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1 Introduction

To explain our interest in the question discussed in this paper we recall several
facts and concepts from the foundations of stochastic finance. The fundamental
point of this theory is that there are basic securities with prices evolving as random
processes; the randomness is inherited by the investors portfolios. In the simplest
one-period model where we have t ∈ {0, T} (the terminal date T may be denoted
by 1), the numéraire is a traded asset, the price increments of d basic securities are
described simply by a random d-dimensional vector ξ. The portfolio strategy is just
a (deterministic) vector h ∈ R

d and the portfolio increment is the scalar product
hξ. One says that the market is arbitrage free (briefly: satisfies the NA property)
if the inequality hξ ≥ 0 may hold only if hξ = 0. This property plays a key role
for the pricing of derivative securities. In the case of finite Ω it is an easy exercise
on the use of the separation theorem to check that the NA property is equivalent
to the existence of a (scalar) random variable Z which is strictly positive (a.s.),
EZ = 1, and the vector EZξ is zero. In the economic literature the probability
space (Ω,F , P̃ ) with P̃ = ZP is called the “risk-neutral world”. Rather remark-
ably, this simple exercise happened to be the germ of an important development
in mathematical finance. The first steps of this development are now classical. The
Harrison–Pliska theorem gives an extension to the multi-period model (with fi-
nite Ω) claiming that NA holds iff there exists a strictly positive (a.s.) martingale
Z = (Zt) such that EZtξt = 0 for all t. The Dalang–Morton–Willinger theo-
rem, a result which is mathematically much more delicate, extends this assertion
to an arbitrary Ω, adding also that one can always choose a bounded density pro-
cess Z. At the moment, no-arbitrage criteria are obtained for numerous models
(continuous-time models, models with transaction costs, models with constraints),
see the handbook [2].

However, the NA property is not a single one isolated in the economic liter-
ature. A weaker property, called the law of one price (we shall use the abbrevi-
ation L1P), for the one-period model can be formulated as follows: the identity
x + hξ = x′ + h′ξ where h, h′ ∈ R

d implies that x = x′, see, e.g. [7]. In other
words, if a contingent claim has a price, namely, the replication price, this price
is unique. Clearly, this property is always fulfilled if NA holds. Again, in this el-
ementary case, it is an easy exercise on a finite-dimensional separation theorem
to check that L1P holds iff there exists a random variable Z (not necessary pos-
itive) with EZ = 1 such that the vector EZξ is zero. Similarly, an extension to
the multi-period model with a finite number of states of nature (i.e. to the setting
of the Harrison–Pliska theorem) does not pose new mathematical difficulties. Our
aim here is to analyze the law of one price for the multi-period model with a gen-
eral probability space in the same spirit as it was done in the recent note [5]. It
is worthy to mention that similarly to NA criteria, there are several strategies of
proof. We opt that of the mentioned note.

At last, we introduce the notion of normalized excess expected return of a strat-
egy and show that such a week condition as LPT1 implies already the existence of
a market portfolio.
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2 The law of one price

Let (Ω,F , P ) be a probability space equipped with a finite discrete-time filtration
(Ft), t = 0, ..., T , FT = F , and let S = (St) be an adapted d-dimensional
process. Let RT := {ξ : ξ = H · ST , H ∈ P} where P is the set of all
predictable d-dimensional processes (i.e. Ht is Ft−1-measurable) and let

H · ST :=

T∑

t=1

Ht∆St, ∆St := St − St−1.

We denote by L0(Ft) the set of finite Ft-measurable random variables.
The linear subspace RT is closed in L0(FT ). This fact, fundamental in the

sequel, was established in [5].
We say that the model satisfies the law of one price (L1P) at the date t = 0 if

the equality ζ + H · ST = ζ ′ + H ′ · ST where H,H ′ ∈ P and ζ, ζ ′ ∈ L0(F0),
implies that ζ = ζ ′ (a.s).

It is easily seen that this condition, L1P, at t = 0, can be written as follows:
RT ∩ L0(F0) = {0}.

Theorem 1 The following conditions are equivalent:
(a) RT ∩ L0(F0) = {0};
(b) there is a bounded martingale Z = (Zt)t≤T with EZT = 1 and Z0 > 0

such that the process ZS is a martingale.

