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Abstract We find an exact asymptotics of the ruin probability Ψ(u) when the
capital of insurance company is invested in a risky asset whose price follows a
geometric Brownian motion with mean return a and volatility σ > 0. In contrast
to the classical case of non-risky investments where the ruin probability decays
exponentially as the initial endowment u tends to infinity, in this model we have, if
ρ := 2a/σ2 > 1, that Ψ(u) ∼ Ku1−ρ for some K > 0. If ρ < 1, then Ψ(u) = 1.
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1 Introduction

It is well-known that the prosperity of an insurance company is due not only to
earnings in its principal business but also to intelligent investments of the money
at its disposal. This is the reason why the modern trend in actuarial mathematics
is toward incorporating an economic environment into models, see, e.g., [9], [11],
[6], and many others. Apparently, risky investment can be dangerous: disasters
may arrive at the period when the market value of assets is low and the company
will not be able to cover losses by selling these assets just because of price fluctua-
tions. Regulators are rather attentive to this issue and impose stringent constraints
on company portfolios. Typically, junk bonds are prohibited, a prescribed (large)
part of the portfolio should contain non-risky assets (e.g., Treasury bonds) while
in the remaining part only risky assets with good ratings are allowed.
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The common idea that investments in an asset with stochastic interest rate may
be too risky for an insurance company can be justified mathematically. In [4] it
is noticed that in the classical Lundberg–Cramér model the ruin probability may
decrease not as an exponential but a power function if the wealth is invested in the
stock whose price follows a geometric Brownian motion. In the setting of [4] the
risk process is Markov; the equation for the exit (ruin) probability can be reduced
to a differential equation which belongs to a well-studied class.

In May 1999 the second author had the pleasure of visiting the University
of Copenhagen and discussing with Vladimir Kalashnikov the topic of interest.
Vladimir kindly provided him with the manuscript [5] containing upper and lower
bounds allowing us to complete the study initiated in [4].

In the present work we consider in detail the model of [4] and find an exact
asymptotics for the ruin probability. The conclusion: independently of the safety
loading, the investments in an asset with large volatility lead to the bankruptcy
with probability one while for the small volatility the ruin probability decreases
as a power function. Kalashnikov’s bounds (developed further in his joint work
with Ragnar Norberg [6]) play an important role in our study. Our techniques is
elementary. More profound and general results can be found in [10], [7], and [8].

2 The model

We are given a stochastic basis with a Wiener process w independent of the integer-
valued random measure p(dt, dx) with the compensator p̃(dt, dx).

Let us consider a process X = Xu of the form

Xt = u + a

∫ t

0

Xsds + σ

∫ t

0

Xsdws + ct−
∫ t

0

∫
xp(ds, dx), (1)

where a and σ are arbitrary constants and c ≥ 0.
We shall assume that p̃(dt, dx) = αdtF (dx) where F (dx) is a probability

distribution on ]0,∞[. In this case the integral with respect to the jump measure
is simply a compound Poisson process. It can be written as

∑Nt

i=1 ξi where N
is a Poisson process with intensity α and ξi are random variables with common
distribution F ; w, N , ξi, i ∈ N, are independent.

In our main result (Theorem 1) we assume that F is an exponential distribution.
Let τu := inf{t : Xu

t ≤ 0} (the date of ruin), Ψ(u) := P (τu < ∞) (the ruin
probability), and Φ(u) := 1− Ψ(u) (the non-ruin probability).

The parameter values a = 0, σ = 0, correspond to the Lundberg–Cramér
model for which the risk process is usually written as Xt = u+ct−∑Nt

i=1 ξi. In the
considered version (of non-life insurance) the capital evolves due to continuously
incoming cash flow with rate c and outgoing random payoffs ξi at times forming
an independent Poisson process N with intensity α. For the model with positive
safety loading and F having a “non-heavy” tail, the Lundberg inequality provides
an encouraging information: the ruin probability decreases exponentially as the
initial capital u tends to infinity. Moreover, for the exponentially distributed claims
the ruin probability admits an explicit expression, see [1] or [2].
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The more realistic case a > 0, σ = 0, corresponding to non-risky investments,
does not pose any problem.

