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Abstract

We give a new proof of the classical Dalang-Morton—-Willinger theorem.
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1. Introduction. The Dalang-Morton-Willinger theorem asserts, for a discrete-time
model of security market, that there is no arbitrage if and only if the price process is a
martingale with respect to an equivalent probability measure. This remarkable result
sometimes is referred to as the First Fundamental Theorem of mathematical finance,
[9]. A simple statement suggests a simple proof and many attempts were made to find
a such one, cf. [1], [10], [8], [6], [7], [4], [2]. Various aspects were investigated in details
and the theorem was augmented by additional equivalent conditions revealing its
profound difference from the Harrison-Pliska theorem [3] which is the same criterion
but for the model with finite €2. Unfortunately, all existing proofs are too cumbersome
for lecture courses. This note is a new attempt to provide a concise proof which uses
only results from the standard syllabus.

2. No-arbitrage criteria. Let (2, F, P) be a probability space equipped with a
finite discrete-time filtration (F;), t = 0,...,7, Fr = F, and let S = (5;) be an
adapted d-dimensional process. Let Ry :={¢: { = H - Sy, H € P} where P is the
set of all predictable d-dimensional processes (i.e. H, is F;_j-measurable) and

T
H- ST = ZHtASta ASt = St - Stfl.
=1
Put A7 := Rr—LY; Ar is the closure of Ay in probability, L9 is the set of non-negative
random variables.

Theorem 1 The following conditions are equivalent:
(@) Ar 0119 = {0}; *
(b) f}T N Lg = {O} and AT = AT;
(c) Ar N LY = {0} ) ) )
(d) there is a probability P ~ P with dP/dP € L*™ such that S is a P-martingale.



In the context of mathematical finance this model corresponds to the case where
the “numéraire” is a traded security, S describes the evolution of prices of risky
assets, and H - Sy is the terminal value of a self-financing portfolio. Condition (a) is
interpreted as the absence of arbitrage; it can be written in the obviously equivalent
form Ry N LY = {0} (or H-Sr > 0= H-Sr =0). We include in the formulation
only the basic equivalences: various other ones known in the literature can easily be
deduced from the listed above.

If Q is finite then A7 is closed being a polyhedral cone in a finite-dimensional
space. For infinite Q the set A; may be not closed, see an example in [8], while Ry
is always closed (this can be checked in a similar way as the implication (a) = (b) in
the proof below).

3. Auxiliary results. The following observation is elementary.

Lemma 2 Let " € LY(RY) be such that n := liminf|n"| < oo. Then there are
ii* € LO(R?) such that for all w the sequence of 7*(w) is a convergent subsequence of
the sequence of n™(w).

Proof. Let 7y := 0. Define the random variables 74, := inf{n > 71 : ||n"|—n| < k7'}.
Then 7f := n™ is in L°(R?) and supy |7§| < co. Working further with the sequence
of 7§ we construct, applying the above procedure to the first component, a sequence
of ¥ with convergent first component and such that for all w the sequence of 7j¥(w)
is a subsequence of the sequence of 7} (w). Passing on each step to the newly created
sequence of random variables and to the next component we arrive to a sequence with
the desired properties. O

Remark. The above claim can be formulated as follows: there exists an increasing
sequence of integer-valued random variables o}, such that n°* converges a.s.

For the sake of completeness, we recall the proof of the well-known result due to
Kreps and Yan, [5], [11].

Lemma 3 Let K D —L% be a closed convex cone in L' such that K N L = {0}.
Then there is a probability P ~ P with dP/dP € L* such that E€ <0 for all§ € K.

Proof. By the Hahn-Banach theorem for any x € L}, x # 0, there is z, € L* such
that Fz,£ < Ez,x for all £ € K. Necessarily, z, > 0 and Fz,z > 0. Normalizing, we
assume that z, < 1. The Halmos-Savage theorem asserts that the family of measures
{2, P} contains a countable equivalent subfamily {z,,P, i € N} (i.e., both vanish on
the same sets). Put p := > 27"z, . The measure P = cpP where ¢ = 1/Ep meets
the requirements. O

Remark. The Halmos—Savage theorem is simple and the reference can be replaced
by its proof which is as follows. Consider the larger family {yP} where y are convex
combinations of z,. Then esssuply,~oy can be attained on an increasing sequence of
Ity >0y Clearly, {yx P} is a countable equivalent subfamily of {yP} and it is a convex
envelope of a countable family {z,, P} we are looking for.

4. Proof of Theorem 1. (a) = (b) To show that Ar is closed we proceed by
induction. Let T"= 1. Suppose that H{'AS; —r" — ( a.s. where H{" is Fy-measurable
and ™ € LY. It is sufficient to find Fy-measurable random variables H} which are

convergent a.s. and 7¥ € LY such that ﬁfASl —7* — ( a.s. convergent.



Let €; € Fy form a finite partition of 2. Obviously, we may argue on each €);
separately as on an autonomous measure space (considering the restrictions of random
variables and traces of o-algebras).

Let H; := liminf |H}|. On the set y := {H; < oo} we can take, using Lemma 2,
Fo-measurable HF such that H¥(w) is a convergent subsequence of HJ(w) for every
w; 7 are defined correspondingly. Thus, if €, is of full measure, the goal is achieved.

On Qy :={H, = oo} we put G} := H"/|H}| and h} :=r?/|H}| and observe that
GPAS; — h? — 0 a.s. By Lemma 2 we find Fy-measurable G¥ such that G¥(w) is a
convergent subsequence of G (w) for every w. Denoting the limit by G1, we obtain
that G1AS; = hy where Ay is non-negative, hence, in virtue of (a), GiAS; = 0.

As él(w) # 0, there exists a partition of Qy into d disjoint subsets 2, € Fy such
that G% # 0 on Q. Define H := H — "Gy where 8" := H}/G% on Q). Then
HI'AS, = HPAS; on . We repeat the procedure on each Q) with the sequence
H? knowing that H = 0 for all n. Apparently, after a finite number of steps we
construct the desired sequence.

Let the claim be true for T — 1 and let 1, HPAS, — r® — ( a.s. where HI
are JF;-measurable and r" € L9r. By the same arguments based on the elimination
of non-zero components of the sequence H} and using the induction hypothesis we
replace H' and " by HF and #* such that HF converges a.s. This means that the
problem is reduced to the one with T"— 1 steps.

(b) = (c) Trivial.

(¢) = (d) Notice that for any random variable 7 there is an equivalent probability
P’ with bounded density such that n € L'(P') (e.g., one can take P’ = Ce " P).
Property (c¢) (as well as (a) and (b)) is invariant under equivalent change of probability.
This consideration allows us to assume that all S; are integrable. The convex set
Al = Ap N L' is closed in L'. Since A% N L} = {0}, Lemma 3 ensures the existence
of P ~ P with bounded density and such that E¢ < 0 for all £ € AL in particular,
for £ = +H;AS; where H, is bounded and F;_;-measurable. Thus, E(ASt]E,l) =0.

(d) = (a) Let £ € ApN LY, ie. 0< &< H-Sp. As E(HAS;|Fi_1) = 0, we obtain
by conditioning that EH - Sy = 0. Thus, £ = 0. O
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