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1 Introduction

We consider here a consumption–investment decision problem for a single
“small” economic agent which can be viewed as a firm having production
and financial arms. The initial endowment is in both assets. The problem is
to maximize the total expected utility of the consumption rate over a finite
time interval [0, T ] investing into the production as well as in the financial
assets. It is assumed that the agent has an access to a frictionless security
market with d + 1 assets, one of which is riskless and the others are risky.
The market model is fairly standard: it is of the same type as in Karatzas et
al. [9], see also Cox and Huang [4] and the expository paper [8]. Allocating
the resources, the agent may invest funds into m production assets. This type
of assets has features different from that of financial assets in the following
two points. The investments into the manufacturing arm are irreversible. The
profit flow from the production at time t is R(t,Kt) where Kt = (K1

t , ...,Km
t )

is the capital accumulation. The latter subjects random depreciations and,
eventually, fluctuations due to external factors. The production assets cannot
be cashed back before the terminal date T when the production arm can be
sold at the price Q(KT ). A similar problem was considered by Hirayama and
Kijima in [7].

The agent in this model may be an owner of a small firm that produced
some production goods. The consumption in this case can be interpreted as
the dividend flow from the firm. The owner does not want to sell the business,
since the ownership for him is very important (this is rather typical, especially,
in such country as Japan). The role of the owner is to maximize the total utility
from dividend. To do so, the owner may want to invest the limited fund in the
production assets as much as possible to earn higher profits. But, since there
is a financial market, he may also allocate a part of his wealth in securities.
The problem for the owner is to decide portfolio strategy, dividend strategy,
and production strategy so as to maximize the objective.

As we mentioned already, without the production arm, our model is
reduced to the mainstream continuous-time portfolio optimization problem
started in the famous papers by Merton [14], [15] and developed further in
numerous publications (see, e.g., [4], [8], [9], [10], [16] and references therein).
Production models were considered in [13] but without financial investments
while the equilibrium approach to production economies was discussed in [18].
In real economies, firms invest their surplus funds in financial assets. It seems
of interest to study optimal strategies in this more general context.

In our presentation we try to avoid technicalities. That is why we work with
the easily treated hypotheses, preferring, e.g., the boundedness assumption on
coefficients to that of integrability. Our main message is that for the linear
model with concave utility and production functions the problem can be split
into two separate stages. First, the optimal production investment process
Io = (Io

t ) can be found independently of the other counterparts of the optimal
control as the optimal solution of a certain auxiliary control problem. Finding
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Io, we have to solve, as the second stage, a classical portfolio problem which,
as well-known, consists itself of two separate parts: a search for the optimal
consumption and a search for the optimal investment (that is why we can say
also that the whole problem has three stages).

This separation principle is our main contribution. We investigate the ex-
istence of the optimal solution for the auxiliary problem and derive necessary
and sufficient conditions of optimality in the form of the Bismut maximum
principle.

We investigate in more details a particular case of the model where the pro-
duction block is not directly influenced by random perturbations. In this case
the first stage is a deterministic control problem, still interesting, which can be
analyzed on the basis of the Pontryagin maximum principle. We give examples
where the optimal production policy is of the bang–bang type. We provide
also an example showing that in a long-run the optimal production trajecto-
ries follow a “turnpike”. This means that there exists a function, independent
on the initial endowment and the terminal (liquidation) cost, with which the
optimal production trajectory coincides except its first part (depending on
the “starting point”) and its final part (depending on the “destination”, i.e.
of the terminal cost functional).

We use vector notations; in particular, xy stands for the scalar product
and diag x denotes the diagonal operator corresponding to the vector x.

2 Model Description

We shall work in the standard probabilistic framework assuming that the
stochastic basis (Ω,F ,F = (Ft), P ) is fixed and the filtration is spanned by a
d-dimensional Wiener process W . The time horizon T is finite.

First, we describe the production arm of the firm. It disposes m assets and
if K ∈ Rm

+ is a vector of values of these assets, the rate of the profit flow at
time t is R(t,K). The production asset i is depreciated with the rate λi which
is, in general, a non-negative bounded predictable process. Its value also may
fluctuate due to external factors. The capital accumulation evolves according
to the stochastic differential equations

dKi
t = (Ii

t − λi
tK

i
t)dt + Ki

tdLi
t, Ki

0 = ki, (1)

where L is a martingale with

dLi
t =

d∑

j=1

σij
t dW j

t , i ≤ m,

for some bounded predictable matrix-valued process σ.
The investments are assumed to be irreversible, i.e. the capital accumula-

tion may decrease only by depreciation and by random fluctuations (if σ = 0,
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the latter are not taken into account). The production strategy I is a pre-
dictable process with values in a compact convex subset Γ of Rm

+ . It follows
(by a standard arguments based on the Gronwall–Bellman lemma) that the
sup norm of the capital accumulation process are bounded by a square inte-
grable random variable.

