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EXTENDED STOCHASTIC INTEGRALS1

YU.M. KABANOV, A.V. SKOROKHOD

In this lecture notes we present a construction of the stochastic integral generalizing

the Ito integral and allowing to integrate random functions without the non-anticipativaty

assumption.

An important role in our theory will play the multiple stochastic integrals introduced by

Ito ([1]–[3]).

Extended stochastic integrals for the Wiener process were introduced by Hitsuda ([4], [5])

and, independently, by A.V. Skorokhod for the Gaussian processes, [6]. In [6] conditions of

integrability were explored in details and the notions of stochastic derivative and stochastic

integral operator were introduced. Results of Sections 5 and 6 are taken from [5]. Extended

Poisson integrals were studied by Yu.M. Kabanov ([7], [8]).

Another approach to constructions of stochastic integral was developed in the papers by

Yu.L. Daletski and S.N. Paramonova ([9]-[11]).

1. Multiple stochastic integral

Let (Ω,F ,P) be the basic probability space and let (E, E ,m) be a measure space. The

measure m is the structure function of some stochastic measure µ with independent values.

This means that to each element of the ring of sets E0 = {A : A ∈ E , m(A) < ∞}
corresponds a random variable µ(A) ∈ L2(Ω,F ,P) with Eµ(A) = 0 such that the following

conditions are satisfied:

1. If An ∈ E0, n = 0, 1, . . . , A0 = ∪∞n=1An, An for n ≥ 1 are disjoint, then

µ(A0) = l.i.m.
∞∑
n=1

µ(An).

2. Eµ(A)µ(B) = m(A ∩B).

3. If A ∩B = ∅, then the random variables µ(A) and µ(B) are independent.

We shall assume also that m is continuous in the Ito sense:

4. For any ε > 0 and A ∈ E0 there exist disjoint sets A1, . . . , An ∈ E0 such that m(Ai) < ε

and A = ∪∞i=1Ai.

1This is an English translation of the lecture notes in Proceedings of the School-Seminar on the Theory

of Random Processes. Druskininkai, November 25-30, 1974. Part I. Vilnius, 1975, 123–167.
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Example 1. Let E = R1
+, E be the Borel σ-algebra B1, and m be the Lebesgue measure

Λ. The random variables µ(A) are real-valued and form a Gaussian family. It is well-known

that in this case the stochastic measure can be constructed from a Wiener process w by

putting µ(A) =
∫
χA(t)dwt where χA is the indicator function of the set A.

Example 2. The space is the same as in the previous example but the random variables

µ(A) form a complex-valued Gaussian family. Now µ(A) =
∫
χA(t)dzt where zt = 1√

2
(wt+vt)

is a complex-valued Wiener process (here wt and vt are independent real-valued Wiener

processes).

Example 3. Let E = R1
+ × Rr, E = B1 × Br, m = Λ× Π where Π is the canonical Lévy

measure of some homogeneous stochastically continuous process (Xt)t∈R1
+

with independent

increments, µ = q where q the centered Poisson random measure defined from X in the

following way:

if A = (t1, t2]×B and p(A) =
∑

t1<s≤t2 χB(Xs −Xs−), then

q(A) = p(A)− Ep(A) = p(A)− (t2 − t1)Π(B).

We define for µ the multiple stochastic integrals (MSI) starting from the class L2
0(En,mn)

of special step functions consisting from all linear combinations of functions having the form

f(x1, . . . , xn) = χAi1
(x1) . . . χAin

(xn), (1.1)

where Aik ∩ Aij = ∅ for k 6= j, Ai ∈ E0.

For the functions of the form (1.1) MSI In(f) = In(f(x1, . . . , xn)) is defined as follows:

In(f) =

∫
. . .

∫
f(x1, . . . , xn)µ(dx1) . . . µ(dxn) = µ(Ai1) . . . µ(Ain).

This definition is extended to all special step function by linearity.

By convention, I0(c) = c (c is a constant). It is easy to check that MSI defined for the

functions from L2
0(En,mn) has the following properties:

1) In(c1f + c2g) = c1In(f) + c2In(g).

2) In(f̃) = In(f) where f̃ is the symmetrization of the function f , i.e.

f̃(x1, . . . , xn) =
1

n!

∑
(π)

f(xπ(1), . . . , xπ(n)),

the sum is taken over all permutations of the set {1, . . . , n}.

3) EIn(f)In(g) = δnkn!(f̃ , g̃)n, n = 0, 1, . . . , (., .)n is the scalar product in L2(En,mn).
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The condition 4. (the continuity of measure m), ensuring that L2
0(En,mn) is dense in

L2(En,mn), and the inequality ||f̃ ||n ≤ ||f ||n allows us to extend MSI to the whole space

with preservation of the properties 1)-3). Moreover, we shall have also the property

4) If ||fn − f ||n → 0, then l.i.m. In(fn) = In(f).

Let us consider the space H = ⊕
∑∞

n=0Hn where Hn = {η : η = In(f), f ∈ L2(En,mn)}
are subspaces of L2(Ω) orthogonal to each other.

The space H is sufficiently reach. In the Examples 1 and 3 it coincides with the space

L2(µ) of (classes of) square integrable random variables measurable with respect to the σ-

algebra G = σ{µ(A), A ∈ E0}, see [1], [3]. In the Example 2 this is not the case: µ(A) /∈ H,

see Section 5.

2. Extended stochastic integral

Let f(x, ω) be a random function satisfying the following conditions:

a) f(x, ω) is measurable with respect to both variables,

b) f(x, ω) ∈ H for every x ∈ E,

c) E
∫
E
|f(x, ω)|2m(dx) <∞.

Such functions form the Hilbert space G2 with the scalar product

〈f, g〉 = E

∫
E

f(x, ω)g(x, ω)m(dx);

the corresponding norm we shall denote |||.|||.
Any function f ∈ G2 admits the representation

f(x, ω) =
∞∑
n=0

In(fn(x, x1, . . . , xn)) (2.1)

where the functions fn(x, x1, . . . , xn) can be taken symmetric in variables x1, . . . , xn. In this

case

|||f |||2 =
∞∑
n=0

n!

∫
E

||fn(x, .)||2nm(dx) =
∞∑
n=0

n!||fn||2n+1. (2.2)

Definition. Let D(J) be the set of functions f ∈ G2 admitting the representation (2.1)

and such that
∞∑
n=0

(n+ 1)!|| ˜̃fn(x, x1, . . . , xn)||2n+1 <∞,

where ˜̃fn(x, x1, . . . , xn) is the symmetrization of fn over all variables.
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Extended stochastic integral (ESI) is the operator J acting from D(J) into L2(Ω) and

such that

J(f) =
∞∑
n=0

In+1(fn(x, x1, . . . , xn)). (2.3)

Using the properties 1)-4) of MSI it is not difficult to prove the following statement.

Theorem 2.1 ESI is a closed linear operator mapping the subspace D(J) dense in G2

onto H and such that

EJ(f) = 0; E|J(f)|2 =
∞∑
n=0

(n+ 1)!|| ˜̃fn||2n+1.

3. Stochastic derivative

Let H ∈ H. Then, by definition,

η =
∞∑
n=0

In(fn(x1, . . . , xn)) (3.1)

where fn belongs to the space L̃2(En,mn) of symmetric square integrable functions,

E|η|2 =
∞∑
n=0

n!||fn||2n. (3.2)

Let denote by D(D) the subset of elements η ∈ H for which

∞∑
n=1

n2(n− 1)!||fn||2n <∞.

