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1 Introduction.

The classical Dalang–Morton–Willinger theorem [2] says that in the standard dis-
crete time finite-horizon model of a frictionless financial market there are no ar-
bitrage opportunities if and only if there exists an equivalent martingale measure
with bounded density. In the probabilistic language this theorem can be formulated
as follows.

We are given an Rd+1-valued adapted process S̄ = (S0
t , St) = (S0

t , S1
t , ..., Sd

t )
where t = 0, 1, ..., T .

With any Rd+1-valued adapted process ϕ̄ = (ϕ0
t , ϕt) with ϕ̄0 = 0 we asso-

ciate the scalar process Vt = ϕ̄tS̄t = ϕ0
t S

0
t +ϕtSt. In financial modelling S̄ is the

price process, ϕ̄ is the strategy, representing holdings in various assets (in nominal
units), and V is the corresponding value process of the portfolio.

For a specified class K of strategies we define the set of random variables
RK

T := {ϕ̄T S̄T : ϕ̄ ∈ K}. We shall say that the NA(K)-property holds if
RK

T ∩ L0
+ = {0}.
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In the standard model S0
t = 1 identically, i.e. the corresponding asset (usu-

ally called bank account) is the numéraire, and K is the class of self-financing
strategies described as follows: the process ϕ̄ is predictable (in symbols: ϕ̄ ∈ P)
and

∆ϕ0
t + St−1∆ϕt = 0, t = 1, ..., T, (1)

with the usual definition ∆Xt = Xt − Xt−1. The above relation can be written
also as S̄t−1∆ϕ̄t = 0. Thus, by the product formula, for the strategies from this
class we have

∆(S̄tϕ̄t) = S̄t−1∆ϕ̄t + ϕ̄t∆S̄t = ϕt∆St

and, therefore, RK
T = RT := {ϕ · ST : ϕ ∈ P}, i.e. the set of the resulting

random variables is just the set of discrete time integrals ϕ · ST :=
∑T

t=1 ϕt∆St

where ϕ is an arbitrary d-dimensional predictable process without any constraints.
With this AT := RT − L0

+ is the set of hedgeable claims. We consider also the
subset RT (t) of RT corresponding to strategies which are zero except the date t,
that is RT (t) = {ϕt∆St : ϕt ∈ Ft−1}. The notation AT (t) is clear.

The condition RT ∩L0
+ = 0 (obviously equivalent to AT ∩L0

+ = 0) is referred
to as the NA-property.

The introduced concepts serve to model the situation when an agent revise the
portfolio between the trading days t− 1 and t using the information available (ϕt

is Ft−1-measurable) without retracting or adding funds (the relation (1) is a “fund
conservation law”); in this case, RK

T is the set of all possible “results” achieved
from zero initial endowment and absence of non-risky profits corresponds to the
absence of arbitrage opportunities on the market.

The extended formulation of the Dalang–Morton–Willinger theorem is a long
list of equivalent conditions but we retain only four here:

(a) AT ∩ L0
+ = {0} (NA);

(b) AT ∩ L0
+ = {0} and AT = ĀT (closure in probability);

(c) AT (t) ∩ L0
+ = {0} for all t ≤ T (NA for all one-step models);

(d) there is a probability measure P̃ ∼ P with dP̃/dP ∈ L∞ such that S is a
P̃ -martingale.

The DMW theorem is widely recognized as one of the most important results
in the arbitrage pricing theory and we have no need to discuss its various aspects.
It is a (deep!) generalization of the pioneering Harrison–Pliska theorem which has
exactly the same formulation but under hypothesis that Ω is finite. Of course, in
the latter case the property (b) coincides with (a) (AT is polyhedral cone) and (d)
sounds simpler as all random variables are bounded.

These result are the starting points of intensive mathematical studies and their
numerous generalizations and ramifications are known, see, e.g. the survey [6]
with further references therein and more recent papers [3], [4], [5], [7], [9], [10].
In the present note we make an attempt to explore relationships between possible
versions of the above conditions in the setting of random fields. To our knowledge,
the syntheses of both theories is not done yet.

A specific feature of random fields is that there are several rather natural defini-
tions of the “past” and consequently, several definitions of the martingale property.
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We shall investigate analogs of NA criteria in the standard framework of Cairoli–
Walsh, using an appropriate techniques which sometimes is quite different from
that of one-parameter processes.

First, recall the basic definitions.
Let (Ω,F , (Ft)t∈T, P ) be a stochastic basis where T stands for the rectan-

gle [0,T] := {0, 1, ..., T1} × {0, 1, ..., T2} of the integer lattice Z2; the notation
]0,T] := {1, ..., T1} × {1, ..., T2} also will be used. We shall suppose that the
σ-algebras of the axes are trivial: Fi0 = F0k = {∅, Ω}.

