A teachers' note on no-arbitrage criteria

Yuri Kabanov and Christophe Stricker

UMR 6623, Laboratoire de Mathématiques, Université de Franche-Comté 16 Route de Gray, F-25030 Besançon Cedex, FRANCE

Abstract

We give a new proof of the classical Dalang–Morton–Willinger theorem.

Key words: no-arbitrage criteria, martingale measure, Kreps-Yan theorem

Mathematics Subject Classification 2000: 60G42

1. Introduction. The Dalang–Morton–Willinger theorem asserts, for a discrete-time model of security market, that there is no arbitrage if and only if the price process is a martingale with respect to an equivalent probability measure. This remarkable result sometimes is referred to as the First Fundamental Theorem of mathematical finance, [9]. A simple statement suggests a simple proof and many attempts were made to find a such one, cf. [1], [10], [8], [6], [7], [4], [2]. Various aspects were investigated in details and the theorem was augmented by additional equivalent conditions revealing its profound difference from the Harrison–Pliska theorem [3] which is the same criterion but for the model with finite Ω . Unfortunately, all existing proofs are too cumbersome for lecture courses. This note is a new attempt to provide a concise proof which uses only results from the standard syllabus.

2. No-arbitrage criteria. Let (Ω, \mathcal{F}, P) be a probability space equipped with a finite discrete-time filtration (\mathcal{F}_t) , t = 0, ..., T, $\mathcal{F}_T = \mathcal{F}$, and let $S = (S_t)$ be an adapted *d*-dimensional process. Let $R_T := \{\xi : \xi = H \cdot S_T, H \in \mathcal{P}\}$ where \mathcal{P} is the set of all predictable *d*-dimensional processes (i.e. H_t is \mathcal{F}_{t-1} -measurable) and

$$H \cdot S_T := \sum_{t=1}^T H_t \Delta S_t, \qquad \Delta S_t := S_t - S_{t-1}.$$

Put $A_T := R_T - L^0_+$; \bar{A}_T is the closure of A_T in probability, L^0_+ is the set of non-negative random variables.

Theorem 1 The following conditions are equivalent:

- (a) $A_T \cap L^0_+ = \{0\};$
- (b) $A_T \cap L_+^0 = \{0\}$ and $A_T = \bar{A}_T$;
- (c) $\bar{A}_T \cap L^0_+ = \{0\};$
- (d) there is a probability $\tilde{P} \sim P$ with $d\tilde{P}/dP \in L^{\infty}$ such that S is a \tilde{P} -martingale.

In the context of mathematical finance this model corresponds to the case where the "numéraire" is a traded security, S describes the evolution of prices of risky assets, and $H \cdot S_T$ is the terminal value of a self-financing portfolio. Condition (a) is interpreted as the absence of arbitrage; it can be written in the obviously equivalent form $R_T \cap L^0_+ = \{0\}$ (or $H \cdot S_T \ge 0 \Rightarrow H \cdot S_T = 0$). We include in the formulation only the basic equivalences: various other ones known in the literature can easily be deduced from the listed above.

If Ω is finite then A_T is closed being a polyhedral cone in a finite-dimensional space. For infinite Ω the set A_1 may be not closed, see an example in [8], while R_T is always closed (this can be checked in a similar way as the implication $(a) \Rightarrow (b)$ in the proof below).

3. Auxiliary results. The following observation is elementary.

Lemma 2 Let $\eta^n \in L^0(\mathbf{R}^d)$ be such that $\underline{\eta} := \liminf |\eta^n| < \infty$. Then there are $\tilde{\eta}^k \in L^0(\mathbf{R}^d)$ such that for all ω the sequence of $\tilde{\eta}^k(\omega)$ is a convergent subsequence of the sequence of $\eta^n(\omega)$.

Proof. Let $\tau_0 := 0$. Define the random variables $\tau_k := \inf\{n > \tau_{k-1} : ||\eta^n| - \underline{\eta}| \le k^{-1}\}$. Then $\tilde{\eta}_0^k := \eta^{\tau_k}$ is in $L^0(\mathbf{R}^d)$ and $\sup_k |\tilde{\eta}_0^k| < \infty$. Working further with the sequence of $\tilde{\eta}_0^n$ we construct, applying the above procedure to the first component, a sequence of $\tilde{\eta}_1^k$ with convergent first component and such that for all ω the sequence of $\tilde{\eta}_1^k(\omega)$ is a subsequence of the sequence of $\tilde{\eta}_0^n(\omega)$. Passing on each step to the newly created sequence of random variables and to the next component we arrive to a sequence with the desired properties. \Box

Remark. The above claim can be formulated as follows: there exists an increasing sequence of integer-valued random variables σ_k such that η^{σ_k} converges a.s.