Clearly, D(D) is dense in H.

Definition 3.1 Stochastic derivative is the operator D mapping D(D) into G2 and given

by the equality

(Dη)(x1, ω) =
∞∑
n=1

nIn−1(fn(x1, x2 . . . , xn)) (3.3)

where in the right-hand side above x1 is the free variable and In−1 acts on x2, . . . , xn.

Obviously,

|||Dη|||2 =
∞∑
n=1

n2(n− 1)!||fn||2n. (3.4)

Theorem 2.1 The operator D is a closed linear operator.
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Proof. Let η(k) =
∑∞

n=0 In(f
(k)
n ) ∈ D(D), η =

∑∞
n=0 In(fn), η(k) → η in L2(Ω) as k → ∞,

and |||Dη(k)−Dη(j)||| → 0 as j, k →∞. Let us check that η ∈ D(D) and |||Dη(k)−Dη||| → 0

as k →∞.

Let us consider the random variables

η
(k)
N =

N∑
n=0

In(f (k)
n ), η =

N∑
n=0

In(fn).

Since ∣∣|||Dη(k)||| − |||Dη(j)|||
∣∣ ≤ |||Dη(k) −Dη(j)||| → 0,

|||Dη(k)||| ≤ c <∞ implying that |||Dη(k)
N ||| ≤ c. The stochastic derivative DηN exists and

|||DηN ||| ≤ |||Dη(k)
N −DηN |||+ |||Dη

(k)
N ||| ≤ |||Dη

(k)
N −DηN |||+ c.

But

|||Dη(k)−Dη(p)|||2 =
N∑
n=0

n2(n− 1)!||f (k)
n )− f (p)

n )||2n ≤
∞∑
n=1

n2(n− 1)!||f (k)
n )− f (p)

n )||2n ≤ ε < 1

for sufficiently large k and p. It follows that |||Dη(k)
N −DηN ||| < 1. Thus,

∞∑
n=1

n2(n− 1)!||fn||2n = lim
N→∞

|||DηN |||2 ≤ (c+ 1)2 <∞,

η ∈ D(D) and |||Dη(k) −Dη|||2 ≤ ε. �

Let us extend the notion of stochastic derivatives to elements of the space G2.

Definition 3.1 Let f(x, ω) ∈ G2 admits the decomposition (2.1) with

∞∑
n=1

n2(n− 1)!||fn||2n+1 <∞.

We shall call stochastic derivative of the element f the random operator Df , acting in

L2(E,m), such that

(Df )h(y) =

∫
E

[
∞∑
n=1

nIn−1(fn(x, y, x2, x2 . . . , xn))

]
h(x)m(dx) = D(h, f)1. (3.5)

Note that Df is the Hilbert–Schmidt operator and its Hilbert–Schmidt norm σ(Df ) has

a finite second moment:

Eσ2(Df ) =
∞∑
n=1

n2(n− 1)!||fn||2n+1. (3.6)
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Theorem 3.1 Suppose that f ∈ G2 and the stochastic derivative of f is defined. Then

f ∈ D(J) and

E|J(f)|2 = |||f |||2 + E SpDfDf , (3.7)

where Df is the integral operator with the kernel conjugate to the kernel of operator Df .

Proof. By definition, f admits the representation (2.1). Then

∞∑
n=0

(n+ 1)!|| ˜̃fn||2n+1 =
∞∑
n=0

(n+ 1)!

∫
. . .

∫
1

(n+ 1)2

∣∣∣fn(x, x1, . . . , xn)

+
n∑
i=1

fn(xi, x1, . . . , x, . . . , xn)
∣∣∣2m(dx)m(dx1) . . .m(dxn)

=
∞∑
n=0

n!||fn||2n+1 +
∞∑
n=1

n2(n− 1)!

∫
. . .

∫
fn(x, y, x2, . . . , xn)

×fn(y, x, x2, . . . , xn)m(dx)m(dy)m(dx2) . . .m(dxn)

= |||f |||2 + E SpDfDf .

The Cauchy–Bunyakovski inequality gives that

E SpDfDf ≤
√

Eσ2(Df )
√

Eσ2(Df ) <∞.

Hence, f ∈ D(J) and the equality (3.7) holds. �

4. Extended stochastic integral with respect to a Wiener process

Let µ(A) =
∫
R1
+
χA(t)dwt. In this case one get additional results for the objects introduced

in Sections 1–3. For µ(dt) we shall use the notation dwt.

Theorem 4.1 [1]. Let f(t1, . . . , tn) ∈ L2(Rn
+,Λ

n), g(t) ∈ L2(R1
+,Λ). Then

In+1(f ⊗ g) = In(f)I1(g)−
n∑
j=1

In−1(f ×
(j)
g),

where (f ⊗ g)(t, t1, . . . , tn) = f(t1, . . . , tn)g(t),

(f ×
(j)
g)(t1, . . . , t̂j, . . . tn) =

∫
R1
+

f(t1, . . . , tj, . . . , tn)dtj.

Now we define the Hermite polynomials:

Hn(t, x) =
(−t)n

n!
exp

{x2

2t

} ∂n

∂xn
exp

{
− x2

2t

}
, n ≥ 0,



EXTENDED STOCHASTIC INTEGRALS1 7

and note that the satisfy the following identity:

∞∑
n=0

γnHn(t, x) = exp
{
γx− σ2t

2

}
. (4.1)

Using this formula it is easy to get the following properties:

1) (n+ 1)Hn+1(t, x) = xHn(t, x)− tHn−1(t, x), n ≥ 1, H0 = 1, H1 = x;

2) ∂Hn(t,x)
∂x

= Hn−1(t, x);

3) 1
2
∂2Hn

∂x2
+ ∂Hn

∂t
= 0.

From the property 1) and Theorem 4.1 it follows

Theorem 4.2 [1]. Let ϕi ∈ L2(R1
+,Λ), (ϕi, ϕj) = 0, i 6= j. Then

In1+n2+···+nk
(ϕ⊗n1

1 ⊗ ϕ⊗n2
2 ⊗ · · · ⊗ ϕ⊗nk

k ) = n1!Hn1

(∫ ∞
0

ϕ2
1(t)dt,

∫ ∞
0

ϕ1(t)dwt

)
×n2!Hn2

(∫ ∞
0

ϕ2
2(t)dt,

∫ ∞
0

ϕ2(t)dwt

)
. . . nk!Hnk

(∫ ∞
0

ϕ2
k(t)dt,

∫ ∞
0

ϕk(t)dwt

)
.

On the other hand, the multiple Wiener integrals can be expressed via iterations of the

Ito integrals.

Theorem 4.3 [1]. Let f ∈ L2(Rn
+,Λ

n). Then

In(f(t1, . . . , tn)) = n!

∫ ∞
0

(∫ tn

0

(
. . .
(∫ t2

0

f̃(t1, . . . , tn)dwt1

)
dwt2

)
. . .
)
dwtn .

Remark. Since L2(w) = H, Theorem 4.3 implies that any r.v. η ∈ L2(w) is a sum of

a constant and a stochastic integral Ito: η = Mη +
∫∞

0
ϕ(s, ω)dws. This is the so-called

“representation theorem” playing an important role in the nonlinear filtering theory.