Put i := (1, 0), j := (0, 1), and 1 := i + j = (1, 1).
Let X = (Xt)t∈T be a random field. We shall use the following notations:

∆1Xt := Xt−Xt−i, ∆2Xt := Xt−Xt−j, ∆Xt = Xt−Xt−i−Xt−j+Xt−1.

Also X−i := (Xt−i) and, in the same spirit, X−j, X−1.
Clearly, knowing the field X on the axes as well as the elementary ”areas”

∆Xt, one can recover X on the whole rectangle T.
Define the σ-algebras F̂t := Ft+i ∨ Ft+j and also F̃1

t := Ft1,T2 ∨ Ft+i,
F̃2

t := Ft+j ∨ FT1,t2 (the parentheses in subscripts are omitted).

Definition 1 An integrable adapted field X constant on the coordinate axes is
called:

1) strong martingale if E(∆Xt|F̂t−1) = 0;
2) weak martingale if E(∆Xt|Ft−1) = 0;
31) 1-martingale if E(∆Xt|Ft−i) = 0;
32) 2-martingale if E(∆Xt|Ft−j) = 0.

Definition 2 The filtration (Ft) satisfies the Cairoli–Walsh condition (F4 of [1]) if
for any F-measurable integrable random variable Z and for any t = (t1, t2) ∈ T

E(E(Z|Ft1,T2)|FT1,t2) = E(E(Z|FT1,t2)|Ft1,T2) = E(Z|Ft1,t2).

Definition 3 We say that a random field H is:
1) weakly predictable if Ht+1 ∈ F̂t, t + 1 ∈ T;
2) predictable if Ht+1 ∈ Ft, t + 1 ∈ T.

Let X and Y be two random fields constant on the coordinate axes. We define
two lattice integrals as

X · Yt :=
∑

s∈]0,t]

Xs∆Ys, X ∗ Yt :=
∑

s∈]0,t]

[∆2Xs−i∆
1Ys + ∆1Xs−j∆

2Ys]

with the convention that they are equal to zero when t belongs to the axes. It is
easy to see that ∆(X · Y )t = Xt∆Yt and the following product formula holds:

XtYt = X−1 · Yt + X ∗ Yt + Y ·Xt. (2)

We fix an Rd-valued adapted random field S which components on the co-
ordinate axes are equal to the unit and put S̄ := (1, S), i.e. we add to S one
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more component identically equal to the unit everywhere. With any Rd+1-valued
adapted random field ϕ̄ = (ϕ0, ϕ) we associate a scalar field

Vt = ϕ̄tS̄t = ϕ0
t + ϕtSt.

By analogy with the one-parameter case we shall call strategy the field ϕ̄ vanishing
on the axes and V its value field.

For a class K of strategies define the set of random variables

RK
T := {ϕ̄TS̄T : ϕ̄ ∈ K}.

We say that the NA(K)-property holds if RK
T ∩ L0

+ = {0}, or, equivalently,
AK

T ∩ L0
+ = {0} with AK

T = RK
T − L0

+.

2 Strong martingale, weakly predictable strategies

We say that a weakly predictable strategy ϕ̄ satisfies the strong SF-property if

S̄t−1∆ϕ̄t + ∆2S̄t−i∆
1ϕ̄t + ∆1S̄t−j∆

2ϕ̄t = 0 ∀ t. (3)

This relation plays the role of (1): in this case from the product formula (2) we
have that Vt = ϕ · St for all t ∈ T.

In this section we fix as K the class of weakly predictable strategies satisfying
the strong SF-property abbreviated as SSF .

It is easily seen that if ϕ is a weakly predictable d-dimensional field, then it
is the component of a certain strategy ϕ̄ = (ϕ0, ϕ) from SSF . Indeed, suppose
that ϕ̄ is already known outside of the rectangle [t,T]. We use the self-financing
condition (3) to define ϕ0

t ∈ F̂t−1 and get that

ϕ0
t = ϕ0

t−i + ϕ0
t−j − ϕ0

t−1 − St−1∆ϕt −∆2St−i∆
1ϕt −∆1St−j∆

2ϕt.

Let us consider the point t+ i. Since ϕ̄ is already defined at the “preceding” points
t, t + i − j, t + i − 1 and ϕt+i is known, the relation (3) corresponding to the
point t + i serves as an equation to define the remaining component ϕ0

t+i. These
arguments can be repeated also for t+2i, t+3i, and so on, allowing us to define the
SSF-strategy ϕ̄ outside of the rectangle [t+ j,T]. By symmetry, we have the same
recurrent structure along the y-axis. As a result, we obtain the weakly predictable
strategy ϕ̄ satisfying the strong SF-property on the whole rectangle [0,T].

