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1 Introduction

The famous result of Harrison–Pliska [?], known also as the Fundamental Theorem
on Asset (or Arbitrage) Pricing (FTAP) asserts that a frictionless financial market
is free of arbitrage if and only if the price process is a martingale under a proba-
bility measure equivalent to the objective one. The original formulation involved
the assumption that the underlying probability space (Ω,F , P ) (in other words, the
number of states of the nature) is finite; it has been removed in the subsequent study
of Dalang–Morton–Willinger [?]. It is worth to note that the passage from finite to
infinite Ω is by no means trivial: instead of purely geometric considerations (which
make the Harrison–Pliska theorem so attractive for elementary courses in financial
economics) much more delicate topological or measure-theoretical arguments must
be used. These mathematical aspects were investigated in details by a number of
authors (see, e.g., [?], [?], [?], [?], [?]). The aim of this note is to present an ex-
tension of the arbitrage pricing theorem for a multi-asset multi-period model with
finite Ω and proportional transaction costs. We use the geometric formalism devel-
oped in [?], [?], and [?]. Our result makes clear that the concept of the equivalent
martingale measure, though useful in the context of frictionless market models, has
no importance (and even misleading) in a more realistic situation of transaction
costs. We track how the dual variables in our more general model “degenerate” into
densities of martingale measures. Our paper contains also a hedging theorem which
is free from any auxiliary assumptions (cf. with results in [?], [?], and [?]). In spite
that the results are mathematically simple, they are not deductible, to the best of
our knowledge, from the existing in the literature. Their extensions for the arbi-
trary probability space and, further, to the continuous-time setting, require more
sophisticated tools and will be published elsewhere.

The reader is invited to compare the suggested approach to that of the important
article by Jouini and Kallal [?], conceptually different not only at the level of model-
ing (continuous-time setting with bid and ask prices) but also in the formulation of
the no-arbitrage criteria, see the end of our note. An attempt to find the arbitrage
pricing theorem (for the binomial model) can be found in the preprint [?].

Do not assuming that the reader has any background in random processes
above the definitions and elementary properties of martingales and supermartin-
gales, we explain standard (and very convenient) notations of stochastic calcu-
lus used throughout the paper. Namely, for X = (Xt) and Y = (Yt) we define
X− := (Xt−1), ΔXt := Xt − Xt−1, and, at last,

X · Yt :=
t∑

k=0

XkΔYk,

for the discrete-time integral (here X and Y can be scalar or vector-valued). For
finite Ω, if X is a predictable process (i.e., X− is adapted) and Y is a martingale,
then X · Y is a martingale. The product formula Δ(XY ) = XΔY + Y−ΔX is
obvious. The books [?] and [?] may serve as references in convex analysis.
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2 Market with transaction costs

Let (Ω,F , P ) be a finite probability space equipped with a discrete-time filtration
F = (Ft)0≤t≤T and an adapted d-dimensional process S = (St), S0 = s, having the
strictly positive components and describing the dynamics of prices of d assets, e.g.,
currencies quoted in some reference asset (say, in “euro”). We assume that F0 is
trivial.

We consider a model with proportional transaction costs given by a d×d matrix
Λ = (λij) with λij ≥ 0 and λii = 0.

The agent’s positions at time t can be described either by the vector of their
values in “euros”

Vt = (V 1
t , . . . , V d

t )

or by the vector of “physical” quantities

V̂t = (V̂ 1
t , . . . , V̂ d

t );

the obvious relation V̂ i
t := V i

t /Si
t is just a definition of the “hat” operator.

Formalizing the notion of self-financing portfolio, we define its dynamics as fol-
lows:

V i = vi + V̂ i
− · Si + Bi, i ≤ d, (1)

where

Bi :=
d∑

j=1

Lji −
d∑

j=1

(1 + λij) · Lij, (2)

the adapted increasing process Lij represents the net cumulative transfers from the
i-th to the j-th asset under transaction costs. By convention, S0− = s, L0− = 0,
and, hence, V0− = 0.