Let us show that for the non-anticipating integrants ESI coincides with the Ito integral. Indeed,

let f(t, ω) = c(ω)χ(s1,s2](t) ∈ D(J). Then

f(t, ω) =

∞∑
n=0

In(χ(s1,s2](t)fn(t1, . . . , tn))

where fn vanishes when at least one of the variables tj is greater than s1. By definition of ESI

J(f) =

∞∑
n=0

In+1(χ(s1,s2](t)fn(t1, . . . , tn)) = (ws2 − ws1)

∞∑
n=0

In(fn(t1, . . . , tn)) = c(ω)(ws2 − ws1).
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The last expression coincides with the Ito integral for the function f(t, ω). In the above calculations

we use the fact that the supports of fn and χ are disjoint. Moreover, for the non-anticipations step

functions

E|J(f)|2 =
∞∑
n=0

(n+ 1)!|| ˜̃fn||2n+1 =
∞∑
n=0

n!

∫
||f̃n(t)||2ndt = E

∫
f2(t, ω)dt.

Using a passage to the limit we get that J(f) is an extension of the Ito integral.

In the case of Gaussian processes multiple integrals can be constructed not starting from func-

tions but prom polylinear functionals. We explain this construction by example.

Let wt be a Wiener process, t ∈ [0, 1]. For each element f ∈ L2([0, 1],Λ) the Wiener integral∫
f(t)dwt is defined, E

∫
f(t)dwt = 0, and if g ∈ L2([0, 1],Λ), then E

∫
f(t)dwt

∫
g(t)dwt = (f, g)1.

It is well known that in the space L2([0, 1],Λ) where is no random element ẇ such that
∫
f(t)dwt =

(f, ẇ)1 =
∫
f(t)ẇdt. Indeed, suppose that such an element exists. Then for an orthonormal ba-

sis {ej}∞1 in L2([0, 1],Λ), the sequence {(ej , ẇ)}∞1 is a sequence of independent Gaussian random

variables with zero mean and unit variance. By the strong law of large numbers

lim
N→∞

1

N

N∑
j=1

(ej , ẇ)2
1 = 1 P -a.s.

On the other hand, since ẇ =
∑∞

j=1(ej , ẇ)1ej , we have that
∑∞

j=1(ej , ẇ)2
1 = ||ẇ||21 <∞ leading to

a contradiction.

However, one can extend the space L2([0, 1]) with a help of some nuclear operator S and the

obtained extension X− will contain an element ẇ such that the scalar product (f, ẇ)1 will have

sense for f ∈ L2([0, 1]) and will be equal to
∫
f(t)dwt.

Note that the formula

Af (g1, . . . , gn) =

∫
. . .

∫
f(t1, . . . , tn)g1(t1) . . . gn(tn)m(dt1) . . .m(dtn), (4.2)

where f ∈ L̃2(En,mn), defines an n-linear symmetric continuous functional on L2(E,m) and, vice

versa, each functional of this type can be obtained by (4.2) with some function f ∈ L̃2(En,mn). To

every n-linear symmetric functional Afn one can associate the random variable In(fn). This can be

done without using the representation (4.2). Indeed, define MSI An(ẇ, . . . , ẇ) by induction. For

n = 1 the continuous linear functional A1(g) is the scalar product (g, f). We associate with A1(g)

the r.v. A1(ẇ) = (f, ẇ)1. Suppose that MSI are defined for k ≤ n. If {ej}∞1 is an orthonormal

basis, then

An(ẇ, . . . , ẇ) =
∞∑
j=1

[
An(ẇ, . . . , ẇ, ej)(ej , ẇ)1 − (n− 1)An(ẇ, . . . , ẇ, ej , ej)

]
.

For a functional An(g1, . . . , gn) = An−1(g1, . . . , gn−1)(f, gn) we define MSI by the equality

An(ẇ, . . . , ẇ) = An−1(ẇ, . . . , ẇ)(f, ẇ)1 − (n− 1)An−1(ẇ, . . . , ẇ, f).
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Clearly, this definition leads to the multiple integrals and ẇ can be replaced by any generalized

Gaussian process, ([6]).

Now let us study the relation between stochastic derivative and differentiation of functionals in

the Hilbert space.

Let f(x) be a continuous function on L2([0, 1]) which can be continuously extended on X−.

This extension we also will denote f . Since ẇ is a usual r.v. with values in X−, the value f(ẇ)

is well-defined. If fn(x) is such that fn(ẇ) is defined and limn,k∞E|fn(ẇ) − fk(ẇ)| → 0, we

put f(ẇ) := l.i.m.fn(ẇ). The set of functions which admits the argument ẇ is sufficiently large.

In particular, ẇ can be plugged into polynomials. The substitution operation is different from

formation of MSI. Indeed, if we have the n-linear functional An(g1, . . . , gn) = (f, g1)1 . . . (f, gn)1

to which corresponds the polynomial An(g, . . . , gn) = (f, g)n1 , we get as the result of substitution

(f, ẇ)n1 . The MSI constructed for the functional An(g1, . . . , gn) is equal to n!Hn(||f ||21, (f, ẇ)1),

where Hn is the Hermite polynomial.

Theorem 4.3 Let f(x) be a polynomial. Then

f ′(x)‖x=ẇ = D[f(ẇ)].

Proof. It is sufficient to consider the case where f(x) = (z, x)n1 =
∑n

i=0 ciHi((z, x)1), ci are con-

stants, Hi((z, x)1) = Hi(||z||21, (f, x)1) are the Hermite polynomials. Let us calculate the derivative:

(f ′(x), y)1 = n(z, x)n−1
1 (z, y)1 =

n∑
i=1

ciHi−1((z, x)1)(z, y)1.

Thus, (f ′(x)|x=ẇ, y)1 =
∑n

i=1 ciHi−1((z, ẇ)1)(z, y)1. On the other hand,

(D[f(ẇ)], y)1 =
(
D

n∑
i=0

ciHi((z, ẇ)1), y
)

1
=

n∑
i=0

1

i!
ci(DIi(z

⊗i), y)1

=
n∑
i=1

1

(i− 1)!
ciIi−1(z⊗(i−1))(z, y)1 =

n∑
i=1

ciHi−1((z, ẇ)1)(z, y)1.

Therefore, the stochastic derivative is the closure in L2 of the ordinary derivatives with the element

ẇ plugged in. �.

Let {ej}∞1 be an orthonormal basis in the space L2([0, 1],Λ). We denote by D0(J) the linear

subspace in D(J) spanned by the functions In(fn(t, t1, . . . , tn)) such that in the Fourier expansion

fn(t, t1, . . . , tn) =
∑
cii1...inei(t)ei1 . . . ein the coefficients are such that for all i2, . . . , in∑

i

ciii2...in = 0. (4.3)

Theorem 4.3 The subspace D0(J) is dense in D(J) and for all f(t, x) ∈ D0(J) there is the

equality J(f) = (f, ẇ)., where the scalar product is understood as the convergent in L2(Ω) series∑
i(f, ei)1(ei, ẇ)1.
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Proof. Let f(t, ω) = In(fn(t, t1, . . . , tn)) ∈ D(J) where the function fn(t, t1, . . . , tn) is symmetric

in variables t1, . . . , tn. Then

fn(t, t1, . . . , tn) =
∑

cii1...inei(t)ei1 . . . ein . (4.4)

where the coefficients cii1...in are symmetric in i1, . . . , in and

|||fn|||2 = n!
∑

c2
ii1...in <∞. (4.5)

As an approximating function we take f (k)(t, ω) = In(f
(k)
n (t, t1, . . . , tn)) where f

(k)
n is defined by

the Fourier coefficients

c
(k)
ii1...in

=



cii1...in , if i ≤ k or max1≤j≤n ij ≤ k,

−1
Nk−k

∑
1≤i≤n cii1...in , if k ≤ i ≤ Nk and there is j such that ij = i,

0, otherwise.

