes in such a model, in physical units, is

given by the formula

∆V̂t = ∆̂B
1

t + ∆̂B
2

t + ∆̂B
3

t + ∆̂B
4

t , (2.2)

where ∆̂B
3,i

t := ∆B3,i
t /Si

t , ∆̂B
4,i

t := ∆B4,i
t /Si

t with

∆B3,i
t :=

d∑

j=1

αji
t −

d∑

j=1

(1 + λij
t )αij

t ,

∆B4,i
t :=

d∑

j=1

α̃ji
t

1 + λji
t

−
d∑

j=1

α̃ij
t .

Of course, in this case the dynamics can be expressed also in values, that is
in units of the numéraire (using the relation Xi = X̂iSi).
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Thus, in both cases the set of “results” (for portfolios with zero initial
endowments) consists of the d-dimensional random variables

ξ =
T∑

t=0

Ltζt, ζt ∈ Ot := L0(Md×m
+ ,Gt), (2.3)

where m is either 2d or 4d and Lω,t : Md×m → Rd are linear operators
such that the mappings ω 7→ Lω,t are measurable with respect to the σ-
algebra Ft. We shall denote this set R̂T or, when needed, R̂T (L) to show
the dependence on the defining operator-valued random process. As usual,
we define the set of hedgeable claims ÂT (L) := R̂T (L)− L0(Rd

+).
Let us associate with the random linear operator Lt (acting on elements

of Md×m) the linear operator Lt acting on Md×m-valued random variables,
Lt : L0(Md×m,Gt) → L0(Rd,Ft), by setting (Ltζ)(ω) = Lω,tζ(ω). With
this notation,

R̂T =
T∑

t=0

Lt(Ot).

Sometimes, it is convenient to view Md×m as the set of linear operators
defined by the corresponding matrices.

Unlike the case of a frictionless market the set R̂T , in general, is not
closed even for models with full information: see Example 1.3 in [2] (due to
M. Ràsonyi) where the set R̂1 = Â1 is not closed though the NAw-condition
is satisfied. However, as in the case of models with full information, we have
the following result. We comment on its proof in the subsequent remark.

Proposition 2.1 The sets Lt(Ot) are closed in probability.

Proof. The arguments being standard, we only sketch them. In a slightly
more general setting, consider a sequence of random vectors ζn =

∑N
i=1 cn

i gi

in a finite-dimensional Euclidean space where gi are G-measurable random
vectors and cn

i ∈ L0
+(G). Let L be an F-measurable random linear operator.

Knowing that the sequence ξn = Lζn converges to ξ, we want to show
that ξ = Lζ for some ζ =

∑N
i=1 cigi. Supposing that the result holds for

N − 1 (for N = 1 it is obvious), we extend it to N . Indeed, it is easy to
see, recalling the lemma on random subsequences1, that we may assume
without loss of generality that all sequences cn

i converge to infinity and,
moreover, the normalized sequences c̃n

i := cn
i /|cn|, where |cn| is the sum

of cn
i , converge to some G-measurable random variables c̃i. For the random

vector ζ̃ :=
∑N

i=1 c̃igi we have that Lζ̃ = 0. Put αn := mini{cn
i /c̃i : c̃i > 0}.

Note that c̄n
i := cn

i −αnc̃i ≥ 0 and, for each ω, at least one of c̄n
i (ω) vanishes.

For ζ̄n =
∑N

i=1 c̄n
i gi we have that Lζ̄n also tends to ξ. Considering the

partition of Ω by disjoint G-measurable subsets Γi constructed from the
1 For any sequence of Rd-valued random variables {ηn} with lim infn |ηn| < ∞

one can find a sequence of random variables {η′n} such that {η′n(ω)} is a convergent
subsequence of {ηn(ω)} for almost all ω, see [6].
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covering of Ω by sets {lim infn c̄n
i = 0} and replacing on Γi the coefficients

c̄n
i by zero (without affecting the limit ξ), we obtain a reduction to the case

with N − 1 generators. 2

Remark 2.1 We give the above assertion by methodological reasons, as a
case study explaining the basic ideas and techniques. Though, formally,
this result of independent interest will not be used in the sequel we recom-
mend to the reader to make efforts to understand its proof. Its first idea
is that we can consider a G-measurable partition of Ω and prove the result
separately for each elements of the partition. That is why we start with
a two-element partition Ω0, Ωc