Proof. (a) ⇒ (b) Take an arbitrary non-null F0-measurable set A. By the assump-
tion IA /∈ RT . Choose a probability measure P̃ ∼ P with the bounded density
ρ := dP̃ /dP and such that all St are integrable with respect to P̃ . Since RT is
closed in probability, the set R1

T := RT ∩L1(P̃ ) is a closed linear space in L1(P̃ ).
Thus, there exists a bounded random variable Z̃A

T such that ẼZ̃A
T η = 0 for all

η ∈ R1
T but ẼZ̃A

T IA > 0. Putting ZA
T := ρZ̃A

T and normalizing, if necessarily, we
can rephrase this as follows: there exists ZA

T with |ZA
T | ≤ 1 such that EZA

T η = 0
for all η ∈ R1

T but EZA
T IA > 0. The set R1

T is stable under multiplication by the
indicator functions of F0-measurable sets. It follows that the above properties re-
main valid if we replace ZA

T by IAI{E(ZA

T
|F0)>0}. Hence, we may assume without

loss of generality that E(ZA
T |F0) ≥ 0.

The usual exhaustion arguments ensure that there is a bounded random variable
ZT with E(ZT |F0) > 0 such that EZT η = 0 for all η ∈ R1

T . For the reader’s
convenience we recall them. Let C be the family formed by all sets of the form
{E(ZA

T |F0) > 0}, A ∈ F0. Let a := supΓ∈C P (Γ ). The supremum here is
attained: it is sufficient to consider the set A = ∪nAn and the bounded random
variable ZA

T :=
∑

n 2−nZAn

T where An ∈ F0 are such that P (An) → a. It
remains to notice that P (A) = 1 (otherwise we could increase the supremum with
ZAc

).
We conclude by putting Zt := E(ZT |Ft) and by observing that the martingale

property of ZS holds because ξ∆St ∈ R1
T for every bounded Ft−1-measurable

random variable ξ.
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(b) ⇒ (a) This claim is obvious. Indeed, we should check that ξ = 0 whenever
ξ+H ·ST = 0. For the process M := Z(ξ+H ·S) we have Mt−1 = E(Mt|Ft−1)
for t ≥ 1. As M is zero at the terminal date T , it is zero identically. In particular,
its initial value Z0ξ = 0. Since Z0 > 0, this implies that ξ = 0. 2

3 Ramifications and comments

1. It is quite natural to have a look at the situation where the portfolio strategies
are subjects some trading constrains. For instance, shortselling may be prohibited.
To be specific, suppose that we are given a closed convex cone K ⊆ R

d and at
each date t the vector of holdings in risky assets Ht belongs to L0(K,Ft−1), i.e.
H is a predictable d-dimensional process taking values in K. Let us denote the set
of such processes by PK and the corresponding set of “results” RK

T .
The law of one price (at time zero), abbreviated in this model as L1PK , means

that the equality ζ +H ·ST = ζ ′ +H ′ ·ST where H,h′ ∈ PK and ζ, ζ ′ ∈ L0(F0)
may hold only if ζ = ζ ′ (a.s).

This property can be expressed by the relation (RK
T − RK

T ) ∩ L0(F0) = {0}.
Notice that

L0(K,Ft) − L0(K,Ft) = L0(K − K,Ft)

(to check the non-trivial implication ⊇ it is sufficient to fix a basis {vi} in K −K
and consider an arbitrary representation vi = v′

i − v′′
i with v′

i, v
′′
i ∈ K).

Recall that K−K = R
d if and only if int K 6= ∅. Consequently, if int K 6= ∅,

then RT = RK
T − RK

T and we arrive at the following theorem which covers, in
particular, the model where shortselling is not allowed.

Theorem 2 Assume that int K 6= ∅. Then the following conditions are equivalent:
(a) L1PK;
(b) there is a bounded martingale Z = (Zt)t≤T with EZT = 1 and Z0 > 0

such that the process ZS is a martingale.

Without difficulties this result can be extended to the case where Kt are Ft−1-
measurable (as usual, this needs a bit of set-valued analysis).

2. It is economically reasonable that the law of one price holds globally, i.e.
if a contingent claim is replicable when the trading starts at the date τ , then the
replication price is unique. Formally, we can isolate the following GL1P property:

the equality ζ+H · τST = ζ ′+H ′ · τST where τ is a stopping time, H,H ′ ∈ P ,
and ζ, ζ ′ ∈ L0(Fτ ) may hold only if ζ = ζ ′ (a.s).

Here we use the abbreviation τSt := I]τ,T ] · S.
The following assertion is a corollary of Theorem 1 (cf. with the formulation

of Th. 4.5 in [6]).

