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Abstract

We give a new proof of the classical Dalang–Morton–Willinger theorem.
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1. Introduction. The Dalang–Morton–Willinger theorem asserts, for a discrete-time
model of security market, that there is no arbitrage if and only if the price process is a
martingale with respect to an equivalent probability measure. This remarkable result
sometimes is referred to as the First Fundamental Theorem of mathematical finance,
[9]. A simple statement suggests a simple proof and many attempts were made to find
a such one, cf. [1], [10], [8], [6], [7], [4], [2]. Various aspects were investigated in details
and the theorem was augmented by additional equivalent conditions revealing its
profound difference from the Harrison–Pliska theorem [3] which is the same criterion
but for the model with finite Ω. Unfortunately, all existing proofs are too cumbersome
for lecture courses. This note is a new attempt to provide a concise proof which uses
only results from the standard syllabus.

2. No-arbitrage criteria. Let (Ω,F , P ) be a probability space equipped with a
finite discrete-time filtration (Ft), t = 0, ..., T , FT = F , and let S = (St) be an
adapted d-dimensional process. Let RT := {ξ : ξ = H · ST , H ∈ P} where P is the
set of all predictable d-dimensional processes (i.e. Ht is Ft−1-measurable) and

H · ST :=
T∑

t=1

HtΔSt, ΔSt := St − St−1.

Put AT := RT−L0
+; ĀT is the closure of AT in probability, L0

+ is the set of non-negative
random variables.

Theorem 1 The following conditions are equivalent:

(a) AT ∩ L0
+ = {0};

(b) AT ∩ L0
+ = {0} and AT = ĀT ;

(c) ĀT ∩ L0
+ = {0};

(d) there is a probability P̃ ∼ P with dP̃ /dP ∈ L∞ such that S is a P̃ -martingale.



In the context of mathematical finance this model corresponds to the case where
the “numéraire” is a traded security, S describes the evolution of prices of risky
assets, and H · ST is the terminal value of a self-financing portfolio. Condition (a) is
interpreted as the absence of arbitrage; it can be written in the obviously equivalent
form RT ∩ L0

+ = {0} (or H · ST ≥ 0 ⇒ H · ST = 0). We include in the formulation
only the basic equivalences: various other ones known in the literature can easily be
deduced from the listed above.

If Ω is finite then AT is closed being a polyhedral cone in a finite-dimensional
space. For infinite Ω the set A1 may be not closed, see an example in [8], while RT

is always closed (this can be checked in a similar way as the implication (a) ⇒ (b) in
the proof below).

3. Auxiliary results. The following observation is elementary.

Lemma 2 Let ηn ∈ L0(Rd) be such that η := lim inf |ηn| < ∞. Then there are
η̃k ∈ L0(Rd) such that for all ω the sequence of η̃k(ω) is a convergent subsequence of
the sequence of ηn(ω).

Proof. Let τ0 := 0. Define the random variables τk := inf{n > τk−1 : ||ηn|−η| ≤ k−1}.
Then η̃k

0 := ητk is in L0(Rd) and supk |η̃k
0 | < ∞. Working further with the sequence

of η̃n
0 we construct, applying the above procedure to the first component, a sequence

of η̃k
1 with convergent first component and such that for all ω the sequence of η̃k

1(ω)
is a subsequence of the sequence of η̃n

0 (ω). Passing on each step to the newly created
sequence of random variables and to the next component we arrive to a sequence with
the desired properties. �

Remark. The above claim can be formulated as follows: there exists an increasing
sequence of integer-valued random variables σk such that ησk converges a.s.

For the sake of completeness, we recall the proof of the well-known result due to
Kreps and Yan, [5], [11].

Lemma 3 Let K ⊇ −L1
+ be a closed convex cone in L1 such that K ∩ L1

+ = {0}.
Then there is a probability P̃ ∼ P with dP̃ /dP ∈ L∞ such that Ẽξ ≤ 0 for all ξ ∈ K.