The value Nk we choose later. It is clear that the coefficients c
(k)
ii1...in

are symmetric in i1, . . . , in

and the equality (4.3) and the inequality (4.5) hold. Obviously,

1

n!
|||fn−f (k)

n |||2 =
∑
|ci0i1...in−c

(k)
i0i1...in

|2 ≤ 2
∑

i0∨···∨in>k
|ci0i1...in |2+2

∑
i0∨···∨in>k

|c(k)
i0i1...in

|2 = 2Σ1+2Σ2.

The first sum converges to zero as k →∞. The second sum can be estimated as follows:

Σ2 ≤ n
∑
i2,...,in

Nk∑
i1=i=k+1

k∑
i=1

|ciii2...in |2 +
∑

i0∨···∨in>k
|ci0i1...in |2

≤ nk

Nk − k
∑
i2,...,in

k∑
i=1

|ciii2...in |2 + Σ1 ≤
nk

Nk − k
∑
|ciii2...in |2 + Σ1.

If Nk are such that Nk/k → ∞ as k → ∞, then our estimates imply that |||fn − f (k)
n ||| → 0 as

k →∞ and, therefore, D0(J) is danse in G2.

Suppose now that f(t, ω) = In(fn(t, t1, . . . , tn)) ∈ D0(J), that is the equality (4.3) hold. Then

J(f) = In+1

(∑
cii1...inei ⊗ ei1 ⊗ · · · ⊗ ein

)
=

∑
i1,...,in

∑
i

In(cii1...inei1 ⊗ · · · ⊗ ein)I1(ei)− nIn−1

(∑
cii1...inδi1iei1 ⊗ · · · ⊗ ein

)
=

∑
i

(f, ei)1(ei, ẇ)1.

This completes the proof. �

Let f(t, ω) = In
(∑

ciχ∆i(t)f
(i)
n (t1, . . . , tn)

)
, where f

(i)
n (t1, . . . , tn) ∈ L̃2([0, 1]n,Λn). If∫ ∑

ciχ∆i(t)f
(i)
n (t1, . . . , tn)dt = 0, (4.6)
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then ESI can be defined in a usual way via integral sums. If the equality (4.6) does not hold, then

one need to regularize the integral sum ([9]).

Now we describe the following alternative approach to define ESI. Let f(x) be a differentiable

functional on L2([0, 1],Λ) such that f(ẇ) and f ′(ẇ) are defined. It is easy to check starting from

polynomials that if Ef(ẇ)2 <∞ and E||f(ẇ)||21 <∞, then

Ef(ẇ)(φ, ẇ)1 = E(f ′(ẇ), φ)1. (4.7)

The formula (4.7) implies the equality

Ef(ẇ)(φ, ẇ)1(φ, ẇ)1 = (φ, ψ)1Ef(ẇ) + E[f ′′(ẇ)(φ, ψ)]. (4.8)

The formula below for computing the correlation is a corollary of (4.8)1:

E
[
f1(ẇ)(φ, ẇ)1 − (f ′1(ẇ), φ)1

][
f2(ẇ)(ψ, ẇ)1 − (f ′2(ẇ), ψ)1

]
= (φ, ψ)1Ef1(ẇ)f2(ẇ) (4.9)

+E(f ′1(ẇ), ψ)1(f ′2(ẇ), φ)1.

Let now f(t, ω) =
∑n

k=1 χ∆k
(t)fk(ẇ), where fk(x) are smooth functionals. Put

J(f) =

n∑
k=1

[
fk(ẇ)(χ∆k

, ẇ)1 − (f ′k(ẇ), χ∆k
)1

]
. (4.10)

The equality (4.10) defines the so-called “regularized” integral. Clearly, EJ(f) = 0. It is easy to

show, using (4.9) that

E[J(f)]2 = |||f |||2 + ESpDfDf . (4.11)

The formula (4.11) allows us to extend the definition to a wider class of functions. It is clear, that

for the step functions the “regularized” integral given by (4.10) coincides with ESI.

This approach to definition of ESI allows generalizations in various directions ([9] – [11]).

5. Holomorphic stochastic integrals

In this section we consider the random measure of Example 2. So, m(A) =
∫
χA(t)dzt, i.e.

µ(dt) = dzt. The space H consist of all random variables η admitting the representation

η =

∞∑
n=0

In(fn(t1, . . . , tn)). (5.1)

Though H 6= L2(µ), one can introduce the multiple integrals

Ipd(fpq) =

∫
. . .

∫
fpq(t1, . . . , tp, s1, . . . , sq)dzt1 . . . dztp d̄zs1 . . . d̄zsq

such that any r.v. ζ ∈ L2(µ) will be represented as ζ =
∑∞

p,q=0 Ipd(fpq) ([2]). We are interested in

the integrals Ip,0 = Ip which we shall call holomorphic.

In the construction of the HMSI there is no need to use special step functions.

1This formula was established in [9]
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Note that for a complex-valued Gaussian r.v. ξ with Eξ = 0 and E(Re )2 = E(Im )2 we have the

following formula for the moments:

Eξnξ̄k = δnk(E|ξ|2)k, n, k = 1; 2; . . . . (5.2)

Define HMSI for all step functions in the usual way. Using the formula (5.2) it is not difficult to

get for HMSI with step integrants f ∈ L2(Rn+,Λn) and g ∈ L2(Rk+,Λk) the equality

EIn(f)Ik(g) = δnkn!(f̃ , g̃)n (5.3)

which allows us to extend the definition on the whole space L2(Rn+,Λn). This integral coincides

with defined earlier.

The introduced HMSI has the following remarkable property (cf. Theorem 4.1 and 7.1):

In(f)Ik(g) = In+k(f ⊗ g). (5.4)

We shall denote
∫ T
S f(u, ω)dzu the ESI J(χ[S,T ](u)f(u, ω)) and write that f ∈ D(J, [S, T ]) if the

function χ[S,T ](u)f(u, ω) ∈ D(J).

The equality (5.4) allows to establish the following two statements.

Lemma 5.1. n
∫ T
S zn−1

u dzu = znT − znS .

Lemma 5.2. If f(u, ω) ∈ D(J), c(ω)f(u, ω) ∈ D(J), then∫
c(ω)f(u, ω)dzu = c(ω)

∫
f(u, ω)dzu.

Theorem 5.1. Let f(t, z, ω) =
∑∞

n=0 a(t, ω)zn belongs to H for each (t, z) and continuously

differentiable in (t, z) (i.e. f(t, z, ω) is analytic in z). Suppose that an(t, ω) and ∂an(t, ω)/∂t also

belong to H and the following conditions are fulfilled:

(a) f(t, , zt, ω) =
∑∞

n=0 a(t, ω)znt (this series converges in L2(ω));

(b) ∂an
∂t (t, ω)znu for every u as a function of variable t belongs to D(J, [S, T ]), continuous in L2(Ω)

as a function of (t, u), and the series
∑∞

n=0
∂an
∂t (t, ω)znt converges in G2;

(c) an(t, ω)nzn−1
u for every t ∈ [S, T ] as a function of u belongs to D(J, [S, T ]), is continuous

in L2(Ω) as a function of (t, u), and the series
∑∞

n=1 a(t, ω)nzn−1
t = ∂f

∂z (t, zt, ω) converges in

G2([S, T ]).