For the sake of completeness, we recall the proof of the well-known result due to Kreps and Yan, [5], [11].

Lemma 3 Let $K \supseteq -L^1_+$ be a closed convex cone in L^1 such that $K \cap L^1_+ = \{0\}$. Then there is a probability $\tilde{P} \sim P$ with $d\tilde{P}/dP \in L^{\infty}$ such that $\tilde{E}\xi \leq 0$ for all $\xi \in K$.

Proof. By the Hahn–Banach theorem for any $x \in L^1_+$, $x \neq 0$, there is $z_x \in L^\infty$ such that $Ez_x \xi < Ez_x x$ for all $\xi \in K$. Necessarily, $z_x \geq 0$ and $Ez_x x > 0$. Normalizing, we assume that $z_x \leq 1$. The Halmos–Savage theorem asserts that the family of measures $\{z_x P\}$ contains a countable equivalent subfamily $\{z_{x_i} P, i \in \mathbf{N}\}$ (i.e., both vanish on the same sets). Put $\rho := \sum 2^{-n} z_{x_n}$. The measure $\tilde{P} := c\rho P$ where $c = 1/E\rho$ meets the requirements. \Box

Remark. The Halmos–Savage theorem is simple and the reference can be replaced by its proof which is as follows. Consider the larger family $\{yP\}$ where y are convex combinations of z_x . Then $\operatorname{ess\,sup} I_{\{y>0\}}$ can be attained on an increasing sequence of $I_{\{y_k>0\}}$. Clearly, $\{y_kP\}$ is a countable equivalent subfamily of $\{yP\}$ and it is a convex envelope of a countable family $\{z_{x_i}P\}$ we are looking for.

4. Proof of Theorem 1. $(a) \Rightarrow (b)$ To show that A_T is closed we proceed by induction. Let T = 1. Suppose that $H_1^n \Delta S_1 - r^n \to \zeta$ a.s. where H_1^n is \mathcal{F}_0 -measurable and $r^n \in L^0_+$. It is sufficient to find \mathcal{F}_0 -measurable random variables \tilde{H}_1^k which are convergent a.s. and $\tilde{r}^k \in L^0_+$ such that $\tilde{H}_1^k \Delta S_1 - \tilde{r}^k \to \zeta$ a.s. convergent. Let $\Omega_i \in \mathcal{F}_0$ form a finite partition of Ω . Obviously, we may argue on each Ω_i separately as on an autonomous measure space (considering the restrictions of random variables and traces of σ -algebras).

Let $\underline{H}_1 := \liminf |H_1^n|$. On the set $\Omega_1 := \{\underline{H}_1 < \infty\}$ we can take, using Lemma 2, \mathcal{F}_0 -measurable \tilde{H}_1^k such that $\tilde{H}_1^k(\omega)$ is a convergent subsequence of $H_1^n(\omega)$ for every ω ; \tilde{r}^k are defined correspondingly. Thus, if Ω_1 is of full measure, the goal is achieved.

On $\Omega_2 := \{\underline{H}_1 = \infty\}$ we put $G_1^n := H_1^n/|H_1^n|$ and $h_1^n := r_1^n/|H_1^n|$ and observe that $G_1^n \Delta S_1 - h_1^n \to 0$ a.s. By Lemma 2 we find \mathcal{F}_0 -measurable \tilde{G}_1^k such that $\tilde{G}_1^k(\omega)$ is a convergent subsequence of $G_1^n(\omega)$ for every ω . Denoting the limit by \tilde{G}_1 , we obtain that $\tilde{G}_1 \Delta S_1 = \tilde{h}_1$ where \tilde{h}_1 is non-negative, hence, in virtue of $(a), \tilde{G}_1 \Delta S_1 = 0$.