The above relations have an obvious sense: the increment ΔV i
t of the value

invested into the i-th asset (at the end of the trading date t) consists of two parts:
V̂ i

t−1ΔSi
t , due to the price movements, and ΔBt, due to the agent’s actions at the

date t.

In our setting, the agent can choose at the time t, using only the information
available to this date, a matrix formed by positive Ft-measurable random variables
ΔLij which are interpreted as the net values “arriving” to the position i from the
position j. To increase the value in the i-th position for one unit by moving funds
from the position j, the agent should decrease the value of the latter for 1 + λji

units, paying for this transfer λji units as the transaction costs.

Of course, the dynamics of the portfolio expressed in units of assets depends
exclusively on agent’s actions. Thus, instead of (??), the model can be specified by
the simpler relations

V̂ i = v̂i + (1/Si) · Bi, i ≤ d, (3)

where the constant v̂i := vi/Si
0 is the initial endowment in units. The obvious

equivalence of these two descriptions can be easily justified by formal calculations.
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Indeed, it follows from the definition of the “hat” operator, the product formula,
and the above relation that

V i = V̂ iSi = v̂iSi
0 + V̂ i

− · Si + Si · V̂ i = vi + V̂ i
− · Si + Bi.

Since the dynamics of a portfolio depends, in fact, on the changes in positions
(i.e. on ΔB) rather than on chosen transfers ΔL (which can be done, in general,
with much larger flexibility), it is natural to define “controls” or “strategies” in this
model directly in terms of the process B. To this aim we introduce the set M ⊆ Rd

consisting of all x for which there exists a “transfer” matrix (aij) with nonnegative
entries such that

xi = −
d∑

j=1

aji +
d∑

j=1

(1 + λij)aij, i ≤ d. (4)

The set M , being the image of the polyhedral cone Rd2

+ under a linear mapping, is
a polyhedral cone. Its dual positive cone

M∗ := {w ∈ Rd : inf
x∈K

wx ≥ 0}

is also a polyhedral cone which can be easily described by homogeneous linear in-
equalities. Indeed, for x given by (??)

wx =
d∑

i=1

wi

⎛
⎝−

d∑
j=1

aji +
d∑

j=1

(1 + λij)aij

⎞
⎠ =

d∑
i,j=1

[−wj + (1 + λij)wi]aij.

Thus,
M∗ = {w ∈ Rd : wj − (1 + λij)wi ≤ 0, 1 ≤ i, j ≤ d}.

We define as a strategy any adapted process B such that for all t ≥ 0 the random
variables ΔBt take values in −M . To make explicit the dependence on the strategy
and the initial point we shall use the notation V v,B (or V B if v = 0).

The sets of strategies and corresponding value processes starting from v will
be denoted, respectively, by B and Vv. In the case of finite Ω, the Ft-measurable
functions are those which are constants on the sets of the partition generating the σ-
algebra Ft. It follows that any B ∈ B admits the representation (??) with a certain
adapted matrix-valued process L with the increasing components; in general, L is
not uniquely defined by B.

The solvency region is the polyhedral cone K = M + Rd
+. By definition, x ∈ K

if there exists a “transfer” matrix (aij) with nonnegative entries and a vector l ∈ Rd
+

such that

xi = −
d∑

j=1

aji +
d∑

j=1

(1 + λij)aij + li, i ≤ d. (5)

The closed convex cone K induces the partial ordering: x1 � x2 if x1−x2 ∈ K. The
dual positive cone of K is

K∗ = M∗ ∩ Rd
+ = {w ∈ Rd

+ : wj − (1 + λij)wi ≤ 0, i, j ≤ d}. (6)
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Let ei be the i-th unit vector of the canonical base in Rd and 1 :=
∑d

i=1 ei. In the
case of the frictionless market, where all λij are equal to zero, M is the hyperplane
{x : x1 = 0} orthogonal to the line M∗ = {x : x = α1, α ∈ R}, and K is a
halfspace {x : x1 ≥ 0} orthogonal to the ray K∗ = {x : x = α1, α ∈ R+}.