Theorem 3 The following conditions are equivalent:
(a) GL1PK;
(b) for every stopping time τ there exists a bounded martingale Z (τ) with

EZ
(τ)
T = 1 and Z

(τ)
τ > 0 such that the process Z(τ) τS is a martingale.
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Note that using in the formulation of GL1P property only deterministic times
gives an equivalent definition.

3. As usual, one can find in the literature on linear inequalities related results
corresponding to the one-step model and formulated as alternative theorems. As
an example, we give a relevant one: either the equation Ay = b has a solution
or there is a vector z 6= 0 such that zb = 1 and zA = 0. In the case where
Ω := {ω1, ..., ωN}, the N×d-matrix A is formed by the elements aij := ∆Sj(ωi)
and b = (1, ..., 1)T.

4. Unfortunately, the above results have no natural counterparts for continuous-
time models. “Natural” here means “for the standard concept of admissibility”.
The latter requires that the value process is bounded from below. To see this,
consider the model where S is just a Wiener process, T = ∞. The process
V = eS− 1

2
〈S〉 is a value process (corresponding to the admissible strategy H = V

and the initial value x = 1) with V∞ = 0. Thus, we have that 1 + H · S = 0 · S
violating the law of one price. Of course, an appropriate modification of this model
provides an example where T is finite.

4 The law of one price and CAPM

The law of one price implies an interesting and important consequence: the exis-
tence of a market portfolio.

To show this we make an extra assumption that all St ∈ L2 and define, in the
Hilbert space L2, the closed linear subspace R2

T = RT ∩ L2 (recall that RT is
closed in L0). It contains all terminal values of portfolios with bounded strategies
and starting from zero. The random variable x + H · ST is the terminal value
(expressed in the units of the numéraire assumed to be a traded security) of a
portfolio with the initial endowment x. Hence ξ := H · ST is the surplus of this
strategy with respect to holding x in the numéraire; it does not depend of the initial
endowment, but for x = 1 it is usually referred in the economic literature as the
excess return of the portfolio. We define as the (normalized) excess expected return
of the strategy H the ratio rH := Eξ

σ(ξ) where σ is the standard deviation; rH is
called the Sharpe ratio. By convention, 0

0 = 0. Since rλH = rH for λ > 0,
this normalization allows us to compare “quality” of the portfolio composition
independently of its “size”. We say that a strategy G with η := G · ST ∈ R2

T

defines a market portfolio if for every strategy with the terminal value ξ := H ·ST

in R2
T we have the equality

rH = βGHrG (1)

where βGH is the correlation coefficient ρ(ξ, η). Notice that (1) looks like the usual
CAPM relation, see, e.g., [4].

For the case where P is a martingale measure the identity is trivial. We exclude
this situation in the formulation below.

Proposition 4 Suppose that P is not a martingale measure and L1P holds. Then
the market portfolio does exist.
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Proof. The requirement is met by the strategy G corresponding to the projection η
of the unit onto the subspace R2

T . Indeed, by definition, E(1 − η)ξ = 0 for each
ξ ∈ R2

T . In particular, E(1 − η)η = 0 and, therefore, Eη = Eη2 ≥ 0. In fact,
the inequality here is strict: otherwise η is zero and Eξ = 0 for each ξ ∈ R2

T

implying that P is a martingale measure. The case Eη2 = 1 is also impossible:
since Eη2 + E(1 − η)2 = 1 we would have that η = 1 violating L1P. Thus,
0 < Eη < 1. Now we write the relation E(1 − η)ξ = 0 in a different way:

Eξ = Eξη = Cov (ξ, η) + EξEη

where Cov (ξ, η) is the covariance of ξ and η.
We deduce from here taking into account the equality Eη = Eη2 that

Eξ =
Cov (ξ, η)

1 − Eη
=

Cov (ξ, η)Eη

Eη − (Eη)2
=

Cov (ξ, η)Eη

σ2(η)
.

Hence,
Eξ

σ(ξ)
=

Cov (ξ, η)

σ(ξ)σ(η)

Eη

σ(η)

and we obtain the required relation (1). 2

Remark. In fact, the above proof is not needed: simple geometric considerations
replace the above arguments. Indeed, rH , rG, βGH are the cosines of angles be-
tween ξ and 1, η and 1, ξ and η. This observation shows that (1) means that the
projection of the vector 1 onto ξ can be obtained in two steps: first we project 1
onto the plane of the vectors ξ and η and then project the result onto ξ. A picture
makes this obvious.
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