As $\tilde{G}_1(\omega) \neq 0$, there exists a partition of Ω_2 into d disjoint subsets $\Omega_2^i \in \mathcal{F}_0$ such that $\tilde{G}_1^i \neq 0$ on Ω_2^i . Define $\bar{H}_1^n := H_1^n - \beta^n \tilde{G}_1$ where $\beta^n := H_1^n / \tilde{G}_1^i$ on Ω_2^i . Then $\bar{H}_1^n \Delta S_1 = H_1^n \Delta S_1$ on Ω_2 . We repeat the procedure on each Ω_2^i with the sequence \bar{H}_1^n knowing that $\bar{H}_1^{ni} = 0$ for all n. Apparently, after a finite number of steps we construct the desired sequence.

Let the claim be true for T-1 and let $\sum_{t=1}^{T} H_t^n \Delta S_t - r^n \to \zeta$ a.s. where H_t^n are \mathcal{F}_t -measurable and $r^n \in L^0_+$. By the same arguments based on the elimination of non-zero components of the sequence H_1^n and using the induction hypothesis we replace H_t^n and r^n by \tilde{H}_t^k and \tilde{r}^k such that \tilde{H}_1^k converges a.s. This means that the problem is reduced to the one with T-1 steps.

 $(b) \Rightarrow (c)$ Trivial.

 $(c) \Rightarrow (d)$ Notice that for any random variable η there is an equivalent probability P' with bounded density such that $\eta \in L^1(P')$ (e.g., one can take $P' = Ce^{-|\eta|}P$). Property (c) (as well as (a) and (b)) is invariant under equivalent change of probability. This consideration allows us to assume that all S_t are integrable. The convex set $A_T^1 := \bar{A}_T \cap L^1$ is closed in L^1 . Since $A_T^1 \cap L_+^1 = \{0\}$, Lemma 3 ensures the existence of $\tilde{P} \sim P$ with bounded density and such that $\tilde{E}\xi \leq 0$ for all $\xi \in A_T^1$, in particular, for $\xi = \pm H_t \Delta S_t$ where H_t is bounded and \mathcal{F}_{t-1} -measurable. Thus, $\tilde{E}(\Delta S_t | \mathcal{F}_{t-1}) = 0$.

 $(d) \Rightarrow (a)$ Let $\xi \in A_T \cap L^0_+$, i.e. $0 \le \xi \le H \cdot S_T$. As $E(H_t \Delta S_t | \mathcal{F}_{t-1}) = 0$, we obtain by conditioning that $\tilde{E}H \cdot S_T = 0$. Thus, $\xi = 0$. \Box

Acknowledgement. The authors are grateful to H.-J. Engelbert and H. von Weizsäcker who indicated that Lemma 2 allows to avoid measurable selection arguments.

References

- Dalang R.C., Morton A., Willinger W. Equivalent martingale measures and no-arbitrage in stochastic securities market model. *Stochastics and Stochastic Reports*, **29** (1990), 185–201.
- [2] Delbaen F. The Dalang–Morton–Willinger theorem. Preprint.
- [3] Harrison M., Pliska S. Martingales and stochastic integrals in the theory of continuous trading. *Stochastic Processes and their Applications*, **11**, (1981), 215– 260.

- [4] Jacod J., Shiryaev A.N. Local martingales and the fundamental asset pricing theorem in the discrete-time case. *Finance and Stochastics*, **2** (1998), 3, 259–273.
- [5] Kreps D.M. Arbitrage and equilibrium in economies with infinitely many commodities. J. Math. Economics, 8 (1981), 15-35.
- [6] Kabanov Yu.M., Kramkov D.O. No-arbitrage and equivalent martingale measure: a new proof of the Harrison-Pliska theorem. *Probab. Theory its Appl.*, **39** (1994), 3, 523–527.
- [7] Rogers L.C.G. Equivalent martingale measures and no-arbitrage. Stochastics and Stochastic Reports, 51 (1994), 41–51.
- [8] Schachermayer W. A Hilbert space proof of the fundamental theorem of asset pricing in finite discrete time. *Insurance: Math. Econ.*, **11** (1992), 1–9.
- [9] Shiryaev A.N. Essentials of Stochastic Mathematical Finance. World Scientific, 1999.
- [10] Stricker Ch. Arbitrage et lois de martingale. Annales de l'Institut Henri Poincaré. Probab. et Statist., 26 (1990), 3, 451-460.
- [11] Yan J.A. Caractérisation d'une classe d'ensembles convexes de L^1 et H^1 . Séminaire de Probabilité XIV. Lect. Notes Math., 784 (1980), 260-280.