Then ∂f
∂z (t, zt, ω) ∈ D(J, [S, T ]) and the following equality holds:

f(T, zT , ω)− f(S, zS , ω) =

∫ T

S

∂f

∂z
(t, zt, ω)dzt +

∫ T

S

∂f

∂t
(t, zt, ω)dt.
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Proof. Let f(t, , z, ω) = a(t, ω)zn. Then

a(T, ω)znT − a(S, ω)znS =

k∑
j=1

{
a(t(j), ω)zn

t(j)
− a(t(j−1), ω)zn

t(j−1)

}

=
k∑
j=1

{
a(t(j), ω)(zn

t(j)
− zn

t(j−1) +
[
a(t(j), ω)− a(t(j−1), ω)

]
zn
t(j−1)

}

=
k∑
j=1

{∫
t(j−1)

t(j)a(t(j), ω)nzn−1
t +

∫ t(j)

t(j−1)

∂a

∂t
(t, ω)zn

t(j−1)dt

}

for every partition S = t(0) ≤ t(1) ≤ · · · ≤ t(k) = T of the interval [S, T ]. The condition (a), (b),

(c) ensures the possibility to take the limits. �

It is obvious that HMSI and MSI with respect to the real-valued Wiener process wt are related

in the following way:∫
. . .

∫
f(t1, . . . , tn)dwt1 . . . dwtn = (

√
2)nE

[ ∫
. . .

∫
f(t1, . . . , tn)dzt1 . . . dztn

∣∣∣Fw]. (5.5)

This relation implies the following

Lemma 5.2. If f(s, ω) ∈ D(Jz, [S, T ]), then E[f(s, ω)|Fw] ∈ D(Jw, [S, T ]) and

E
[ ∫ T

S
f(s, ω)dzs|Fw

]
=

1√
2

∫ T

S
E[f(s, ω)|Fw]dws. (5.6)

Remark. If the definition of HMSI is given first (without using the special step functions), then

the equality (5.5) can be used to define the multiple stochastic integrals with respect to wt.

6. A generalized Ito formula for ESI with respect to the Wiener process

We use the abbreviations (~t, ~x) = (t1, . . . , tn, x1, . . . , xn) and (~t, w~t) = (t1, . . . , tn, wt1 , . . . , wtn).

Theorem 6.1. Let f(~t, ~x) be a real-valued (or complex-valued) function on Q× Rn where

Q = {~t : 0 ≤ t1 < · · · < tn}.

If

E

{∣∣f(~t, w~t)
∣∣2 +

n∑
j=1

∣∣∣ ∂f
∂tj

(~t, w~t)
∣∣∣2 +

n∑
i,j=1

∣∣∣ ∂f2

∂xi∂xj
(~t, w~t)

∣∣∣2} < c, (6.1)

ti ∈ [Si, Ti], (t1, . . . , Si, . . . , tn), (t1, . . . , Ti, . . . , tn) in Q, then ∂f
∂xi
∈ D(J, [Si, Ti]) and

f(~t, w~t)
∣∣∣ti=Ti
si=Si

=

∫ Ti

Si

∂f

∂xi
(~t, w~t)dwti (6.2)

+

∫ Ti

Si

{
1

2

∂f2

∂x2
i

(~t, w~t) +

n∑
j=i+1

∂f2

∂xi∂xj
(~t, w~t) +

∂f

∂ti
(~t, w~t)

}
dti.
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Proof. We establish first that (6.2) holds for f(~t, ~x) = xk11 . . . xknn . Let us introduce the auxiliary

function

g(~t, ~z) = exp

{
n∑
j=1

1

2
λ2
j tj +

∑
n≥l>j≥1

λlλjtj

}
exp

{
√

2
n∑
j=1

λjzj

}

and applied to it Theorem 5.1:

g(~t, z~t)
∣∣∣ti=Ti
si=Si

=
√

2

∫ Ti

Si

g(~t, z~t)dzti +
(1

2
λ2
i +

∑
n≥j>i

λiλj

)∫ Ti

Si

g(~t, z~t)dti. (6.3)

Since E[g(~t, z~t)|Fw] = exp
{∑n

j=1 λjwtj

}
, we get, using Lemma 5.3, the equality

exp
{ n∑
j=1

λjwtj

}∣∣∣ti=Ti
si=Si

= λi

∫ Ti

Si

exp
{ n∑
j=1

λjwtj

}
dwti+

(1

2
λ2
i+

∑
n≥j>i

λiλj

)∫ Ti

Si

exp
{ n∑
j=1

λjwtj

}
dti.

(6.4)

To check that (6.2) holds for functions of the form f(~t, ~x) = xk11 . . . xknn it is sufficient to expand

both sides of (6.4) in series in powers λ and equalize the coefficients at the same power. Hence,

wk1t1 . . . w
ki
ti
. . . wkntn

∣∣∣ti=Ti
si=Si

=

∫ Ti

Si

kiw
k1
t1
. . . wki−1

ti
. . . wkntn dwti (6.5)

+

∫ Ti

Si

{1

2
ki(ki − 1)wk1t1 . . . w

ki−2
ti

. . . wkntn

+
n∑

j=i+1

kikjw
k1
t1
. . . wki−1

ti
. . . w

kj−1
ti

. . . wkntn

}
dti

The next step consists in the verification of (6.2) for the functions of the form

f(~t, ~x) = a(~t)xk11 . . . xknn , (6.6)

where a(~t) ∈ C1.
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For any partition of the interval [Si, Ti], Si = t(0) < ... < t(l) < ... < t(r) = Ti, we have with

h = max |t(l) − t(l−1)|, using the formula (6.5):

a(~t)wk1t1 ...w
ki
ti
...wkntn

∣∣∣ti=Ti
si=Si

=
r∑
l=1

{
a(t1, ..., t

(l), ..., tn)− a(t1, ..., t
(l−1), ..., tn)

}
wk1t1 ...w

ki
t(l)
...wkntn

+
r∑
l=1

a(t1, ..., t
(l−1), ..., tn)

{
wk1t1 ...w

ki
t(l)
...wkntn − w

k1
t1
...wki

t(l−1) ...w
kn
tn

}
=

r∑
l=1

{ ∂a
∂ti

a(t1, ..., t
(l), ..., tn) + o(h)

}
wk1t1 ...w

ki
t(l)
...wkntn (t(l) − t(l−1))

+

r∑
l=1

a(t1, ..., t
(l), ..., tn)

{
ki

∫ t(l)

t(l−1)

wk1t1 ...w
ki−1
ti

...wkntn dwti

+
1

2
ki(ki − 1)

∫ t(l)

t(l−1)

{
wk1t1 ...w

ki−2
ti

...wkntn

+
n∑

j=i+1

kikjw
k1
t1
...wki−1

ti
...w

kj−1
tj

...wkntn

}
dti

}
.

Taking the limit in L2(Ω) as h→∞ we get that (6.2) holds for function having form (6.3).