The production assets cannot be sold before T , but they can be liquidated
at the price Q(KT ) at the terminal date. It is natural to assume that in the
variable K the functions R and Q are concave and increasing (component-
wise).

Since the concave function is dominated by a linear one, the family of
random variables Q(KT ), K is a capital accumulation process, is dominated
by a random variable from L2. The same property holds for the family of
random variables

∫ T

0
R(s,Ks)ds when

R(s,K) ≤ f(s)(1 + lK),

where l ∈ Rm and f is a function integrable on the interval [0, 1]; we assume
that this condition is always fulfilled.

Thus, our set of assumptions ensures the following important property:

∫ T

0

R(s,Ks)ds + Q(KT ) ≤ ζ ∈ L2. (2)

The agent also has an access to a frictionless financial market of the Black–
Scholes type with d+1 securities. One of them is non-risky (“bond” or “bank
account”) and has the price evolving as

dP 0
t

P 0
t

= rtdt, P 0
0 = p0 = 1. (3)

For simplicity, mainly, notational, we suppose from the very beginning that
r = 0, i.e. bond is the numéraire and all investments are measured in its units.

The prices of remaining assets, (risky) stocks, are modelled by the stochas-
tic equations

dP i
t

P i
t

= bi
tdt + dM i

t , P i
0 = pi, (4)

where M is a square integrable martingale generating our basic filtration F
(of the Wiener process W ). We assume more specifically that

dM i
t =

d∑

j=1

Σij
t dW j

t , i ≤ d.

The vector of instantaneous rate of returns b and the (non-degenerate) volatil-
ity matrix Σ and its inverse Σ−1 are assumed to be bounded predictable
processes.



A Consumption–Investment Problem with Production 5

The agent’s portfolio at date t contains ni
t units of the asset i. His holdings

in risky assets of the financial market πi
t = ni

tP
i
t , 1 ≤ i ≤ d, are predictable

processes such that ∫ T

0

|πt|2dt < ∞.

The agent consumption intensity is a predictable non-negative process c = (ct)
with ∫ T

0

ctdt < ∞.

The triplet of the investment processes and consumption u = (π, I, c) is
the control strategy. The optimization problem can be formulated as:

E

∫ T

0

e−βtU(ct)dt → max, (5)

with the controlled dynamics of the total fund given by the following stochastic
differential equation where 1 := (1, ..., 1):

dXt = (R(t, Kt)− 1It − ct)dt + πt(btdt + dMt), X0 = x. (6)

To avoid technicalities, we suppose that the utility function U : R+ → R+

in (5) is a concave increasing function with U(0) = 0, U ′(0) = ∞ and U ′(∞) =
0 (note that U is differentiable everywhere except at most a countable number
of points).

In addition to the constraints indicated above we impose a constraint on
the controls which prevents a “bankruptcy” before the date T . Namely, we
shall consider as admissible only the controls u such that

Vt := Xt + Ẽ

[∫ T

t

R(s,Ks)ds + Q(KT )|Ft

]
≥ 0, ∀ t ≤ T. (7)

The symbol Ẽ indicates that the expectation is taken with respect to the
(unique) martingale measure P̃ . The corresponding term can be interpreted
as the market evaluation of the manufacturing arm of the company. This
makes plausible the assumption that the agent may borrow funds until this
level.

The set of admissible strategies depends on the initial endowment y :=
(x, k). It will be denoted by A(y).

We shall assume that A(y) 6= ∅, i.e. at least one admissible strategy u does
exist. Obviously, this is always the case when R and Q are non-negative, since
u = (0, 0, 0) belongs to A(y).