In the general case we classify the assets by inducing in the set J := {1, . . . , d} a
structure of a directed graph with the corresponding equivalence relation using the
Boolean matrix (εij) with εij := I{λij=0}.

We say that the asset i is (freely) convertible into the asset j (notation: i → j)
if there are i0, . . . , iq such that i0 = i, iq = j, and λi0i1 = λi1i2 = . . . = λiq−1iq = 0,
i.e.

εi0i1εi1i2 . . . εiq−1iq = 1. (7)

By definition, i ∼ j if i → j and j → i. This equivalence relation splits J into classes
of equivalence J1, . . . , Jr, r ≤ d. Each Jk consists of all assets which are mutually
convertible free of charge (though, maybe, not by a single transfer).

This simple and well-known construction (cf. with the classification of states
of a Markov chain with a transition matrix (pij) where εij = I{pij>0}) gives more
flexibility in describing properties of the model.

Let us consider the set F := K ∩ (−K) which is a linear subspace of Rd. It is
not difficult to prove (see Proposition 5.2 in [?]) that

F =
{
x ∈ Rd :

∑
i∈Jk

xi = 0, k ≤ r
}
.

Since F ∗ = K∗ − K∗, we conclude that the linear space spanned by the cone K∗ is
generated by the orthogonal vectors 1k :=

∑
i∈Jk

ei, k ≤ r.

The components wi and wj of the vector w ∈ K∗ coincide when i and j belong
to the same class of equivalence. This follows from (??) because there is a loop
containing i and j with consecutive frictionless transfers. Denoting by ĩ the class
containing i we can write that

K∗ = {w ∈ Rd
+ : wj − (1 + λij)wi ≤ 0, if ĩ �= j̃, wj = wi, if ĩ = j̃, i, j ≤ d}.

It is easy to see that the relative interior of K∗ is given by

ri K∗ = {w ∈ Rd
+ : wj − (1 + λij)wi < 0, if ĩ �= j̃, wj = wi > 0, if ĩ = j̃, i, j ≤ d}.

If r = 1 then F = {x : x1 = 0} but M coincides with F only when all λij = 0;
if it is not the case, M = K.

We introduce the linear mapping Θ : Rd → Rr putting (Θx)m :=
∑

i∈Jm
xi,

m ≤ r. For Θ∗ : Rr → Rd we have, by definition of the dual operator, Θ∗y = w
with wi = yk when i ∈ Jk.

Define the polyhedral cone K̃ := ΘK generating the partial ordering �̃. Then
K̃∗ = (Θ∗)−1K∗ and

K̃∗ = {y ∈ Rr
+ : ym − (1 + λ̃lm)yl ≤ 0, l,m ≤ r}
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where
λ̃lm := min{λij : i ∈ Jl, j ∈ Jm}.

The cone K̃∗ has the non-empty interior

int K̃∗ = {y ∈ Rr
+ : ym − (1 + λ̃lm)yl < 0, l,m ≤ r, l �= m}.

Clearly, x � 0 if and only if Θx�̃0 expressing the fact that the agent may account
his capital using “aggregated” positions within each class. In the case with only one
class of equivalence (e.g., when there is no friction), K̃∗ = R+ and all positions can
be aggregated.

If y ∈ int K̃∗ then there exists a constant κy such that for all x ∈ K̃ we have the
inequality

κy|x| ≤ yx. (8)

For the reason of simplicity, the above notions were developed with Λ = (λij)
being a constant matrix. There are no changes if Λ is an adapted matrix-valued
process (with positive entries). In such a case the introduced objects will depend on
ω and t but in conventional notations of stochastic processes they are often omitted
if there is no ambiguity.