0 such that on Ω0 the result is obvious be-
cause, by virtue of the lemma on subsequences we can replace the initial
sequence cn by a convergent one defining the required representation for the
limit. On Ωc

0 we can normalize the sequence and, using again the lemma
on subsequences, obtain an identity which allows us to reduce the dimen-
sionality of the problem (the number of generators in the considered case).
The dimension reduction, resembling the Gauss algorithm of solving linear
systems, can be done separately on elements of a subpartition. This type of
reasoning, explained in details in [6], was used repeatedly in many proofs,
and became standard. For multiperiod results the Gauss-type algorithm is
imbedded in an induction in the number of periods and looks more involved
but the principle remains the same. That is why we opt to present it in the
case of a one-step assertion.

3 No Arbitrage Criteria: Finite Ω

The definition of the NAw-property remains the same as in the model with
full information: R̂T ∩ L0(Rd

+,FT ) = {0} or ÂT ∩ L0(Rd
+,FT ) = {0}.

As always, criteria in the case of finite Ω are easy to establish using the
finite-dimensional separation theorem.

Proposition 3.1 Let Ω be finite. The following conditions are equivalent:
(a) NAw;
(b) there exists Z ∈ M(intRd

+,F) such that E(ZtLtζ|Gt) ≤ 0 for any
ζ ∈ Ot.

Proof. (a) ⇒ (b) Note that ÂT is a finite-dimensional polyhedral (thus,
closed) cone containing −L0(Rd

+). The NAw-property implies that non-
zero elements of L0(Rd

+) can be separated from ÂT in a strict sense. Using
a classical argument, we construct an F-martingale Z = (Zt) with strictly
positive components such that EZT ξ ≤ 0 for every ξ ∈ ÂT . Namely, we can
take ZT equal to the sum of functionals negative on ÂT and strictly positive
on eiIΓ with the summation index Γ running through the family of atoms
of FT and i = 1, 2, ..., d. It follows that E(ZtLtζt) ≤ 0 for any ζt ∈ Ot,
implying the assertion.
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(b) ⇒ (a) This implication is obvious because for ζ admitting the rep-
resentation (2.3) we have that

EZT ξ =
T∑

t=0

E[E(ZtLtζt|Gt)] ≤ 0

and, therefore, ξ cannot be an element of L0(Rd
+,FT ) other than zero.

As we know, even in the case of full information, a straightforward gen-
eralization of the above criterion to an arbitrary Ω fails to be true, see [8],
[2]. To get “satisfactory” theorems one needs either to impose extra assump-
tions, or to modify the concept of absence of arbitrage. We investigate here
an analog of the NAr-condition starting from the simple case when Ω is
finite.

First, we establish a simple lemma which holds in a “very abstract”
setting where the word “premodel” instead of “model” means that we do
not suggest any particular properties of (Lt).

Fix a subset It of Ot. The elements of It will be interpreted later, in a
more specific “financial” framework, as the reversible orders.

We say that the premodel has the NAr-property if the NAw-property
holds for the premodel based on an F-adapted process L′ = (L′t) such that

(i) L′tζ ≥ Ltζ componentwise for every ζ ∈ Ot;
(ii) 1L′tζ 6= 1Ltζ if ζ ∈ Ot \It (i.e. the above inequality is not identity).