Recall that P̃ = ZT P where

Zt = exp
{∫ t

0

θsdWs − 1
2

∫ t

0

|θs|2ds

}
,
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with θs := −Σ−1
s bs. Under P̃

W̃t := Wt −
∫ t

0

θsds

is a Wiener process. Due to the boundedness of θ the random variable ZT is
square integrable. Thus, the random variable ζ in (2) belongs to L1(P̃ ). In
particular, the conditional expectation in (7) is well-defined. Moreover, for an
admissible strategy, we have

∫ T

0

R(s,Ks)ds + Q(KT ) ∈ L1(P̃ ).

Remark. The completeness of the financial market, i.e. the uniqueness of the
martingale measure, is essential for our further development: we rely on the
martingale representation theorem. The latter does not hold for more general
models of incomplete market (which may constitute one of possible directions
of future studies) where the natural extension of the admissibility condition (7)
involves the supremum of expectations over the set of all martingale measures.

3 Existence and structure of the optimal control

Take an arbitrary admissible control. Under the measure P̃ the dynamics of
the phase variable (6) can be rewritten as follows:

Xt = x +
∫ t

0

(R(s,Ks)− 1Is − cs)ds +
∫ t

0

πsdM̃s, (1)

where M̃ is a (square integrable) martingale with respect to P̃ . Notice that
X ≥ 0 while the ordinary integral above is less or equal to ζ ∈ L1(P̃ ), see the
assumption (2). Thus, with respect to P̃ , the stochastic integral, being a local
martingale dominating an integrable random variable, namely, −(x + ζ), is a
supermartingale.

Substituting the expression (1) into (7), we obtain the formula

Vt = x + Ẽ

[∫ T

0

R(s,Ks)ds + Q(KT )|Ft

]
−

∫ t

0

(1Is + cs)ds +
∫ t

0

πsdM̃s.

The definition of admissibility implies, in particular, that ẼVT ≥ 0. Due to
the supermartingale property, the expectation of the stochastic integral with
respect to P̃ is negative and we infer the inequality

Ẽ

∫ T

0

csds ≤ x−H(I) (2)
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where

H(I) := Ẽ

[∫ T

0

(1Is −R(s,Ks))ds−Q(KT )

]
. (3)

Let us denote by C(y) the set of pairs of production and investment pro-
cesses (I, c) for which (2) holds.

The next lemma is established in the same way as in the classical consump-
tion–investment model, see, e.g., the textbook [11].

Lemma 1. For any given (I, c) ∈ C(y) there exists a portfolio process π such
that (π, I, c) ∈ A(y).

Proof. Let (I, c) ∈ C(y). Noticing that H(I) is finite, we consider the non-
negative process V with

Vt := Ẽ

[∫ T

0

(1Is + cs)ds|Ft

]
−

∫ t

0

(1Is + cs)ds

+x− Ẽ

[∫ T

0

(1Is + cs −R(s,Ks))ds−Q(KT )

]
.

It can be written in the form

Vt = x + Ẽ

[∫ T

0

R(s,Ks)ds + Q(KT )|Ft

]
−

∫ t

0

(1Is + cs)ds + MV
t −MV

0 ,

where

MV
t := Ẽ

[∫ T

0

(1Is + cs −R(s,Ks))ds−Q(KT )|Ft

]
.

By the martingale representation theorem

MV
t −MV

0 =
∫ t

0

πsdM̃s

and we infer easily from (7) and (1) that the triplet (π, I, c) ∈ A(y). 2

The conclusion following from this lemma is very important: solving the
original problem with a seemingly complicated “pointwise” constraint (7) is
reduced to the solving of a much simpler problem with a single “traditional”
inequality constraint given by a convex functional, with a consequent search
for the corresponding investment strategy. Moreover, it is easily seen that the
search for the optimal production and optimal consumption also can be done
in a separate consecutive way. Indeed, since the utility function is increasing,
for a given production strategy I with H(I) ≤ x (such a strategy exists as
there is an admissible strategy u), the corresponding maximal value of the
functional is attended on a consumption strategy for which (2) holds with the
equality. The maximal possible value will correspond to Io on which H(I)
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attains minimum. The existence of the optimal Io as well as the solution of
the consumption problem satisfying (2) follows from the Komlós theorem -
we recall the arguments in Proposition 3 of the next section dealing with the
optimal production strategy. Summarizing, we arrive to the following

Theorem 2. In the solution (πo, Io, co) ∈ A(y) of the consumption-investment
problem with production possibilities the optimal investment Io in manufac-
turing arm is the minimizer for the problem with the functional (3) and the
dynamics (1). The optimal consumption process co ≥ 0 is the solution of
the maximization problem (5) under the constraint (2). The optimal portfolio
strategy πo is the unique square-integrable predictable process satisfying the
identity

MV o

t = MV o

0 +
∫ t

0

πo
sdM̃s

with

MV o

t := Ẽ

[∫ T

0

(1Io
s + co

s −R(s,Ko
s ))ds−Q(Ko

T )|Ft

]
.