To complete the proof we need to approximate appropriately an arbitrary function from C1,2

satisfying the conditions (6.1). To simplify calculations, we make the change of variables

t̄j = tj − tj−1, x̄j = xj − xj−1, j = 1, ..., n, x0 = t0 = 0. (6.7)

Define the function f̄ by the formula

f̄(~̄t, ~̄x) = f̄(t̄1, . . . , t̄n, x̄1, . . . , x̄n) = f(t1, . . . , tn, x1, . . . , xn)

and introduce the notation (~̄t, ~̄ tw) = (t̄1, . . . , t̄n, wt1 , wt2 − wt1 , ..., wtn − wtn−1). Then the formula

(6.2) can be written as

(~̄t, ~̄ tw)
∣∣∣ti=Ti
si=Si

=

∫ Ti

Si

( ∂f̄
∂x̄i
− ∂f̄

∂x̄i+1

)
(~̄t, ~̄ tw)dwti (6.8)

+

∫ Ti

Si

{1

2

(∂2f̄

∂x̄2
i

− ∂2f̄

∂x̄2
i+1

)
(~̄t, ~̄ tw) +

(∂f̄
∂t̄i
− ∂f̄

∂t̄i+1
(~̄t, ~̄ tw)

)}
dti,

since

∂f

∂xi
=

∂f̄

∂x̄i
− ∂f̄

∂x̄i+1
,

∂f

∂ti
=
∂f̄

∂t̄i
− ∂f̄

∂t̄i+1
,

1

2

∂f2

∂x2
i

+
n∑

j=i+1

∂f2

∂xi∂xj
=

1

2

(∂2f̄

∂x̄2
i

− ∂2f̄

∂x̄2
i+1

)
.

The condition (6.1) in these notations is

E

{
|f̄(~̄t, ~̄ tw)|2 +

n∑
j=1

∣∣∣ ∂f̄
∂t̄j

(~̄t, ~̄ tw)
∣∣∣2 +

n∑
i,j=1

∣∣∣ ∂f̄2

∂x̄ix̄j
(~̄t, ~̄ tw)

∣∣∣2} < c. (6.9)
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Let us introduce a family of spaces L2(Rn,N~̄t) where

N~̄t(dx̄) = ((2π)nt̄1...t̄n)−1/2 exp
{
− 1

2

( x̄2
1

t̄1
+ ...+

x̄2
n

t̄n

)}
dx̄1...dx̄n.

Lemma 6.2. Let f̄(~̄t, ~̄x) ∈ C1,2 is such that f̄ , ∂f̄
∂t̄j

, ∂f̄
∂x̄j

, and ∂2f̄
∂x̄jxk

belong to L2(Rn,N~̄t) as

functions of ~̄x. Then

f̄(~̄t, ~̄x) =
∑

ak1...kn(~̄t)Hk1(t̄1, x̄1)...Hkn(t̄n, x̄n), (6.10)

where Hk are the Hermite polynomials, the coefficients ak1...kn(t̄1, ..., t̄n) ∈ C1 (tj > 0) and the

series converges in L2(Rn,N~̄t) and can be differentiated in t̄j and x̄j, j = 1, ..., n. Note that for

the partial sums

f̄M (~̄t, ~̄x) =
∑

k1+...+kn≤M
ak1...kn(~̄t)Hk1(t̄1, x̄1)...Hkn(t̄n, x̄n) (6.11)

the formula (6.8) is already proven and the convergence f̄M (~̄t, ~̄x) → f̄(~̄t, ~̄x) in L2(Rn,N~̄t) means

that f̄M (~̄t, ~̄ tw) → f̄(~̄t, ~̄ tw) in L2(Ω). It remains to apply Theorem 3.1 asserting that J is a closed

operator. �

Theorem 6.1 can be proven without using holomorphic stochastic integrals. The crucial moment

is the proof of the formula (6.8) for the sum of the form (6.11). It is sufficient to consider only

a single term with the unit coefficient. Moreover, we can assume that Hkj = 1 for j 6= i, i + 1,

because Hkj (tj − tj−1) = 1 can be taken out from the sign of the ESI
∫ Ti
Si

for j 6= i, i+ 1.

So, we should verify the equality

g(t̄i, w̄ti)h(t̄i+1, wti+1)
∣∣∣ti=Ti
si=Si

=

∫ Ti

Si

( ∂

∂x̄i
− ∂

∂x̄i+1

)
g(t̄i, w̄ti)h(t̄i+1, wti+1)dwti (6.12)

+

∫ Ti

Si

{1

2

( ∂2

∂x̄2
i

− ∂2

∂x̄2
i+1

)
+
(∂f̄
∂t̄i
− ∂

∂t̄i+1

)
g(t̄i, w̄ti)h(t̄i+1, wti+1)

}
dti,

where ti−1 < Si < Ti < ti+1.

In the case where h = 1 (6.12) coincides with the usual Ito formula. If g = 1, h = h(x̄i+1), then

the formula (6.12) has the form

h(wti+1 − wti)
∣∣∣ti=Ti
si=Si

= −
∫ Ti

Si

∂h

∂x̄i
(wti+1 − wti)dwti −

1

2

∫ Ti

Si

∂2h

∂x̄2
i+1

(wti+1 − wti)dti. (6.13)

Note that together with the Ito integral
∫ 1

0 f(s, ω)dws, defined for the integrants “independent

on the future”, one can consider the integral for the integrants “independent on the past”, i.e.

for the random functions f(s, ω) which are measurable, for each s, with respect to the σ-algebra

Fw≥s = σ{wu − wv, u > v ≥ s}. This integral is reduced to the classical Ito integral. Indeed, the

process w∗t = w1 −w1−t is Wiener. The integral
∫ 1

0 f(s, ω)dws with the integrant “independent on

the past” will coincide with
∫ 1

0 f(1− s, ω)dw∗s where f(1− s, ω) is a function, independent on the

future values of the process w∗s . Thus, (6.13) holds. Now it is easy to get also (6.12). Suppose that
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g and h do not depend on t̄i and t̄i+1. Let uj , j = 0, ..., N , define a partition of the interval [Si, Ti],

δ = max |ui+1 − uj |. Then the left-hand side of (6.12) is equal to

N∑
j=0

g(wti − wti−1)h(wti+1 − wti)
∣∣∣ti=uj+1

ti=uj
=

N∑
j=0

g(wuj − wti−1)h(wti+1 − wti)
∣∣∣ti=uj+1

ti=uj

+
N∑
j=0

g(wti − wti−1)h(wti+1 − wuj+1)
∣∣∣ti=uj+1

ti=uj

−
N∑
j=0

[
−
∫ uj+1

uj

∂h

∂x̄i+1
(wti+1 − wti)dwti −

1

2

∫ uj+1

uj

∂h

∂2x̄2
i+1

(wti+1 − wti)dti

]
g(wuj − wti−1)

+

N∑
j=0

[∫ uj+1

uj

∂g

∂x̄i
(wti − wti−1)dwti −

1

2

∫ uj+1

uj

∂2g

∂x̄2
i

(wti − wti−1)dti

]
h(wti+1 − wuj+1)

in virtue of (6.13) and the Ito formula. The random variables g(wuj −wti−1) and h(wti+1 −wuj+1)

can be written under the signs of integrals. We get (6.12) by letting δ → 0.

7. Extended Poisson integrals

For the random measure q of Example 3 one can also get similar results but looking rather

different.

Let f = f(x1, ..., xk), g = g(x). We introduce the notation

(f ∗
(j)
g)(x1, ..., xk) = f(x1, ..., xj , ..., xk)g(xj).