We study here the case σ > 0. Now the equation (1) describes the evolution
of the capital of an insurance company which is continuously reinvested into an
asset with the price following a geometric Brownian motion (i.e. the relative price
increments are adt + σdwt)

It is well-known (see, e.g., the discussion in [9] for more general insurance
models) that for the Markov process given by (1) the non-exit probability Φ(u)
satisfies the following equation:

1
2
σ2u2Φ′′(u) + (au + c)Φ′(u)− αΦ(u) + α

∫ u

0

Φ(u− y)dF (y) = 0. (2)

With σ > 0, this equation is of the second order and, hence, requires two boundary
conditions in contrast to the classical case (a = 0, σ = 0) where it degenerates to
an equation of the first order requiring a single boundary condition, see [2].

Theorem 1 Let F (x) = 1− e−x/µ, x > 0. Assume that σ > 0.
(i) If ρ := 2a/σ2 > 1, then for some K > 0

Ψ(u) = Ku1−ρ(1 + o(1)), u →∞. (3)

(ii) If ρ < 1, then Ψ(u) = 1 for all u.

The same model serves well in the situation where only a fixed part γ ∈]0, 1]
of the capital is invested in the risky asset (one should only replace the parameters
a and σ in (1) by aγ and σγ).

The proofs will be given in Sections 5 and 4, respectively. Section 3 contains,
in a certain sense, preliminary results which happen to be useful to accomplish an
analysis of solutions to the differential equation for ruin probability and obtain its
exact asymptotics in the model of interest. For this reason we do not try to look
here for more delicate formulations and penetrate, e.g., into a specific structure of
coefficients to get rid of the logarithm in Proposition 1. In Section 4 we provide
simple arguments revealing the fact that for ρ < 1 the imbedded process is er-
godic with the invariant measure charging the negative axes and, hence, leaves the
positive half-axes with probability one.

3 Kalashnikov’s bounds

Here we establish a result for generally distributed claims.

Proposition 1 Let ρ := 2a/σ2 > 1.
(i) If Eξρ−1

1 < ∞, then there exists a constant C ≥ 0 such that

Ψ(u) ≤ Cu1−ρ(ln u)1∨(ρ−1), ∀u ≥ 2. (4)

ii) If P (ξ1 > x) > 0 for all x, then there are constants b,B, u0 > 0 such that

Ψ(u) ≥ bu−B , ∀u ≥ u0. (5)
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Let τn be the instant of the n-th jump of N and let θn := τn − τn−1 with
τ0 := 0. We define the discrete-time process S = Su with Sn := Xτn . Since
the ruin may occur only when X jumps downwards, Ψ(u) = P (Tu < ∞) where
Tu := inf{n ≥ 1 : Su

n ≤ 0}.
Put κ := a−σ2/2 and wn

t := wt+τn−1−wτn−1 . Let us introduce the notations

λn := exp{σwn
θn

+ κθn},

ηn := c

∫ θn

0

exp{σ(wn
θn
− wn

u) + κ(θn − u)} du.

Solving the linear stochastic equation we get that

Sn = λnSn−1 + ηn − ξn. (6)

Putting En := Πn
k=1λk, we may use also the representation

Sn = Enu + En

n∑

k=1

E−1
k (ηk − ξk). (7)

Notice that λn are i.i.d. random variables and

Eλν
1 =

α

α + (1− ρ− ν)νσ2/2
. (8)

We deduce Proposition 1 from results on the general discrete-time process
given by (6) where (λn, ηn) is a sequence of (two-dimensional) i.i.d. random vari-
ables, λn > 0, and each ξn is independent from the σ-algebra generated by the
family {λk, ηk, ξm, k ∈ N, m ∈ N \ {n}}. In particular, the assertion (i) fol-
lows immediately from (8) and