Lemma 3.2 Let Ω be finite. If a premodel has the NAr-property, then there
is a process Z ∈M(intRd

+,F) such that E(ZtLtζ|Gt) ≤ 0 for every ζ ∈ Ot

and, if ζ ∈ Ot \ It,
ζI{E(ZtLtζ|Gt)=0} ∈ It. (3.1)

Proof. According to Proposition 3.1 applied to the premodel based on the
process L′ from the definition of NAr there exists Z ∈ M(intRd

+,F) such
that E(ZtL′tζ|Gt) ≤ 0 for any ζ ∈ Ot. Hence, E(ZtLtζ|Gt) ≤ 0 by virtue of
(i). Again by (i) we have, for ζ ∈ Ot \ It, that

ZtL′tζI{E(ZtLtζ|Gt)=0} ≥ ZtLtζI{E(ZtLtζ|Gt)=0}.

If the order ζI{E(ZtLtζ|Gt)=0} is not in It, this inequality is strict on a non-
null set. Thus, taking the expectation, we obtain

EZtL′tζI{E(ZtLtζ|Gt)=0} > 0

which is contradiction. 2

Now we give a precise meaning to the word “model” by imposing an
assumption on the generating process (fulfilled in both our examples) and
specifying the sets It.

Namely, we suppose that in Md×m there is a basis formed by the union
of two families of vectors {fi} and {f̃i}, 1 ≤ i ≤ md/2, belonging to Md×m

+

and such that componentwise

Ltfi + Ltf̃i ≤ 0, (3.2)
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while It is the cone of (matrix-valued) random variables having the form∑
i(ηifi+η̃if̃i) with ηi, η̃i ∈ L0

+(Gt) and such that Lt

∑
i(ηi+η̃i)(fi+f̃i) = 0.

Note that the latter equality implies that Lt(It) ⊆ Lt(Ot) ∩ (−Lt(Ot)).
It is clear that the set It is stable under multiplication by elements of
L0(R+,Gt). This implies that the equality (3.1) for ζ ∈ It always holds (cf.
the formulations of Lemma 3.2 and the theorems below).

The inequality (3.2) means that the elementary transfers in opposite
directions cannot lead to gains. The orders from It, even symmetrized, do
not incur losses.

For the models, in the definition of the NAr the words “premodel” are
replaced by “models”, i.e. we require that the property (3.2) should hold
also for the dominating process L′.

Theorem 3.3 Let Ω be finite. Then the following properties of the model
are equivalent:

(a) NAr;
(b) there is Z ∈ M(intRd

+,F) such that E(ZtLtζ|Gt) ≤ 0 for every
ζ ∈ Ot and, if ζ ∈ Ot,

ζI{E(ZtLtζ|Gt)=0} ∈ It.

Proof. To check the remaining implication (b) ⇒ (a) we put L′tζ := Ltζ−L̄tζ
defining the action of L̄t on the element ζ =

∑
i(ηifi + η̃if̃i) by the formula

L̄tζ :=
∑

i(ηi + η̃i)θi where θi = θi(t) has the components

θk
i := max

{
1
2
[Lt(fi + f̃i)]k,

1
d

E(ZtLtfi|Gt)
E(Zk

t |Gt)
,
1
d

E(ZtLtf̃i|Gt)
E(Zk

t |Gt)

}
.

The values θk
i (t) being negative, the condition (i) holds. The inequality (3.2)

for L′t is obviously fulfilled due to the first term in the definition of θk
i (t).

Now let ζ be an element of Ot \ It. This means that for some k and i the
set

Γ := {(ηi + η̃i)[Lt(fi + f̃i)]k < 0} = {(ηi + η̃i)Zk
t [Lt(fi + f̃i)]k < 0}

is non-null. From elementary properties of conditional expectations it follows
that (ηi+η̃i)E(Zk

t [Lt(fi+f̃i)]k|Gt) < 0 on Γ . The property (ii) holds because
on Γ both E(ZtLtfi|Gt) and E(ZtLtf̃i|Gt) are strictly negative as follows
from the coincidence of sets

{E(ZtLtfi|Gt) < 0} = {E(ZtLtf̃i)|Gt) < 0} = {E(ZtLt(fi + f̃i)|Gt) < 0}

which can be established easily. Indeed, fiI{E(ZtLtfi|Gt)=0} ∈ It and, by
definition of It,

I{E(ZtLtfi|Gt)=0}Ltf̃i = −I{E(ZtLtfi|Gt)=0}Ltfi.