Since the d-dimensional weakly predictable field ϕ can be chosen arbitrarily,
we have the following

Proposition 1 Assume that the NA(SSF )-property holds. Let α ∈ F̂t−1 and
α∆St ≥ 0. Then α∆St = 0.

Remark 1. Note that this does not require any additional assumption on the fil-
tration and the probability space. In particularly, we do not use the Cairoli–Walsh
condition.

The next result is an analog of the Harrison–Pliska theorem and its proof is
exactly the same as the latter.
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Proposition 2 Let Ω be finite. Then the following conditions are equivalent:
(a) the NA(SSF )-property holds;
(b) there exists a probability measure P̃ ∼ P such that S is a strong martingale

with respect to P̃ .

Proposition 1 asserts that the NA(SSF )-property implies the NA(SSF )-
property for the increments (i.e., for all “one-step models”). Surprisingly, the in-
verse implication fails to be true. We present an example where the NA property
does not hold though there is no-arbitrage for the increments, i.e. the situation is
similar to the observed already in models with restricted information, [8].
Example. It is very simple: the field S is one-dimensional, T1 = T2 = 2, and the
probability space consists only of five points. The filtration is natural. The values
of the field are given by the following table:

S11 S12 S21 S22

ω1 5/ 6 1/ 2 5/ 3 4/3
ω2 5/ 6 2/ 3 7/ 6 1
ω3 5/ 6 4/ 3 1/ 2 1
ω4 7/ 6 1 7/ 6 1
ω5 7/ 6 4/ 3 7/ 6 4/ 3

Recall that S equals 1 on the axes. Note that the values of S2
22 are chosen to

get the identity ∆S2
22 = 0, that is S2

22 = S2
12 + S2

21 − S2
11.

Let us show that the constant strategy ϕ̄ = (−1, 1) (obviously, weakly pre-
dictable and strongly SF) is an arbitrage opportunity in our sense.

We have V22 = ϕ̄22S̄22 = ϕ22S22 − 1 and, hence,

V22(ω1) = V22(ω5) =
1
3
, V22(ω2) = V22(ω3) = V22(ω4) = 0.

It remains to verify that for each point t = (1, 2), t = (2, 1), and t = (2, 2)
the relation α∆St ≥ 0 with α ∈ F̂t−1 may hold only if α∆St = 0.

Note that F̂00 = F00, F̂10 = F11, F̂01 = F11,
4S11 = S11 − S00, 4S21 = S21 − S11, 4S12 = S12 − S11.
We want to prove that for α ∈ F00, β ∈ F11, γ ∈ F11 the inequalities

α(S11 − S00) ≥ 0, β(S21 − S11) ≥ 0, γ(S12 − S11) ≥ 0,

may hold only as the equalities

α(S11 − S00) = 0, β(S21 − S11) = 0, γ(S12 − S11) = 0.

But this is obvious: on each atom the increments take values of different signs.

The next proposition is a technical one. It deals with the case of SSF -strategies
measurable with respect to a wider σ-algebra.

Proposition 3 Let K be the class of d-dimensional fields ϕ = (ϕt) such that
ϕt ∈ F̃1

t−1. Then the following conditions are equivalent:
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(i) AK
T ∩ L0

+ = {0};
(ii) AK

T ∩ L0
+ = {0}, AK

T = ĀK
T ;

(iii) The relation α∆St ≥ 0 for t ∈ T and α ∈ F̃1
t−1 may hold only if α∆St = 0;

(iv) There exists a probability measure P̃ ∼ P with dP̃/dP ∈ L∞ such that
∆St ∈ L1(P̃ ) and Ẽ(∆St|F̃1

t−1) = 0 for all t ∈ T (i.e. S is a strong martin-
gale with respect to the filtration (F̃1

t ) and P̃ ).

This result is easily reduced to the DMW-theorem. To see this we define the
bijection L of ]0,T] onto the set {1, 2, ..., T1T2} by the formula

L : t 7→ (t1 − 1)T2 + t2.

The one-parametric process Wn :=
∑

k≤n ξk where ξk = ∆SL−1k is adapted with
respect to the filtration formed by the σ-algebras Fn := F̃1

L−1n. The conditions of
the above proposition are those of the DMW-theorem for W .

3 Weak martingales, predictable strategies

We say that a predictable strategy ϕ̄ satisfies the weak SF-property if

S̄t−1∆ϕ̄t = 0 ∀ t. (4)

In this case the value field is given by the formula

Vt = ϕ̄ · S̄t + ϕ̄ ∗ S̄t.