4 Optimal Production Investment

Let us consider separately the optimal control problem

H(I) := Ẽ

[∫ T

0

(1Is −R(s,Ks))ds−Q(KT )

]
→ min (1)

over the convex set I of all Γ -valued predictable processes I and where K
is given by (1)3. This problem belongs to the well-studied class of convex
problems for which one can use duality methods.

Proposition 3. The minimization problem (1), (1) has a solution.

Proof. Now standard (and fast) way to prove the existence in the convex
optimal control problems is the reference to the Komlós theorem. The latter
claims that for any L1-bounded sequence of random variables ξn there exist
a random variable ξ ∈ L1 and a subsequence ξnk

converging to ξ a.s. in the
Cesaro sense.

Let Ho = infI∈I H(I) and let H(In) → Ho for some In ∈ I. Due to the
boundedness of Γ we can apply the Komlós theorem to In considering these
processes as random variables on the space (Ω×[0, T ],P, dP̃ dt), where P is the
predictable σ-algebra. Renumbering, we may assume without loss of generality
that the original sequence converges dP̃dt-a.e. to some I in Cesaro sense. This
3 Economically, this form suggests the minimization of losses, i.e. the manufactur-

ing, presumably, is non-rentable; in more optimistic situation one could consider
the problem −H(I) → max, the maximization of profits.
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means simply that the controls Īn := n−1
∑n

j=1 Ij converge (a.e.) to Io which
is, clearly, an element of I. Let us denote by K̄n and Ko the corresponding
capital accumulation processes. The solution of (1) can be written explicitly
via the (stochastic) Cauchy formula. The latter implies that, outside a null-set,
the sequence K̄n

t (ω) converges to Ko
t (ω) whatever is t ∈ [0, T ]. Moreover, the

sequence supt K̄n
t (ω) is bounded (by a constant depending on ω). Recalling

the hypothesis R(s,K) ≤ f(s)(1+ lK), we deduce from here, using the Fatou
lemma for the integral and the continuity of R and Q in K, that
∫ T

0

(1Io
s−R(s,Ko

s ))ds−Q(Ko
T ) ≤ lim inf

[∫ T

0

(1Io
s −R(s, K̄n

s ))ds−Q(K̄n
T )

]
.

Taking the P̃ -expectation with of the both side of this inequality and applying
again the Fatou lemma, this time with respect to P̃ (justified because the
random variable ζ in (2) belongs to L1(P̃ )) we obtain:

H(Io) ≤ lim inf H(Īn) ≤ lim inf n−1
n∑

j=1

H(Ij) = Ho.

Thus, H(Io) = Ho, i.e. Io is the optimal control. 2

We shall assume from now on that R(t, K) and Q(K) have derivatives
in the variable K. The particular structure of the problem (1), (1) (linear
dynamics and convex functional) implies that the necessary condition of op-
timality given the Bismut stochastic maximum principle, see [2], [3], is also a
sufficient one. For the considered case the arguments are easy and the proof
can be done in a few lines. For the reader’s convenience we give them instead
sending him to a general theory presented in [19].

Isolating the P̃ -martingale term and using the abbreviation µt := λt−σtθt,
we rewrite the dynamics of manufacturing capital in vector notations as

dKt = (It − diag Ktµt)dt + diag Kt σtdW̃t, K0 = k, (2)

and introduce the Hamiltonian

H(t,K, I, p, h) := 〈p, I − diag K µt〉+ 〈h,diag K σt〉+ R(t,K)− 〈1, I〉,
where p ∈ Rm while h and diag K σt are m × d-matrices interpreted as ele-
ments of Rmd. Exceptionally, we use here the notation 〈., .〉 for scalar products
following the traditional and easy to memorize form which was suggested by
Bismut. Note that the second term can be written as trh(diag K σt)∗, where
∗ denotes the transpose and tr the trace.