Proof. By the Hahn–Banach theorem for any x ∈ L1
+, x 
= 0, there is zx ∈ L∞ such

that Ezxξ < Ezxx for all ξ ∈ K. Necessarily, zx ≥ 0 and Ezxx > 0. Normalizing, we
assume that zx ≤ 1. The Halmos–Savage theorem asserts that the family of measures
{zxP} contains a countable equivalent subfamily {zxi

P, i ∈ N} (i.e., both vanish on
the same sets). Put ρ :=

∑
2−nzxn . The measure P̃ := cρP where c = 1/Eρ meets

the requirements. �

Remark. The Halmos–Savage theorem is simple and the reference can be replaced
by its proof which is as follows. Consider the larger family {yP} where y are convex
combinations of zx. Then ess supI{y>0} can be attained on an increasing sequence of
I{yk>0}. Clearly, {ykP} is a countable equivalent subfamily of {yP} and it is a convex
envelope of a countable family {zxi

P} we are looking for.

4. Proof of Theorem 1. (a) ⇒ (b) To show that AT is closed we proceed by
induction. Let T = 1. Suppose that Hn

1 ΔS1−rn → ζ a.s. where Hn
1 is F0-measurable

and rn ∈ L0
+. It is sufficient to find F0-measurable random variables H̃k

1 which are

convergent a.s. and r̃k ∈ L0
+ such that H̃k

1 ΔS1 − r̃k → ζ a.s. convergent.



Let Ωi ∈ F0 form a finite partition of Ω. Obviously, we may argue on each Ωi

separately as on an autonomous measure space (considering the restrictions of random
variables and traces of σ-algebras).

Let H1 := lim inf |Hn
1 |. On the set Ω1 := {H1 < ∞} we can take, using Lemma 2,

F0-measurable H̃k
1 such that H̃k

1 (ω) is a convergent subsequence of Hn
1 (ω) for every

ω; r̃k are defined correspondingly. Thus, if Ω1 is of full measure, the goal is achieved.

On Ω2 := {H1 = ∞} we put Gn
1 := Hn

1 /|Hn
1 | and hn

1 := rn
1 /|Hn

1 | and observe that
Gn

1ΔS1 − hn
1 → 0 a.s. By Lemma 2 we find F0-measurable G̃k

1 such that G̃k
1(ω) is a

convergent subsequence of Gn
1 (ω) for every ω. Denoting the limit by G̃1, we obtain

that G̃1ΔS1 = h̃1 where h̃1 is non-negative, hence, in virtue of (a), G̃1ΔS1 = 0.

As G̃1(ω) 
= 0, there exists a partition of Ω2 into d disjoint subsets Ωi
2 ∈ F0 such

that G̃i
1 
= 0 on Ωi

2. Define H̄n
1 := Hn

1 − βnG̃1 where βn := Hn
1 /G̃i

1 on Ωi
2. Then

H̄n
1 ΔS1 = Hn

1 ΔS1 on Ω2. We repeat the procedure on each Ωi
2 with the sequence

H̄n
1 knowing that H̄ni

1 = 0 for all n. Apparently, after a finite number of steps we
construct the desired sequence.

Let the claim be true for T − 1 and let
∑T

t=1 Hn
t ΔSt − rn → ζ a.s. where Hn

t

are Ft-measurable and rn ∈ L0
+. By the same arguments based on the elimination

of non-zero components of the sequence Hn
1 and using the induction hypothesis we

replace Hn
t and rn by H̃k

t and r̃k such that H̃k
1 converges a.s. This means that the

problem is reduced to the one with T − 1 steps.

(b) ⇒ (c) Trivial.

(c) ⇒ (d) Notice that for any random variable η there is an equivalent probability
P ′ with bounded density such that η ∈ L1(P ′) (e.g., one can take P ′ = Ce−|η|P ).
Property (c) (as well as (a) and (b)) is invariant under equivalent change of probability.
This consideration allows us to assume that all St are integrable. The convex set
A1

T := ĀT ∩ L1 is closed in L1. Since A1
T ∩ L1

+ = {0}, Lemma 3 ensures the existence

of P̃ ∼ P with bounded density and such that Ẽξ ≤ 0 for all ξ ∈ A1
T , in particular,

for ξ = ±HtΔSt where Ht is bounded and Ft−1-measurable. Thus, Ẽ(ΔSt|Ft−1) = 0.

(d) ⇒ (a) Let ξ ∈ AT ∩L0
+, i.e. 0 ≤ ξ ≤ H ·ST . As Ẽ(HtΔSt|Ft−1) = 0, we obtain

by conditioning that ẼH · ST = 0. Thus, ξ = 0. �
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