We denote by L0(Kt,Ft) the set of all Ft-measurable random variables ξ such
that ξ(ω) ∈ Kt(ω) and alleviate the notation by omitting FT .

Let Ω = {ω1, ..., ωN}. One can identify, by a linear isomorphism, the set of all
mappings from Ω into Rd with the Euclidean space (Rd)⊗N . It is an easy exercise
to verify that L0(KT ) is a polyhedral cone in this space; the set

ΘT L0(KT ) = L0(ΘT KT ) = L0(K̃T )

is a polyhedral cone in (Rr)⊗N .

For v ∈ Rd we define the convex sets

Rv
T := {V v,B

T : B ∈ B}
of the attainable wealth and

Av
T := {U ∈ L0(Rd) : V v,B

T � U for some B ∈ B}
of all hedgeable claims. It is easy to see that R0

T and A0
T = R0

T − L0(KT ) are also
polyhedral cones.

3 Arbitrage pricing theorem.

From now on we assume that Λ is an adapted random process.

We consider as a weak arbitrage opportunity at T any strategy B such that
V B

T ∈ L0(KT ) but V B
T /∈ L0(FT ), or, equivalently, ΘT V B

T �̃T 0 but ΘT V B
T �= 0.
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For such a strategy the wealth V B
T in spite that after liquidating the negative

positions, possibly, is equal to zero, may have an interest for certain agents, e.g., for
those who are not constrained by transaction costs.

We say that a strategy B ∈ BT is a strict arbitrage opportunity at T if V B
T ∈

L0(KT ) and P (V B
T ∈ int KT ) > 0.

We may formulate the “strict no-arbitrage” condition at the date T (excluding
weak arbitrage opportunities) in two forms: either as

NAs
T . R0

T ∩ L0(KT ) ⊆ L0(FT )

or as

NAs
T . A0

T ∩ L0(KT ) ⊆ L0(FT ).

At first glance, the second version is stronger since R0
T ⊆ A0

T . In fact, they are
equivalent: if V B

T − k ∈ L0(KT ) where k ∈ L0(KT ) then V B
T ∈ L0(KT ) as well and

the first property implies the second. In spite that the use of R0
T is more natural

from the point of view of finance, the formulation involving A0
T is not only convenient

mathematically but may serve as a starting point for deep generalizations of FTAP
in the theory of continuous trading.

Respectively, the “weak no-arbitrage” condition at the date T (excluding strict
arbitrage opportunities) is:

NAw
T . A0

T ∩ L0(KT ) ⊆ L0(∂KT )

or, equivalently,

NAw
T . R0

T ∩ L0(KT ) ⊆ L0(∂KT ).

The equivalence of these two versions is also easy to verify using the following
simple geometric observation: if k1 ∈ ∂K, k2 ∈ K, k1 − k2 ∈ K, then k1 − k2 ∈ ∂K.

Notice that NAw
T ⇐⇒ NAw

t ∀ t ≤ T : the absence of strict arbitrage opportuni-
ties at T implies that they do not exist on the whole interval [0, T ]. Indeed, let
B = (Bs)s≤t, t < T , be a strict arbitrage opportunity at t. Liquidating in a suitable
way all positions by transferring values to the first one, we may assume that the
first coordinate of V B

t (as well as V̂ B
t ) is positive and different from zero while all

other coordinates vanish. Put ΔBs := 0 for s > t. Then B = (Bs)s≤T is a strict
arbitrage opportunity at T .

Let DT be the set of Rd
+-valued martingales Z = (Zt)t≤T with Ẑt ∈ L0(K∗

t ,Ft)
for all t ∈ [0, T ]. We introduce the conditions

Hs
T . There exists Z(T ) ∈ DT such that Ẑ

(T )
T ∈ L0(ri K∗

T ).

Hw
T . There exists Zo ∈ DT such that |Ẑo

T | > 0.