Theorem 7.1 Let f ∈ L2(Ek,mk), g ∈ L2(E,m). Then for the MSI with respect to the measure

q we have the following formula:

Ik+1(f ⊗ g) = Ik(f)I1(g)−
k∑
j=1

Ik
(
f ∗

(j)
g
)
−

k∑
j=1

Ik−1

(
f ×

(j)
g
)
. (7.1)

Proof. We consider the case where f and g are special step functions:

f(x1, ..., xk) =
∑

ai1...ikχAi1
(x1)...χAik

(xk), g(x) = biχAi(x1),

Ai ∈ E0, i = 1, ..., n, ai1,...,ik = 0, if at least two of indices are equal. Put M = max |ai1...ik |,
N = max |bi|. Suppose that M , N and m(

∑
Ai) are finite. The measure m has the continuity

property and we may suppose that m(Ai) < ε for all i whatever is ε > 0 given in advance.

Let us introduce the special step function

hε(x1, ..., xk, x) =
∑

i 6=i1,...,ik

ai1...ikbiχAi1
(x1)...χAik

(xk)χAi(x).
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Then

Ik+1(f ⊗ g) =
∑

i 6=i1,...,ik

ai1...ikbiq(Ai1)...q(Aik)q(Ai) +

k∑
j=1

∑
ai1...ikbijq(Ai1)...q2(Aij )...q(Aik)

= Ik+1(hε) +

k∑
j=1

∑
ai1...ikbijq(Ai1)...q(Aij )...q(Aik)

+
k∑
j=1

∑
ai1,...,ikbijq(Ai1)...m(Aij )...q(Aik)

+
k∑
j=1

∑
ai1,...,ikbijq(Ai1)...

[
q2(Aij )− p(Aij )

]
...q(Aik)

= Ik+1(hε) +
k∑
j=1

Ik
(
f ∗

(j)
g
)

+
k∑
j=1

Ik−1

(
f ×

(j)
g
)

+
k∑
j=1

Rj .

From the properties of multiple integrals we have:

||Ik+1(hε)− Ik+1(f ⊗ g)||2L2(Ω) ≤ (k + 1)!||hε − f ⊗ g||2k+1

= (k + 1)!
k∑
j=1

∑
a2
i1...ik

b2ijm(Ai1)...m2(Aij )...m(Aik)

≤ ε(k + 1)!kM2N2
(∑

m(Ai)
)k

= ε const.

A similar estimate hold for ||Rj ||2L2(Ω):

||Rj ||2L2(Ω) =
∑

a2
i1...ik

b2ijm(Ai1)...E
[
q2(Aij )− p(Aij )

]
...m(Aik)

= 2
∑

a2
i1...ik

b2ijm(Ai1)...m2(Aij )...m(Aik)

≤ ε2M2N2
(∑

m(Ai)
)k

= ε const.

Since ε is arbitrary, the statement of the theorem holds for special step functions. Passage to

the limit is easy. �

Theorem 7.2 Let f(x1, ..., xn) ∈ L2(En,mn) where E = R1
+ × Rr. Then

In(f) = n!

∫ ∞
0

∫ (∫ tn

0

∫ (
. . .

∫ t2

0

∫
f̃(t1, u1, ..., tn, un)q(dt1, du1)

)
. . .

)
q(dtn, dun).

The proof is similar to the proof of Theorem 4.3. Since H = L2(q) = L2(X) (see [3]), the above

theorem implies
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Theorem 7.3 (Predictable representation.) Any random variable η ∈ L2(q) admits the repre-

sentation

η = Eη +

∫ ∞
0

∫
ϕ(t, u, ω)q(dt, du),

where ϕ(t, u, ω) is measurable in all variables and predictable for every u ∈ Rr, uniquely determined,

and ∫ ∞
0

∫
ϕ2(t, u, ω)Π(du)dt <∞.

Let us consider the particular case where q corresponds to the centered Poisson process, i.e. the

canonical Lévy measure is concentrated in a single point: Π(A) = λχA({1}). In this case it is

natural to consider multiple integrals depending on time variable. These MSI we shall call multiple

integrals with respect to the Poisson process and denote
∫
...
∫
f(t1, ..., tn)dxt1 ...dxtn .

Define the Poisson–Charlier polynomials Gn(t, x, λ) with help of their generating function

Φ(z, t, x, λ) =
∑
n=0

znGn(t, x, λ) = (1 + z)x+tλ exp{−ztλ}.

It is easy to check the following properties:

1. ∂Φ
∂z = x−ztλ

1+z Φ.

2. G0(t, x) = 1, G1(t, x) = x, (n+ 1)Gn+1(t, x) = (x− n)Gn(t, x)− tλGn−1(t, x).

3. Gn(t, x+ 1)−Gn(t, x) = Gn−1(t, x).

4. Gn−1(t, x)− ∂Gn(t,x)
∂x + 1

λ + ∂Gn(t,x)
∂t = 0.

The following statements relates the multiple integrals with respect to the Poisson process and

the Poisson–Charlier polynomials.

Lemma 7.1 Let xt be the centered Poisson process with parameter λ. Then

Gn(t, xt, λ) =
1

n!
In(χ[0,t](t1)...χ[0,t](tn)) =

∫ t

0

(∫ t1

0
. . .

(∫ tn−2

0

(∫ tn−1

0
dxtn

)
dxtn−1

)
. . .

)
dxt1 .

The proof is by induction in n using the property 2. and Theorem 7.1.

Lemma 7.2 Let xt be the centered Poisson process, Gn(t, x), Gm(t, x) be the Poisson–Charlier

polynomials, 0 ≤ t0 ≤ S < T ≤ T2. Then∫ T

S
Gn(t1 − t0, xt1 − xt0)Gm(t2 − t1, xt2 − xt1)dxt1

=
{
Gn+m+1(t1 − t0, xt1 − xt0) +Gn+m(t1 − t0, xt1 − xt0)G1(t2 − t1, xt2 − xt1) (7.2)

+ · · ·+Gn+1(t1 − t0, xt1 − xt0)Gm(t2 − t1, xt2 − xt1)
}∣∣∣t1=T

t1=S
.
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Proof. One can check the identity (7.2) by direct calculation but this way is rather tedious.

Alternatively, one can proceed as follows. In virtue of Theorem 6.1 and properties of the Hermite

polynomials the formula (7.2) holds if one replaces the Poisson process by the Wiener process

and the Poisson–Charlier polynomials by the Hermite polynomials. This analog of (7.2) can be

written as the equality of two multiple Wiener integrals of order n + m + 1. But if the multiple

Wiener integrals coincide on functions from L2(Rn+m+1
+ ,Λn+m+1), then the MSI with respect to

the Poisson process are also equal. �

Let us introduce the following notations:

S(k)
y (~t, ~x) = f(t1, ..., tn, x1, ..., xk + y, xk1 , ..., xn),

∆(k)
y (~t, ~x) = S(k)

y (~t, ~x)− (~t, ~x).