The maximum principle claims that the pair (Io,Ko) satisfying the equa-
tion

dKo
t = (Io

t − diag Ko
t µt)dt + diag Ko

t σtdW̃t, Ko
0 = k, (3)

is optimal for the problem (1), (2) if there exist a continuous predictable
processes p with square integrable sup norm and a process h ∈ L2(Ω ×
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[0, T ],P, dP̃ dt) solving the m-dimensional backward stochastic differential
equation (BSDE)

dpt = −∇H(t,Ko
t , Io

t , pt, ht)dt + htdW̃t, pT = ∇Q(Ko
T ), (4)

where ∇ is the gradient in the variable K, specifically,

dpt = (diag µt pt −∇R(t,Ko
t )− ĥt)dt + htdW̃t, pT = ∇Q(Ko

T ), (5)

where ĥi
t =

∑
j hij

t σij
t and the following relation holds:

H(t,Ko
t , Io

t , pt, ht) = max
I∈Γ

H(t,Ko
t , I, pt, ht) dP̃dt-a.e. (6)

For brevity we shall call any quadruplet of processes Io, Ko, p, and h sat-
isfying the above relations and the integrability assumption a Bismut quadru-
plet.

Knowing that the processes p and h satisfying (5) exist, there is almost
nothing to prove. Indeed, let I be an arbitrary Γ -valued predictable process.
Using (3) and (5) we get by the Ito formula that

d(ptKt) = (ptdiag µt Kt −∇R(t,Ko
t )Kt − tr h(diag K σt)∗)dt

+pt(It − diag Ktµt)dt + tr h(diag K σt)∗dt + dNt

= (ptIt −∇R(t,Ko
t )Kt)dt + dNt

where N is a square integrable martingale with respect to P̃ .
Writing this in the integral form and observing that the expectation of

stochastic integral vanishes we arrive to the formula

Ẽ

∫ T

0

ptItdt = Ẽ∇Q(Ko
T )KT − p0k + Ẽ

∫ T

0

∇R(t,Ko
t )Ktdt.

This formula holds, in particular, for Io and Ko. Taking the difference of the
identities for the optimal and an arbitrary and using the concavity of R and
Q, we obtain easily that

Ẽ

∫ T

0

pt(Io
t −It)dt ≤ Ẽ

∫ T

0

(R(t, Ko
t )−R(t,Kt))dt+Ẽ(Q(Ko

T )−Q(KT )). (7)

But the maximum principle (6) implies
∫ T

0

1(Io
t − It)dt ≤

∫ T

0

pt(Io
t − It)dt P̃ -a.s. (8)

and we deduce from these two inequalities that H(Io) ≤ H(I).
Due to the simplicity of our problem we can see easily that the stochastic

maximum principle is the necessary condition: the optimal pair is the compo-
nent of a Bismut quadruplet. Indeed, starting from the optimal pair (Io,Ko)
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we can define p and h satisfying (5). The optimality of (Io,Ko) implies that
in (7) and (8) we have equalities. But the fulfillment of (8) for any I = (It) is
equivalent to (6).

Summarizing, we have the following.

Proposition 4. A pair (Io, Ko) satisfying (3) is an optimal solution of the
problem (3), (2) if and only if it can be complimented to a Bismut quadruplet.

In the case where σ = 0 and, therefore, h appears only in the diffusion
term, the linear backward equation is especially simple and can be “solved”
easily. Indeed, the m-dimensional random variable

ξ :=
∫ T

0

e−λ
s ∇R(s,Ko

s )ds + e−λ
T ∇Q(Ko

T )

with
eλ
t := diag

{
e
R t
0 λ1

sds, ..., e
R t
0 λm

s ds
}

is a square integrable functional of the Wiener process. By the martingale
representation theorem

Ẽ(ξ|Ft) = Ẽξ +
∫ t

0

φsdM̃s

for some matrix-valued process φ ∈ L2(Ω × [0, T ],P, dP̃ dt) of an appropriate
dimension. It is easy to see that ht := eλ

t φt and

pt := eλ
t Ẽξ − eλ

t

∫ t

0

e−λ
s ∇R(s,Ko

s )ds + eλ
t

∫ t

0

φsdM̃s

is the solution of the backward stochastic equation (5).
In the case d = 1 we can get an “explicit” solution of the BSDE for arbi-

trary σ by making at first the equivalent change of the probability measure,
removing the term ĥ from the drift (under this measure the process with
dW̃ ′

t := dW̃t + σtdt Wiener). In general case we use just a reference to an
existence theorem for the solution of a linear BSDE. An appropriate result
can be found, e.g., in [5].