Lemma 3.1 For a process Z ∈ DT the following properties are equivalent:

(a) |ẐT | > 0;

(b) Ẑi
T > 0 for every i ≤ d;

(c) ẐT ξ > 0 for every ξ ∈ L0(int KT );

(d) Zi
T > 0 for every i ≤ d;

(e) Zi
t > 0 for every i ≤ d and t ≤ T .
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Proof. The equivalence of (b) and (d) is obvious. The properties (d) and (e) hold
simultaneously, because Zi, being positive martingales, after hitting zero remain
zero forever. Of course, (b) ⇒ (a). Since ei ∈ int KT we have (c) ⇒ (b). At last, to
get the implication (a) ⇒ (c), notice that for ξ ∈ L0(int KT )

ẐT ξ ≥ κξ|ẐT |

for some κξ > 0. �

Thus, in particular, Hw
T ⇐⇒ Hw

t ∀ t ≤ T .

Theorem 3.2 (i) NAs
T ⇐⇒ Hs

T ;

(ii) NAw
T ⇐⇒ Hw

T .

Before the proof we explain why the above assertion is a direct generalization of
the Harrison–Pliska theorem. Indeed, in the case of the frictionless market F = ∂K
(hence, NAs

T = NAw
T ) and the set L0(F ) consists of random vectors ξ such that

ξ1 = 0 (i.e. the sum of all components is zero). Thus, if the terminal value of a
portfolio is a random vector with values in the solvency cone K, i.e. the sum of
its components is non-negative, then this sum is equal to zero. This is exactly the
classic definition of the no-arbitrage property. On the other side, all the components
of Z(T ) are identical. Define on [0, T ] the process ρ(T ) := Ẑ(T )S1 which is a strictly
positive martingale (being strictly positive at T ). Normalizing, we may assume that

Eρ
(T )
T = 1. Hence, P̃ := ρ

(T )
T P is the equivalent martingale measure in the sense

that all the processes Si/S1 are P̃ martingales. Usually in the literature, the process
S1 at the very beginning is chosen as the numéraire (“bond” or “bank account”),
i.e. S1 ≡ 1.

Example. Let us consider the (deterministic) one-period two-asset model with
(S1

0 , S
2
0) = (1, 1) and (S1

1 , S
2
2) = (1, 2). Assume that the entries of Λ are equal to

zero except λ12 = λ. The vectors (1, 1) and (1, 1 + λ) are generators of K∗. Clearly,
transfers at T = 1 cannot increase the value, so the only strategy to be inspected is
with ΔB0 = (−(1+λ), 1) (the transfers are ΔL12

0 = 1, ΔL21
0 = 0) and ΔB1 = (0, 0).

So, V B
1 = (−(1+λ), 2). For λ ∈ [0, 1[ we have V B

1 ∈ int K, i.e. B is a strict arbitrage
opportunity, for λ = 1 the model satisfies NAw

1 condition but the strategy B is a
weak arbitrage opportunity, and if λ > 1 the model enjoys NAs

1 property.

We can extend the model by assuming that at the second period S2
2 takes values

ε and 1/ε, say, with probabilities 1/2. For λ = 1 this model satisfies NAs
2 when

the parameter ε > 2 (i.e. the price increment ΔS2
2 takes a negative and a positive

value). Thus, NAs
T does not imply NAs

t for t < T .

Proof of Theorem ??. We start with the following

Lemma 3.3 For every Z ∈ DT and V = V B, B ∈ B, the process ẐV is a super-
martingale.
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Proof. The claim follows because in the right-hand side of the easily verified identity

ẐV = V̂− · Z + Ẑ · B

(following from (??) and the product formula) the first term is a martingale and the
second is a decreasing process. �

As in the classic case, the implications Hs
T ⇒ NAs

T and Hw
T ⇒ NAw

T are easy.

If V ∈ V is such that VT ∈ L0(KT ) then for every Z ∈ DT we have ẐT VT ≥ 0.
But, in virtue of the above lemma, EẐT VT ≤ 0. Thus, ẐT VT = 0.