10 Dimitri De Vallière et al.

Multiplying this identity by Zt and taking the conditional expectation with
respect to Gt we get that

I{E(ZtLtfi|Gt)=0}E(ZtLtf̃i|Gt) = 0.

Similarly,
I{E(ZtLtf̃i|Gt)=0}E(ZtLtfi|Gt) = 0.

These two equalities imply the coincidence of sets where the conditional
expectations (always negative) are zero, i.e. the required assertion.

Finally, we check the NAw-property of (L′t) using Proposition 3.1. For
any ζ =

∑
i(ηifi + η̃if̃i) from Ot we have:

E(ZtL′tζ|Gt) = E(ZtLtζ|Gt)− E
( ∑

i

(ηi + η̃i)
d∑

k=1

Zk
t θk

i

∣∣∣Gt

)

≤ E(ZtLtζ|Gt)−
∑

i

ηiE(ZtLtfi|Gt)−
∑

i

η̃iE(ZtLtf̃i|Gt) = 0.

It follows that EZT ξ ≤ 0 for every ξ ∈ R̂T (L′)∩L0(Rd
+), excluding arbitrage

opportunities for the model based on L′.
The theorem is proven. 2

Remark 3.1 One might find it convenient to view Md×m as the set of linear
operators defined by corresponding matrices and consider the adjoint opera-
tors L∗ω,t : Rd → (Md×m)∗. This gives a certain flexibility of notations, e.g.,
the property “E(ZtLtζ|Gt) ≤ 0 for every ζ ∈ Ot” can be formulated as “the
operator E(L∗t Zt|Gt) is negative” (in the sense of partial ordering induced
by Md×m

+ ), the inclusion fi ∈ Ker E(L∗t Zt|Gt) can be written instead of the
equality E(ZtLtfi|Gt) = 0 and so on. However, the current notation has the
advantage of being easier adjustable for more general situation where Lt is
a concave positive homogeneous mapping from Md×m

+ into L0(Rd,Ft).

Remark 3.2 The hypothesis on the structure of invertible claims may not
be fulfilled for Examples 1 and 2. For the investor having access to full in-
formation, the set of all assets can be split into classes of equivalence within
which one can do frictionless transfers though not necessary in one step.
Our assumption means that all transfers within each class are frictionless, a
hypothesis which, as was noted in [8], does not lead to a loss of generality as
a fully informed “intelligent” investor will not lose money making charged
transfers within an equivalence class. However, in the context of restricted
information it seems that such an assumption means that the information
on equivalence classes is available to the investor.

4 No Arbitrage Criteria: Arbitrary Ω

In the general case the assertion of Proposition 3.1 fails to be true though
with a suitable modification its condition (b) remains sufficient for the NAw-
property. Namely, we have:
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Proposition 4.1 The NAw-property holds if there exists Z ∈M(intRd
+,F)

such that all conditional expectations E(|Zt||Ltfi||Gt) and E(|Zt||Ltf̃i||Gt)
are finite and E(ZtLtζ|Gt) ≤ 0 for any ζ ∈ Ot.

This result is an obvious corollary of the following technical lemma deal-
ing with integration issues.

Lemma 4.2 Let ΣT = ZT

∑T
t=0 ξt with Z ∈M(Rd

+,F) and ξt ∈ L0(Rd,Ft)
such that E(|Zt||ξt||Gt) < ∞ and E(Ztξt|Gt) ≤ 0. Put Σ̄T := E(ΣT |GT ). If
Σ̄−

T ∈ L1, then Σ̄T ∈ L1 and EΣ̄T ≤ 0.

Proof. We proceed by induction. The claim is obvious for T = 0. Suppose
that it holds for T − 1. Clearly,

ZT

T−1∑
t=0

ξt = ΣT − ZT ξT .