Proposition 2 Let ηn ≥ 0. Assume that Eλ−β
1 = qβ where qβ < 1 if β ∈]0, β0[

and qβ0 = 1. If Eξβ0
1 < ∞, then there is a constant C such that

P (Tu < ∞) ≤ Cu−β0(lnu)1∨β0 , u ≥ 2. (9)

Proof. It is easily seen from the formula (7) that P (Tu < ∞) ≤ P (ζ∞ > u)
where ζn :=

∑n
k=1 E−1

k ξk. Applying Lemma 1 below we get the result. 2

Lemma 1 Let ζn :=
∑n

k=1 χk where χk ≥ 0 and Eχβ
k ≤ lβqk

β with qβ < 1 if
β ∈]0, β0[ and qβ0 = 1. Then there is a constant C such that

P (ζ∞ > u) ≤ Cu−β0(ln u)1∨β0 , u ≥ 2.

Proof. Let M be a positive integer. Let β0 ≤ 1. Take arbitrary β ∈]0, β0[. Using
the Chebyshev inequality and taking into account that |x+y|r ≤ |x|r+|y|r, r ≤ 1,
we infer that

P (ζM > u/2) ≤
(

2
u

)β0 M∑

k=1

Eχβ0
k ≤

(
2
u

)β0

lβ0M
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and, similarly,

P (ζ∞ − ζM > u/2) ≤
(

2
u

)β ∞∑

k=M+1

Eχβ
k ≤

(
2
u

)β

lβ
qM
β

1− qβ
.

Choosing M = Mβ as the integer part of (ln qβ)−1 ln uβ−β0 , we get the result.
Let β0 > 1. The first line above can be modified as follows:
(

2
u

)β0

E

(
M∑

k=1

χk

)β0

≤
(

2
u

)β0

Mβ0−1
M∑

k=1

Eχβ0
k ≤

(
2
u

)β0

lβ0M
β0 .

Using the bound for the tail of the series with β = 1 and putting M = M1, we
obtain the desired inequality. 2

The assertion (ii) is a corollary of the following general result.

Proposition 3 Assume that the following conditions hold:
(a) there exists a constant l < 1 such that P (λ1 ≤ l) > 0;
(b) P (ξ1 > x) > 0 for any x.
Then there are b,B > 0 such that for all sufficiently large u

P (Tu < ∞) ≥ bu−B . (10)

Proof. The assumption (a) implies that for some constants K > 0 and p1 > 0

P (λ1 ≤ l, η1 − ξ1 ≤ K) = p1.

The assumption (b) and the independence of ξ1 and (λ1, η1) imply that there are
constants L > 0 and p2 > 0 for which

P (λ1 ≤ L, η1 − ξ1 ≤ −2LK/(1− l)) = p2.

Let M := 1 + [(ln K(1 − l) − ln u)/ ln l] where [.] denotes the integer part.
Obviously, lMu ≤ K/(1− l). Define the sets

AM := ∩M
k=1{λk ≤ l, ηk − ξk ≤ K},

and
DM+1 := {λM+1 ≤ L, ηM+1 − ξM+1 ≤ −2LK/(1− l)}.

On the set AM

SM = EMu + EM

M∑

k=1

E−1
k (ηk − ξk) ≤ lMu +

M∑

k=1

lM−kK ≤ lMu +
K

1− l
.

This implies that on the set AM ∩DM+1

SM+1 ≤ LSM − 2LK/(1− l) ≤ L(lMu−K/(1− l)) ≤ 0.