In the case of Hs
T where Ẑ

(T )
T ∈ L0(ri K∗

T ) we have in virtue of (??) that

Ẑ
(T )
T VT = Θ∗−1

T Ẑ
(T )
T ΘT VT ≥ κ|ΘT VT |

for some positive constant κ. Thus, VT ∈ L0(FT ) and the condition NAs
T is fulfilled.

In the case of Hw
T the relation Ẑo

T VT = 0 implies that VT ∈ L0(∂KT ).

The converse implications are also easy: they are proved by a standard argument
based on the finite-dimensional separation theorem.

Let NAs
T holds. Then

ΘT A0
T ∩ L0(ΘT KT ) = {0}.

Let {Uj, j ≤ m}, be the set of all (non-trivial) generators of the polyhedral cone
L0(ΘT KT ). Let ηj �= 0 be an element of L0(Rr) which separates Uj and ΘT A0

T , i.e.
the following inequality holds:

sup
ξ∈ΘT A0

T

Eηjξ < EηjUj. (9)

Because the set ΘT A0
T contains the cone −L0(K̃T ), we have necessarily ηj ∈ L0(K̃∗

T ).
Moreover, EηjUj > 0. Put η := n−1 ∑

j ηj. Since EηU j > 0 for all generators Uj,

we have that η ∈ L0(int K̃∗
T ). Define the random variable ẐT := Θ∗η. Recall that

K̃∗
T = Θ∗−1

T KT . Thus, ẐT ∈ L0(ri K∗
T ). The process Z with

Zi
t := E(Ẑi

T Si
T |Ft) (10)

has the properties required in Hs
T . We need only to check that Ẑt ∈ L0(K∗

t ,Ft) for
all t ≤ T . It follows from (??) that

sup
ξ∈A0

T

EẐT ξ < ∞ (11)

and we conclude by Lemma ?? given below.

Lemma 3.4 Let Z be the process defined by (??) where ẐT ∈ L0(K∗
T ) is such that

(??) holds. Then Ẑt ∈ L0(K∗
t ,Ft) for all t ≤ T .
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Proof. Take arbitrary ξ ∈ L0(Mt,Ft) with ξi :=
∑

j((1+λij)αij−αji), where αij ≥ 0.
For any fixed t and β ∈ L0(R+,Ft) we consider the buy-and-hold strategy L with
Lij := βαijI[t,T ]. Obviously,

EẐT V v,L
T = EZT V̂ v,L

T = EZT V̂0 + EZT B̂t = Z0V̂0 + EZtB̂t = Ẑ0V0 − EβẐtξ.

As β is arbitrary, (??) implies that Ẑtξ ≥ 0. But Zi ≥ 0 and hence Ẑsζ ≥ 0 for all
ζ ∈ L0(Kt,Ft). �

Assume now that NAw
T holds. Take a countable set {Ui : i ∈ N} dense in

L0(KT ) \ L0(∂KT ) and including the random variables e1I{ωj}, j ≤ N . Separate
each Ui from A0

T by a functional ηi with E|ηi| = 1 to obtain the inequality

sup
ξ∈A0

T

Eηiξ < EηiUi.

As above, we infer that ηi ∈ L0(K∗
T ) and EηiUi > 0. Put ẐT :=

∑
i 2

−iηi. Then
ẐT ∈ L0(K∗

T ) and EẐT Ui > 0 for all i. In particular, we have that EẐT e1I{ωj} > 0.

Hence Ẑ1
T > 0 a.s. �

4 Hedging theorem

Let C be a Rd-valued FT -measurable random variable, interpreted as a contingent
claim of values of corresponding assets.

Our aim now is to describe the set of all initial endowments starting from which
one can “super-replicate” the contingent claim C by a terminal value of a certain
self-financing portfolio.

The formal description of the convex set of hedging endowments (in values) is
as follows:

Γ := {v ∈ Rd : ∃ B ∈ B such that V v,B
T � C}.