However, though attractive, the stochastic maximum principle is not very
helpful in getting the optimal solution. In the case when σ = 0 and the
coefficients are deterministic, it is “degenerated” to the ordinary Pontryagin
maximum principle (of a deterministic problem). The latter is a powerful tool
of the optimal control theory which allows to analyze the structure of the
optimal control. We do this by considering examples.
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5 Special Cases

5.1 Deterministic Dynamics: Examples.

The separation result has an important consequence for the case of the model
where the values of the production assets may only depreciate (i.e. σ = 0) and
the parameters λi are deterministic. The problem becomes deterministic:

H(K) :=
∫ T

0

(1It −R(t,Kt))dt−Q(KT ) → min, (1)

K̇i
t = Ii

t − λi
tK

i
t , Ki

0 = ki, (2)

where I = (It) is a Borel function taking values in Γ ⊂ Rm
+ .

The necessary and sufficient condition of optimality is the classical Pon-
triagin maximum principle. More specifically, a pair (Io,Ko) is optimal for
the problem (1), (2) if and only if it is a part of the “Pontryagin triplet”
(Io,Ko, p) satisfying the following relations:

K̇o
t = Io

t − diag λtK
o
t , Ko

0 = k, (3)

ṗt = ptdiag λt −∇R(t,Ko
t ), pT = ∇Q(Ko

T ), (4)

(pt − 1)Io
t = max

I∈Γ
(pt − 1)It a.e. (5)

Due to the number of parameters involved, the complete analysis of this sys-
tem seems to be rather complicated. We restrict ourselves to the scalar prob-
lem with constant coefficients and Γ = [0, a] and provide several examples
where the solution can be obtained explicitly. For m = 1 we have:

K̇o
t = Io

t − λKo
t , Ko

0 = k, (6)

ṗt = λpt −R′(Ko
t ), pT = Q′(Ko

T ), (7)

(pt − 1)Io
t = max

I∈Γ
(pt − 1)It a.e. (8)

Case study: scalar homogeneous model with Q = const (such a situation
may arise in practice) and R(K) = (κ/γ)Kγ , κ > 0, γ ∈]0, 1[.

Due to the continuity, near the right extremity T of the time interval the
dual variable p is close to the value pT = 0; more precisely, it decreases to zero
because the equation (7) implies that the derivative ṗT = −κ(Ko

T )γ−1 < 0.
Now put T1 := sup{t ≥ 0 : pt ≥ 1} (with the convention that T1 = 0 if
the set is empty). The maximum relation ensures that Io

t = 0 on ]T1, T ]. If
T1 = 0, the phase trajectory is the decreasing exponential Ko

t = ke−λt while
the trajectory of the dual variable is

pt = eλt

∫ T

t

e−λsR′(Ko
s )ds = kγ−1 κ

λγ
eλt(e−λγt − e−λγT ).
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To be compatible with the maximum principle the right-hand side should be
less or equal to unity on the whole interval [0, T ] and this requirement is met
when the initial endowment k ≥ kc where the threshold is given by

kc = sup
t≤T

[
κ

λγ
eλt(e−λγt − e−λγT )

] 1
1−γ

.

Thus, for large k the control Io
t = 0. We shall have, for large initial endow-

ments in production assets, the similar structure of the optimal control also
for the model where Q′(K) → 0 as K →∞.

Qualitatively, this result means that in the case of small marginal liquida-
tion value the investor having high level of initial manufacturing facilities is
not motivated in their further development.

The situation seems to be rather different for k < kc. Then necessarily Io

is not equal to zero on a certain non-null subset of [0, T1]. Let us show that
for some range of parameters, Io

t = aI[0,T1].
So, suppose that on [0, T1] the control Io

t = a and, therefore, on this
interval the state dynamics is given by the formula

Ko
t = ke−λt +

a

λ
(1− e−λt) =

a

λ
+

(
k − a

λ

)
e−λt. (9)

First, we consider the simplest particular case where k = a/λ. Then Ko
t =

k on [0, T1[ (the maximal level of investments keeps the production capacity
constant) and, according to (7), ṗT1 = λ− κkγ−1. For t ∈ [T1, T ] we have the
formula Ko

t = keλT1e−λt and, hence, on this interval

pt = kγ−1eλ(γ−1)T1
κ

λγ
eλt(e−λγt − e−λγT ).