Thus,

P (Tu < ∞) ≥ P (AM ∩DM+1) ≥ p2p
M
1 ≥ p2p

1+(ln K(1−l)−ln u)/ ln l
1

and we get the desired result with b = −(ln p1)/ ln l. 2

Remark. The exit probability for the solution of the difference equation (6) with
random coefficients was studied in [5] and [6]. The results of this section, although
slightly different in formulations and proofs, are strongly inspired by these works.
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4 Large volatility: the ruin is imminent

We show that the investments in a stock with large volatility, namely, when ρ < 1,
lead to a ruin with probability one whatever is the initial capital. Clearly, it is
sufficient to consider the case where a > 0. Inspecting the formula (8) we infer
that Eλν

1 < 1 for certain ν ∈]0, 1[ and the required assertion follows from the
general result below on the exit probability for the linear equation (6).

Proposition 4 Assume that the following conditions hold:
(a) there is a constant ν ∈]0, 1[ such that Eλν

1 = q < 1 and E|ηn−ξn|ν < ∞;
(b) P (ξ1 > x) > 0 for any x.
Then P (Tu < ∞) = 1 for every u.

Proof. Put En
k := En/Ek,

Sn(p) :=
n∑

k=n−p+1

En
k (ηk − ξk),

and ∆n(p) := Sn − Sn(p), p ∈ N, p ≤ n. Then

∆n(p) = En
n−p

(
En−pu +

n−p∑

k=1

En−p
k (ηk − ξk)

)
= En

n−pSn−p.

Since
|Sn|ν ≤ λν

n|Sn−1|ν + |ηn − ξn|ν
and λn and Sn−1 are independent, we obtain from (a) that E|Sn|ν < C and
E|∆n(p)|ν < Cqp for some constant C.

Let An := {Sn > 0}. For any ε > 0 the set ∩i≤mApi is a subset of
⋂

i≤m

({Spi(p) > −ε}∪{∆pi(p) > ε}) ⊆
⋃

i≤m

{∆pi(p) > ε}∪
⋂

i≤m

{Spi(p) > −ε}.

Since Spi(p), i = 1, 2, ..., is a sequence of i.i.d. random variables, it follows that

P (Tu = ∞) ≤ P (∩i≤mApi) ≤ mCε−νqp + (P{Sp(p) > −ε})m. (11)

Notice that the distribution of Sp(p) coincides with the distribution of

ϑp :=
p∑

k=1

Ek−1(ηk − ξk).

As ϑp is a partial sum of a series absolutely convergent in Lν , the sequence ϑp

converges a.s. to a finite random variable ϑ∞ which takes negative values with
positive probability (because ξ1 is independent of all other random variables and
satisfies (b)). Thus, taking the limit in p, we get that

P (Tu = ∞) ≤ P (ϑ∞ > −ε)m.

Choosing ε small enough to ensure that P (ϑ∞ > −ε) < 1 and letting m tend to
infinity, we obtain the result. 2

Remark. One can extend the above arguments and show that S is a Harris-recurrent,
hence, ergodic process. The distribution of ϑ is its invariant measure.
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5 Small volatility: decay of the ruin probability

Assume that the claims are exponentially distributed, i.e. F (x) = 1 − e−x/µ.
Similarly to the classical case, this assumption allows us to obtain for the ruin
probability an ordinary differential equation (but of a higher order). Indeed, now
the equation (2) is

1
2
σ2u2Φ′′(u) + (au + c)Φ′(u)− αΦ(u) +

α

µ

∫ u

0

Φ(u− y)e−y/µdy = 0. (12)

Notice that

d

du

∫ u

0

Φ(u− y)e−y/µdy = Φ(u)− 1
µ

∫ u

0

Φ(u− y)e−y/µdy.

Differentiating (12) and excluding the integral term we arrive to a third order dif-
ferential equation. The good news is that it does not contain the function itself. In
other words, we obtain a second order differential equation for G = Φ′ which can
be written as

G′′ + p(u)G′ + q(u)G = 0, (13)

where

p(u) :=
1
µ

+ 2
(
1 +

a

σ2

) 1
u

+
2c

σ2

1
u2

,

q(u) :=
2a

µσ2

1
u

+
(

a− α +
c

µ

)
2
σ2

1
u2

.