Theorem 7.4 Let xt be the centered Poisson process. Suppose that the function F (~t, ~x) is

continuous together with its derivatives ∂F
∂tj

, ∂F
∂xj

, j = 1, ..., n, in the domain Q× Rn where the set

Q = {~t : 0 ≤ t1 < t2 < ... < tn}. If

EF 2(~t, xt1 , ..., xtk + ϑ, ..., xtn + ϑ) < c, ϑ ∈ {0, 1}, k = i, i+ 1,

E
{[∂F
∂tj

(~t, x~t)
]2

+
[ ∂F
∂xj

(~t, x~t)
]2}

< c, j = 1, ..., n,

when ti ∈ [Si, Ti] for all fixed (t1, ..., Si, ..., tn) and (t1, ..., Ti, ..., tn) in Q, then

∆
(i)
1

n∏
j=i+1

S
(j)
1 F (t1, ..., tn, xt1 , ..., xtn)

as a function of ti belongs to D(J, [Si, Ti]) and

F (~t, x~t)
∣∣∣ti=Ti
ti=Si

=

∫ Ti

Si

∆
(i)
1

n∏
j=i+1

S
(j)
1 F (~t, x~t)dxti

+

∫ Ti

Si

(
∆

(i)
1

n∏
j=i+1

S
(j)
1 −

∂

∂xi
F (~t, x~t)

)
λdti +

∫ Ti

Si

∂T

∂ti
F (~t, x~t)dti.

We skip the proof of this theorem noting only that the key point is using Lemma 7.2.

Under more restrictive assumptions one can prove a stronger version of the above theorem, for

a larger class of processes.

Let xt =
∫
|u|≤q uq(t, du) be a one-dimensional process and let Q = {~t : 0 ≤ t1 < t2 < ... < tn}.

Theorem 7.5 Let F (~t, ~x) be continuous together with its partial derivatives ∂F
∂tj

, ∂F
∂xj

, ∂2F
∂x2j

,

j = 1, ..., n, in the domain Q× Rn and, moreover, the following conditions are fulfilled:

E
{

[F (~t, x~t)]
2 +

[∂F
∂tj

(~t, x~t)
]2}

< c, (7.3)
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E sup
0≤θ≤1

{
S

(i)
θy

n∏
j=i+1

S(j)
y

(∣∣∣ ∂F
∂xi

∣∣∣+ |F |
)

(~t, x~t)

}2

< c1(y), (7.4)

E sup
0≤θ≤1

{
S

(i)
θy

n∏
j=i+1

S(j)
y

∣∣∣∂2F

∂x2
i

∣∣∣(~t, x~t)
}2

< c1(y), (7.5)

where ti ∈ [Si, Ti], (t1, ..., Si, ..., tn) and (t1, ..., Ti, ..., tn) in Q,∫
|y|≤1

ck(y)y2Π(tdy) <∞, k = 1, 2.

Then χ[−1,1](y)∆
(i)
y
∏n
j=i+1 S

(j)
y F (~t, x~t) as a function of ti belongs to D(J, [Si, Ti]) and the following

equality holds:

F (~t, x~t)
∣∣∣ti=Ti
ti=Si

=

∫ Ti

Si

∫
|y|≤1

∆(i)
y

n∏
j=i+1

S(j)
y F (~t, x~t)q(dt, dy) (7.6)

+

∫ Ti

Si

∫
|y|≤1

[
∆(i)
y

n∏
j=i+1

S(j)
y − y

∂

∂xi

]
F (~t, x~t)Π(dy)dt+

∫ Ti

Si

∂F

∂ti
(~t, x~t)dti.

Proof. Suppose that F (~t, ~x) has a compact support. Make a change of variables (6.7) and note

that the function F̄ (~̄t, ~̄x) has also a compact support. The formula (7.7) is transformed to the

following form:

F̄ (~̄t, ~̄x)
∣∣∣ti=Ti
ti=Si

=

∫ Ti

Si

∫
|y|≤1

[
∆̄(i)
y − ∆̄(i+1)

y

]
F̄ (~̄t, ~̄x)q(dt, dy) (7.7)

+

∫ Ti

Si

∫
|y|≤1

[
∆̄(i)
y − ∆̄(i+1)

y +
( ∂

∂x̄i
− ∂

∂x̄i+1

)]
F̄ (~̄t, ~̄x)Π(dy)dt

+

∫ Ti

Si

( ∂

∂t̄i
− ∂

∂t̄i+1

)
F̄ (~̄t, ~̄x)dti.

It is well-known that the function F̄ (~̄t, ~̄x) can be approximated uniformly with its derivatives

by functions of the form a(~̄t)g(x̄1)...g(x̄n) and we need to prove (7.8) only for such functions. On

the other hand, the process q∗(t, A) = q(1, A)− q(1− t, A) is a left-continuous modification of the

Poisson process. This remark allows us to prove (7.8) by arguments similar to those used at the

end of Section 6 to derive the generalized Ito formula with ESI with respect to the Wiener process.

The conditions (7.3) – (7.6) ensure the passage to the limit. �
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HISTORICAL COMMENT

This is the English translation of notes prepared in summer of 1974 when I was still a PhD student

of Steklov Mathematical Institute supervised by A.N. Shiryaev. They were based on the papers

and preprints listed above. Two lectures were presented by myself in November 1974 at the school-

seminar in Druskininkai in front of members of the major seminars in probability of the Soviet

Union lead by A.N. Shiryaev (Moscow), I.A. Ibragimov (Leningrad), A.V. Skorokhod (Kiev), B.

Grigelionis (Vilnius) and others. This meeting happen to be an important event in the history

of stochastic calculus. In particular, for the first time the difference between the notions of weak

and strong solutions of SDEs were clearly understood and explained: in a few days afterwards

Tsirel’son constructed his famous counterexample.

Regretfully, the proceedings of school-seminar were never translated into English and the aim of

this translation is to shed the light to the origin of concepts of extended stochastic integral and the

stochastic derivative playing an important role in the theory known as the Malliavin calculus. By

strange coincidence, the story with other early publications on this subject was also unfortunate. At

this period the short notes in Uspehi Matematicheskih Nauk were not translated. The translation

of my paper in Theory of Probability and Its Applications contained a misleading error in the title.

The preprint by Hitsuda circulating already in 1972 was published only in 1978 and in a rarely
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available journal. I could not find the issue containing his paper even in the Kyoto University

Research Institute for Mathematical Sciences (RIMS) library and got the copy directly from the

author. Clearly, Masuyuki Hitsuda has a priority in introducing the concept which happen to be

so important. To my knowledge, Skorokhod had the book of abstracts (I saw it on his bookshelf)

but not the Hitsuda preprint (he got it from my hands only in April 1974).

Compiling the text of lecture notes and using the manuscripts by Hitsuda, Skorokhod, and my-

self, I explained the Skorokhod setting (described in the language of generalized Gaussian processes)

in terms of a more specific model considered by Hitsuda, that is, in the notation of the latter. The

small changes were in considering the multiple integrals not with respect to the Wiener process

but with respect to a “stochastic measure” (note the difference with the common notion of random

measure: a “stochastic measure” not always be represented as a kernel). The chosen approach

allowed to present in a unified way the theory which includes also the Poisson case. I also tried

to clarify the concept of the Skorokhod stochastic derivative. Nowadays, it is clear that the latter

is a kind of gradient requiring more smoothness than the Malliavin directional derivative. The

principal aim of my own research was to extend to the Lévy processes the generalized Ito formula.

The latter was obtained by Hitsuda in a rather ingenious way, from a formula for complex Wiener

process (looking like the Newton–Leibnitz formula), by conditioning with respect to the real part.

However, this idea does not work for the Lévy processes and I obtained the analog using the time

reversal which gave an alternative proof also in the Wiener case.
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