Note that the point T1 ∈]0, T [ can be defined from the equation pT1 = 1 which
solution does exist for k < kc. On the interval [0, T1] the function p solving
the differential equation

ṗt = λpt − κkγ−1, pT1 = 1,

and hence given by the formula

pt =
κ

λ
kγ−1 +

(
1− κ

λ
kγ−1

)
e−λ(T1−t)

should be larger or equal to unity. If also k < (κ/λ)
1

1−γ , the value of deriva-
tive ṗT1 < 0. Taking into account that the trajectory cannot cross the unit
level upwards with negative value of derivative (always equal to λ − κkγ−1),
we conclude that the control aI[0,T1] is optimal for such values of the initial
endowment k.

If k > a/λ, the trajectory supposed to be optimal decreases on [0, T1] from
its initial value k. For k < (λ/κ)

1
1−γ , we have ṗT1 < 0, i.e. the dual variable

cross the unit level at T1 and cannot do this before.
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If k < a/λ, the candidate for the optimal trajectory on [0, T1] increases
from k to a certain value which is less than a/λ. At least, in the case of the
small ratio a/λ (i.e., when λ < κ(a/λ)γ−1), we can conclude again that pt > 1
on [0, T1[ and, therefore, Io

t = aI[0,T1] is the optimal control.
In short, for initial endowments k less than a certain critical value kc (in

some case, with appropriate restrictions on other parameters), the optimal
strategy is of the bang-bang form and requires at the beginning of the planning
interval intensive investments in the production assets.

However, in the range ]kc, k
c[ the structure of the optimal control may be

more involved and even not of the bang-bang type.

5.2 Deterministic Dynamics: Turnpike Behavior

To investigate the general structure of the optimal control in the problem (1),
(2), we exclude the control variable from the functional using the expressions
Ii
t = K̇i

t + λi
t given by (2). After simple transformations we arrive to the

problem with the functional depending only of the phase variable:
∫ T

0

Φ(t,Kt)dt + S(KT ) → min, (10)

K̇i
t = Ii

t − λi
tK

i
t , Ki

0 = ki, (11)

where the functions Φ(t,K) := λtK −R(t,K) and S(K) := 1K −Q(K)− 1k
are convex in K.

It is well-known that, under minor assumptions, the optimal trajectory in
models of such type exhibits, on a large time interval, a turnpike behavior: it
coincides, except initial and final periods, with the function K̂ where K̂t is the
minimizer of the function Φ(t, .), i.e. the root of the equation ∇Φ(t,K) = 0.

To be specific, we consider again the one-dimensional time-homogeneous
model assuming also that k < a/λ, Φ′(a/λ) > 0, Φ′(0) = −∞. Then any
trajectory K evolves in the interval [0, a/λ]; it increases if I = a and decreases
if I = 0.

Now the dual variable ψ = p− 1 solves the equation

ψ̇t = λψt + Φ′(Ko
t ), ψT = −S′(Ko

T ). (12)

and the maximum principle says that Io
t = 0 if ψt < 0, and Io

t = a if ψt > 0.
It is convenient to introduce an auxiliary function qt := e−λtψt having the
same sign as ψt; its derivative q̇t = e−λtΦ′(Ko

t ).
Let t1 := inf{t : qt = 0}, t2 := sup{t : qt = 0}. Notice that if [t1, t2] is

not a singleton, then on this interval q = 0. Indeed, suppose that there is a
subinterval ]t′, t′′[ where q < 0 but qt′ = qt′′ = 0. Since on this subinterval
the control Io = 0, the trajectory Ko is decreasing, the trajectory Φ′(Ko)
is also decreasing and so is −q̇. This is impossible and, therefore, q cannot
deviate from zero downwards. Similarly, if q > 0 on ]t′, t′′[ and q vanishes at
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the extremities, then on this interval Io = a, the trajectory Ko increases as
well as Φ′(Ko). Thus,

ψ̇t′ = Φ′(Ko
t′) < Φ′(Ko

t′′) = ψ̇t′′

in contradiction with the inequalities ψ̇t′ ≥ 0, ψ̇t′′ ≤ 0.
The equation (12) necessitates that Φ′(Ko) = 0 on [t1, t2], i.e. Ko = K̂

where K̂ is the minimizer of Φ; the optimal control is Io = K̂λ. The left
extremity coincides with zero if and only if k = K̂. If t1 > 0, there are two
possible cases: 1) on [0, t1[ the dual variable ψ is strictly negative, Io = 0
and the trajectory Ko decreases from k to the value K̂; 2) on [0, t1[ the dual
variable ψ is strictly positive, Io = a and the trajectory Ko increases from
k to the value K̂. In both cases the interval [0, t1] does not depend on the
terminal part of the functional and t1 < T for sufficiently large T .