By the martingale property E(Zi
T |ξt||Gt) = E(Zi

t |ξt||Gt) < ∞ implying
that E(|ZT ||ξt||Gt) < ∞ for any t ≤ T . Thus, Σ̄T is well-defined and finite.
Taking the conditional expectation with respect to GT in the above identity
we get, using the martingale property, that

E(ΣT−1|GT ) = E

(
ZT

T−1∑
t=0

ξt

∣∣∣GT

)
= Σ̄T − E(ZT ξT |GT ) ≥ Σ̄T .

Therefore, the negative part of E(ΣT−1|GT ) is dominated by the negative
part of Σ̄T which is integrable. Using Jensen’s inequality we have:

Σ̄−
T−1 = [E(E(ΣT−1|GT )|GT−1)]−

≤ E([E(ΣT−1|GT )]−|GT−1) ≤ E(Σ̄−
T |GT−1).

Thus, Σ̄−
T−1 ∈ L1 and, by virtue of the induction hypothesis, Σ̄T−1 ∈ L1

and EΣ̄T−1 ≤ 0. In the representation Σ̄T = E(Σ̄T−1|GT ) + E(Σ̄−
T |GT−1)

the first term is integrable and has negative expectation while the second is
negative. Thus, EΣ̄T ≤ 0 and, automatically, EΣ̄+

T < ∞. 2

The NAr-criterion, suitably modified, remains true without any restric-
tion on the probability space. Of course, in its formulation one needs to take
care about the existence of the involved conditional expectations. This can
be done as in the next result.

Theorem 4.3 The following conditions are equivalent:
(a) NAr;
(b) there is Z ∈M(intRd

+,F) such that all random variables E(ZtLtfi|Gt),
E(ZtLtf̃i|Gt) are finite, E(ZtLtζ|Gt) ≤ 0 for every ζ ∈ Ot and, if ζ ∈ Ot,

ζI{E(ZtLtζ|Gt)=0} ∈ It. (4.1)
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We have no trouble with the implication (b) ⇒ (a): an inspection of the
arguments given in the case of finite Ω shows that they work well until the
concluding step which now can be done just by reference to Lemma 4.2.

The proof of the “difficult” implication (a) ⇒ (b) follows the same line
of ideas as in the case of full information.

Lemma 4.4 Suppose that the equality

T∑
t=0

Ltζ̃t − r̃ = 0 (4.2)

with ζ̃t ∈ Ot and r̃t ∈ L0(Rd
+) holds only if ζ̃t ∈ It and r̃ = 0. Then ÂT is

closed in probability.

Proof. For T = 0 the arguments are exactly the same as were used for
Proposition 2.1 with obvious changes caused by the extra term describ-
ing the funds withdrawals. Namely, the difference is that for the limiting
normalized order ζ̃ :=

∑N
i=1 c̃igi we get the equality Lζ̃ − r̃ = 0 where

r̃ ∈ L0(Rd
+,FT ) is the limit of normalized funds withdrawals. By hypothesis,

r̃ = 0 and we can complete the proof using the same Gauss-type reduction
procedure.

Arguing by induction, we suppose that ÂT−1 is closed and consider the
sequence of order processes (ζn

t )t≤T such that
∑T

t=0 Ltζ
n
t −rn → η. There is

an obvious reduction to the case where at least one of ”elementary” orders at
time zero tends to infinity. Normalizing and using the induction hypothesis
we obtain that there exists an order process (ζ̃t)t≤T with nontrivial ζ̃0 such
that

∑T
t=0 Ltζ̃t − r̃ = 0 and we can use the assumption of the lemma. It

ensures that r̃ = 0 and there are ζ ′t ∈ Ot such that Ltζ
′
t = −Ltζ̃t. This allows

us to reduce a number of non-zero coefficients (i.e. ”elementary” orders) at
the initial order by putting, ζ̄n

0 = ζn
0 − αnζ̃0, as in the proof of Proposition

2.1, and ζ̄n
t = ζn

t + αnζ ′t for t ≥ 1. 2

Lemma 4.5 The NAr-condition implies the hypothesis of the above lemma.