For the no-arbitrage property in this case we shall use the notation NA(WSF). The
latter implies the no-arbitrage property for he increments. Namely, we have

Proposition 4 Assume that the NA(WSF)-property holds. Let α ∈ Ft−1 be such
that α∆St ≥ 0. Then α∆St = 0.

Proof Suppose that the claim fails and there is α ∈ Ft−1 such that the probability
P (α∆St > 0) is strictly positive. We come to a contradiction by constructing a
predictable strategy ϕ̄ satisfying (4) and such that VT = ϕ̄TS̄T = α∆St. The ϕ-
component of ϕ̄ will be zero except the point t where it coincides with−α. To this
aim, we put ϕ̄ equal to zero outside of [t,T]. We use the self-financing condition
(4) to define ϕ0

t and get that

ϕ0
t = αSt−1 ∈ Ft−1.

Let us consider the point t + i. Since that ϕ̄ is already defined at the points t ,
t + i− j , t + i− 1 and we have ϕt+i = 0, the relation (4) corresponding to the
point t + i takes the form:

ϕ0
t+i − ϕ0

t + St−j∆ϕt+i = 0

which suggests us to define

ϕ0
t+i = −α(St−j − St−1) = −α∆1St−j ∈ Ft−j.
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Similar observations for the point t + j lead us to define

ϕ0
t+j = −α(St−i − St−1) = −α∆2St−i ∈ Ft−i.

Next we consider the condition (4) at the point t + 1. We get

∆ϕ0
t+1 + St∆ϕt+1 = 0,

or
ϕ0

t+1 − ϕ0
t+j − ϕ0

t+1 + ϕ0
t + Stϕt = 0,

With the already defined values of the strategy ϕ, we come to the following ex-
pression for ϕ0

t+1:
ϕ0

t+1 = α∆St ∈ Ft.

Now with such a strategy ϕ we get at the point t + 1 the following expression for
the value field

Vt+1 = ϕ̄t+1S̄t+1 = α∆St.

It is left to finalize our construction by setting

ϕ0
t+mi = ϕ0

t+i, m = 2, . . . , T1 − t1,

ϕ0
t+mj = ϕ0

t+j, m = 2, . . . , T2 − t2,

and
ϕ0

t+mi+lj = ϕ0
t+1, m = 2, . . . , T1 − t1, l = 2, . . . , T2 − t2.

In such a way we obtain a predictable strategy satisfying WSF-property such that
VT = ϕ̄TS̄T = α∆St. Since α∆St 6= 0 we obtain an arbitrage opportunity, that
is the contradiction. 2

Remark 2. The same example as in the previous section demonstrates that the
inverse implication is not true.

Introduce the notations: t1
T := (T1, t2), t2

T := (t1, T2), and Z := dP̃ /dP .

Proposition 5 (a) Suppose that there exists a measure P̃ ∼ P with Z ∈ L∞ such
that S is a weak P̃ -martingale and the Cairoli–Walsh commutation condition is
fulfilled for P̃ . Then the inequality

∑

t∈[0,T−1]

αtE(∆St+1ξt|Ft+i) ≥ 0

with αt ∈ Ft2T
and ξt = Z/E(Z|Ft+i) may hold only as the equality.

(b) Suppose that the inequality
∑

t∈[0,T−1]

αtE(∆St+1|Ft+i) ≥ 0

with αt ∈ Ft2T
may hold only as the equality. Then there is P̃ ∼ P with Z ∈ L∞

such that Ẽ(E(∆St+1|Ft+i)|Ft2T
) = 0 for all t ∈ [0, T − 1]. If, in addition,

the Cairoli–Walsh condition is fulfilled for P̃ , then Ẽ(∆St+1ξ̂t|Ft) = 0, where
ξ̂t = Z−1/E(Z−1|Ft+i).
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Proof (a) We have that Ẽ(∆St+1|Ft)0. Thus, for any αt ∈ Ft2T
we get, taking

into account the Cairoli–Walsh, that

Ẽ


 ∑

t∈[0,T−1]

αtẼ(∆St+1|Ft+i)
∣∣∣Ft2T


 = 0.

The proof follows now immediately from DMW theorem and the identity

Ẽ(∆St+1|Ft+i) = E(∆St+1ξt|Ft+i).

(b) We have, in particular, that the inequality
∑

t∈[0,T−1]

αtE(∆St+1|Ft+i) ≥ 0

with αt ∈ Ft2T
may hold only as the equality. In this case DMW theorem guaran-

tees that there exists P̃ ∼ P with Z ∈ L∞ such that
∑

t∈[0,T−1]

αtẼ(E(∆St+1|Ft+i)|Ft2T
) = 0.

The last step is obvious.
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