The case t2 = T is exceptional. This means that 0 = ψT = −S′(K̂), i.e., K̂
minimizes also the function S. Otherwise, the interval [t2, T ] is not a singleton.
The optimal control on this interval depends on the sign of S′(K̂). Suppose,
e.g., that S′(K̂) > 0. Let Io = 0. Then ψ is strictly negative, the trajectory Ko

decreases from the value K̂, Φ′(Ko) < 0 and, therefore, ψ̇ = λψ+Φ′(Ko) < 0,
i.e., the trajectory ψ decreases from zero. Since −S′ is a decreasing function,
the transversality condition ψT = −S′(Ko

T ) will be met for a certain (uniquely
defined) value of t2 (of course, the time horizon should be large enough).

The above arguments show that, for a long time interval, the optimal in-
vestments in the manufacturing consist in keeping the production on a specific
“turnpike” level which depends only of the technology used and not of the
initial capital and the liquidation value. This level should be attained in the
fastest way at the beginning of the planning period. At the end of the period,
the investment policy is to leave the turnpike quickly to profit from the selling
of the manufacturing arm.

5.3 Remark on the HJB equation

The case where the fluctuations of the price of production assets are assumed
(i.e. σ is not zero) can be studied by methods of dynamic programming.
The problem of interest can be imbedded in the family of stochastic control
problems parameterized by initial date t and the initial endowment x (we
prefer x to k here for notational convenience). The HJB equation is as follows:

Vt + inf
I∈[0,a]

[
1
2
σ2x2Vxx + (I − µx)Vx + (I −R(x))

]
= 0

with the terminal condition V (T, x) = −Q(x). The number Ho we are inter-
ested in is V (0, k). The above equation can be rewritten in the form

Vt +
1
2
σ2x2Vxx − µxVx + aI{Vx<−1} −R(x) = 0.
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One can prove that the Bellman function V of the problem is a viscosity
solutions of this equation which is unique in an appropriate class but a detailed
discussion is beyond the scope of the present paper.

5.4 Piecewise-linear utility function

As we just see, in some cases the production problem may admit an explicit
solution otherwise the value Ho can be find numerically. An attractive feature
of the considered setting is that the investing problem is well-studied and also
admits cases with explicit solutions. The most famous one is the problem with
U(c) = ρ/cρ found by Merton.

We discuss here an example where the utility function is linear up to a
saturation point, i.e.

U(c) = cI{c≤C} + CI{c>C}.

Thus, the optimal control problem is read now:

J(c) := E

∫ T

0

e−βtU(ct)dt → max

over all non-negative predictable processes c such that

E

∫ T

0

Ztctdt ≤ x−H(Io).

Clearly, in our search for the optimum we can consider the subset of controls
for which the constraint is satisfied with an equality.

The solution can be found easily using the Lagrange multiplier method
removing the above constraint. Arguing formally, we write the unconstrained
problem

E

∫ T

0

[e−βtU(ct)− θZtct]dt → max

where the multiplier θ ≥ 0. Its solution is any non-negative predictable process
c = (ct) maximizing pointwise the integrand. Of course, the solution depends
of the unknown Lagrange multiplier θ. Let

c∗t (θ) := CI{θZt>e−βt}.

Define on R+ the function

f(θ) := E

∫ T

0

Ztc
∗
t (θ)dt = C

∫ T

0

P̃ (eβtZt < 1/θ)dt

which is continuous and decreasing from f(0) = CT to f(∞) = 0.
Let us show that the optimal consumption process is co := c∗(θ∗) where θ∗

is defined as the solution of the equation f(θ∗) = x−H(Io) and this solution
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we assume existing (otherwise the problem is trivial with the optimal solution
co
t = C). Indeed, let c = (ct) be an arbitrary consumption process satisfying

the constraint with the equality. Then

J(co)− J(c) = E

∫ T

0

[e−βtU(co)− θ∗Ztc
o
t − e−βtU(ct) + θ∗Ztct]dt

and we get the result because the right-hand side is non-negative due to the
choice of co as the maximizer of the unconstrained problem with the multiplier
θ∗.
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