We introduce also the closed convex set

D := {v ∈ Rd : sup
Z∈D

E(ẐT C − Ẑ0v) ≤ 0} =
⋂

Z∈D
{v ∈ Rd : Ẑ0v ≥ EẐT C}.

Theorem 4.1 We have Γ = D.

By Lemma ?? for every process V ∈ V
Ẑ0v ≥ EẐ0V0 ≥ EẐT VT ≥ EẐT C

and the “easy” inclusion Γ ⊆ D holds.

Take now v /∈ Γ. To show that v /∈ D we need to find Z ∈ DT with Ẑ0v < EẐT C.
Since C �∈ Av

T , by the separation theorem

sup
U∈Av

T

EẐT U < EẐT C (12)
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for some ẐT ∈ L0(Rd) with Ẑi
T ≥ 0 due to the inclusion −L0(Rd

+) ⊆ A0
T . Define Z

in accordance with (??). It follows from Lemma ?? (which holds also with Av
T ) that

Z ∈ DT . Since Ẑ0v = EẐT V v,0
T and V v,0

T ∈ Av
T , (??) yields the desired inequality. �

5 Final comments

One can observe that the different matrices Λ of transaction costs coefficients may
generate the same geometric structures of the problem (i.e., the solvency cone).
Moreover, in multi-asset models sometimes is tacitly assumed that all exchanges
are done through the money and only transaction costs coefficients for buying and
selling assets (λ1i and λi1) are specified. In the need, one can complete the matrix Λ
by assigning sufficiently large values of the remaining transaction costs coefficients
to make the direct transfers prohibitively expensive. As an alternative, a purely
geometric approach seems to be useful. The model considered in this paper allows
easily for the following generalization. Assume that the portfolio dynamics is given
by the relation (??) (or (??)) where the adapted process B is such that its increments
ΔBt take values in the polyhedral cones −Mt (eventually, depending on ω in a causal
way). Defining the solvency cones Kt := Mt + Rd

+, we can prove Theorems ?? and
?? in this purely geometric framework assuming only that intKt ⊃ Rd

+ \ {0}. The
mapping Θ in this context will be the projection on the quotient space Rd/F . Such
ramifications may have a certain importance also for comparing various models with
transaction costs including those where baskets of currencies are exchanged.

At last, let us consider the model where S1 ≡ 1, i.e. the first asset (“money”) is
the numéraire, and for all i and j

(1 + λi1)(1 + λ1j) ≤ 1 + λij.

This means that the direct exchanges are not less expensive than those via money;
they can be excluded at all (as it is usually done in stock market models). According
to (??) the cone K∗ consists of all w ∈ Rd

+ satisfying the inequalities

1

1 + λi1
w1 ≤ wi ≤ (1 + λ1i)w1, i > 1.

Indeed, it follows that for any pair i, j we have

wj ≤ (1 + λ1j)w1 ≤ (1 + λi1)(1 + λ1j)wi ≤ (1 + λij)wi.

By Theorem ?? the condition NAw
T holds if and only if there is a process Z ∈ D

with Zi
T > 0. In particular, Ẑ1 = Z1 is a martingale; we can always assume that

EZ1
T = 1 and define the probability P̃ = Z1

T P . The condition that Ẑ evolves in K∗

reads as
1

1 + λi1
Z1 ≤ Zi

Si
≤ (1 + λ1i)Z1, i > 1,

11



Putting S̃i := Zi/Z1 and introducing the selling and buying prices

Si :=
1

1 + λi1
Si, S

i
:= (1 + λ1i)Si,

we conclude that NAw
T holds if and only if there are a process S̃ and an equivalent

probability measure P̃ such that S̃ a martingale with respect to P̃ and

Si ≤ S̃i ≤ S
i
, i > 1.

Thus, in this case our criteria for NAw
T coincides with that suggested in [?].
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