Proof. Of course, r̃ = 0 (otherwise, (ζ̃t) is an arbitrage opportunity, i.e. even
NAw is violated). For the process (L′t), from definition of NAr we have that
componentwise

T∑
t=0

L′tζ̃t ≥
T∑

t=0

Ltζ̃t = 0

and 1
∑T

t=0 L′tζ̃t > 0 with strictly positive probability if at least one of ζ̃t

does not belong to It. This means that (ζ̃t) is an arbitrage opportunity for
the model based on (L′t). 2

Lemma 4.6 Assume that the hypothesis of Lemma 4.4 holds. Then for
any “elementary” order f and every t ≤ T one can find a bounded process
Z = Z(t,f) ∈M(intRd

+,F) such that:
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1) E(|Zs||Lsg|) < ∞ and E(ZsLsg|Gs) ≤ 0 for all s ≤ T and all “ele-
mentary” orders g,

2) fI{E(ZtLtf |Gt)=0} ∈ It.

Proof. We may assume without loss of generality that all portfolio incre-
ments Lsg corresponding to the elementary orders g are integrable (other-
wise we can pass to an equivalent measure P ′ with the bounded density ρ,
find the process Z ′ with the needed properties under P ′ and take Z = ρZ̃ ′).

Let Z be the set of all bounded processes Z ∈ M(Rd
+,F) such that

EZT ξ ≤ 0 whenever is ξ ∈ Â1
T := ÂT ∩ L1. Let

ct := sup
Z∈Z

P (E(ZtLtf |Gt) < 0). (4.3)

Let Z be an element for which the supremum is attained (one can take as Z
a countable convex combination of any uniformly bounded sequence along
which the supremum is attained).

If 2) fails, then the random vector Lt(f + f̃)I{E(ZtLtf |Gt)=0} (all com-
ponents of which are negative) is not zero. This implies that the element
−Ltf̃ I{E(ZtLtf |Gt)=0} does not belong to Â1

T . Indeed, in the opposite case
we would have the identity

T∑
s=0

Lsζs = −Ltf̃ I{E(ZtLtf |Gt)=0}.

The assumption of Lemma 4.4 ensures that the order f̃ I{E(ZtLtf |Gt)=0}+ ζt

is in It. Thus, for the symmetrized order we have that

Lt(f + f̃)I{E(ZtLtf |Gt)=0} + Lt(ζ + ζ̃) = 0.

Since the second term is also negative componentwise, both should be equal
to zero and we get a contradiction.

By the Hahn–Banach theorem one can separate ϕ := −Ltf̃ I{E(ZtLtf |Gt)=0}
and Â1

T : that is we may find η ∈ L∞(Rd) such that

sup
ξ∈Â1

T

Eηξ < Eηϕ.

Since Â1
T is a cone containing −L1(Rd

+) the supremum above is equal to
zero, η ∈ L1(Rd

+) and Eηϕ > 0. The latter inequality implies that for
Zη

t = E(η|Gt) we have EE(Zη
t Ltf |Gt)I{E(ZtLtf |Gt)=0} < 0. Therefore, for

the martingale Z ′ := Z + Zη we have that

P
(
E(Z ′tLtf |Gt) < 0

)
> P

(
E(ZtLtf |Gt) < 0

)
= ct.