The substitution G(u) = R(u)Z(u/(2µ)) with

R(u) := exp
{
−1

2

∫ u

1

p(s)ds

}

eliminates the first derivative and yields the equation

Z ′′ − (1 + Qu)Z = 0

where

Qu := 2
(
1− a

σ2

) 1
u

+
4∑

i=2

Ai
1
ui

with certain constants Ai which are of no importance.
Notice that Q2 is integrable at infinity and hence, according to [3], pp. 54-55,

the equation has a fundamental solution

Z±(u) = exp
{
±

(
u +

1
2

∫ u

1

Q̃rdr

)}
(1 + o(1)) = e±uu±(1−a/σ2)(1 + o(1))
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as u → ∞. Since R(u) = e−
1
2µ uu−(1+a/σ2)f(u), where f is a decreasing func-

tion on [1,∞[ bounded away from zero, f(1) = e
1
2µ , we obtain that (13) admits,

as solutions, functions with the following asymptotics:

G+(u) = u−2a/σ2
(1 + o(1)),

G−(u) = u−2e−
1
µ u(1 + o(1)), u →∞.

The differential equation of the third order for Φ has the solutions Φ0(u) = 1 and

Φ+(u) =
∫ ∞

u

r−2a/σ2
(1 + β1(r)) dr,

Φ−(u) =
∫ ∞

u

r−2e−
1
µ r(1 + β2(r)) dr,

where βi(r) → 0 as r → ∞. The ruin probability Ψ := 1 − Φ is the linear
combination of these functions, i.e.

Ψ(u) = C0 + C1Φ+(u) + C2Φ−(u).

For the case ρ > 1 we know from Proposition 1 (i) that Ψ(∞) = 0. Thus,

Ψ(u) = C1

∫ ∞

u

r−ρ(1 + β1(r)) dr + C2

∫ ∞

u

r−2e−
1
µ r(1 + β2(r)) dr.

The first integral decreases at infinity as the power function u1−ρ/(1−ρ) while the
second is exponentially decreasing. But Proposition 1 (ii) asserts that Ψ behaves at
infinity as a power function. This implies that C1 6= 0 and we obtain the assertion
(i) of Theorem 1. 2

References

1. Asmussen S. Ruin Probabilities. World Scientific, Singapore, 2000.
2. Grandell I. Aspects of Risk theory. Springer, Berlin, 1990.
3. Fedoryuk M.V. Asymptotic analysis: linear ordinary differential equations. Springer,

Berlin, 1993.
4. Frolova A.G. Some mathematical models of risk theory. All-Russian School-

Colloquium on Stoch. Methods in Geometry and Analysis. Abstracts, 1994, 117-118.
5. Kalashnikov V. Ruin probability under random interest rate. Manuscript, 1999.
6. Kalashnikov V., Norberg R. Power tailed ruin probabilities in the presence of risky

investments. Preprint. Laboratory of Actuarial Math., Univ. of Copenhagen, 2000.
7. Nyrhinen H. On the ruin probabilities in a general economic environment. Stoch. Proc.

Appl., 83 (1999), 319-330.
8. Nyrhinen H. Finite and infinite time ruin probabilities in a stochastic economic envi-

ronment. Stoch. Proc. Appl., 92 (2001), 265-285.
9. Paulsen J. Stochastic Calculus with Applications to Risk Theory. Lecture Notes, Univ.

of Bergen and Univ. of Copenhagen, 1996.
10. Paulsen J. Sharp conditions for certain ruin in a risk process with stochastic return on

investments. Stoch. Proc. Appl., 75 (1998), 135-148.
11. Paulsen J., Gjessing H. K. Ruin theory with stochastic return on investments. Adv.

Appl. Probab., 29 (1997), 4, 965-985.
12. Shiryaev A.N. Essentials of Stochastic Finance. World Scientific, Singapore, 1999.