This contradiction shows that 2) holds.
The process Z constructed in this way may be not in M(intRd

+,F).
However, it can be easily “improved” to meet the latter property. To this
end, fix i ≤ d and consider, in the subset of Z on which the supremum ct
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in (4.3) is attained, a process Z with maximal probability P (Zi
T > 0) (such

process does exist). Then P (Z̄i
T > 0) = 1. Indeed, in the opposite case, the

element eiI{Zi
T

=0} ∈ L1(Rd
+) is not zero and, therefore, does not belong to

Â1
T . So it can be separated from the latter set. The separating functional

generates a martingale Z ′ ∈ Z. Since P (Z̄T + Z ′T > 0) > P (Z̄T > 0), we
arrive to a contradiction with the definition of Z̄. The set of Z ∈ Z satisfying
1) and 2) is convex and, hence, a convex combination of d processes obtained
in this way for each coordinate has the required properties. 2

The implication (a) ⇒ (b) of the theorem follows from the lemmas above.
Indeed, by virtue of Lemmas 4.5 – 4.6, NAr ensures the existence of pro-
cesses Z(t,f) satisfying 1) and 2) of Lemma 4.6. One can take as a required
martingale Z the process Z :=

∑
t,f Z(t,f) where t = 0, 1, ..., T and f runs

through the set of “elementary” orders. An arbitrary order ζ ∈ Ot is a linear
combination of elementary orders with positive Gt measurable coefficients.
The condition E(ZtLtζ|Gt) ≤ 0 follows from the property 1) of Lemma
4.6. To prove the inclusion (4.1) we note that I{Σξi=0} =

∏
I{ξi=0} when

ξi ≤ 0. With this observation the required inclusion is an easy corollary of
the property 2) of Lemma 4.6 and the stability of It under multiplication
by positive Gt-measurable random variables.

Remark 4.1 In the above proof we get from NAr a condition which looks
stronger than (b), with bounded Z and integrable random variables |Zt||Ltf |,
but, in fact, it is equivalent to (b).

5 Hedging Theorem

Thanks to the previous development, hedging theorems in the model with
partial information do not require new ideas. For the case of finite Ω the
result can be formulated in our “very abstract” setting without additional
assumptions on the structure of the sets It.

We fix a d-dimensional random variable Ĉ, the contingent claim ex-
pressed in physical units. Define the set

Γ = {v ∈ Rd : Ĉ ∈ v + ÂT }.

Let Z be the set of martingales Z ∈MT (Rd
+,F) such that E(ZtLtζt|Gt) ≤ 0

for every ζt ∈ Ot. Put

D :=
{

v ∈ Rd : sup
Z∈Z

E(ZT Ĉ − Z0v) ≤ 0
}

.

Proposition 5.1 Let Ω be finite and Z 6= ∅. Then Γ = D.

In this theorem the inclusion Γ ⊆ D is obvious while the reverse inclusion
is an easy exercise on the finite-dimensional separation theorem. We leave
it to the reader.
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In the case of general Ω we should take care about integrability and
closedness of the set ÂT . To this end we shall work with the model in
the “narrow” sense of the preceding sections assuming the NAr-property.
Now Z is the set of bounded martingales Z ∈ MT (Rd

+,F) such that
E(ZtLtfi|Gt), E(ZtLtf̃i|Gt) are finite, E(ZtLtζ|Gt) ≤ 0 and E(ZT Ĉ)− < ∞.
The definitions of the sets Γ and D remain the same.

Theorem 5.2 Suppose that NAr holds. Then Γ = D.

Proof. The inclusion Γ ⊆ D follows from the inequality

ZT (Ĉ − v) ≤ ZT

T∑
t=0

Ltζt, ζt ∈ Ot,

and Lemma 4.2.
To check the inclusion D ⊆ Γ we take a point v /∈ Γ and show that

v /∈ D. It is sufficient to find Z ∈ Z such that Z0v < EZT Ĉ. Consider a
measure P̃ ∼ P with bounded density ρ such that Ĉ, and all |Lt||fi| and
|Lt||fi| belong to L1(P̃ ). Under NAr the convex set Ã1 := AT

0 ∩ L1(P̃ ) is
closed and does not contain the point Ĉ − v. Thus, we can separate the
latter by a functional η from L∞. This means that

sup
ξ∈Ã1

Eρηξ < Eηρ(Ĉ − v).

It is clear, that the bounded martingale Zt := E(ρη|Ft) satisfies the required
properties. 2
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