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Abstract

Modern financial systems are complicated networks of interconnected finan-
cial institutions and default of one of them may have serious consequences for
others. The recent crises have shown that the complexity and interconnect-
edness are major factors of systemic risk which became a subject of intensive
studies usually concentrated on static models. In this paper we develop a
dynamic model based on the so-called structural approach where defaults
are triggered by the exit of some stochastic process from a domain. In our
case, this is a process defined by the evolution of bank’s portfolios values. At
the exit time a bank defaults and a cascade of defaults starts. We believe
that the distribution of the exit time and the subsequent losses may serve
as indicators allowing regulators to monitor the state of the system to take
corrective actions to avoid the contagion in the financial system. We model
the development of financial system as a random graph using the prefer-
able attachment algorithm and provide results of numerical experiments on
simulated data.
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1. Inroduction

In interbank market, systemic risk is a risk arising from a complexity of
financial network and threatening the entire system by a potential financial
crisis, resulting in high economical and social costs. Controlling financial
stability and assessing systemic risk is a major concern of central banks and
financial regulators. The rapid growth of financial innovation and integration
as well as a complicated network of claims and obligations linking the balance
sheets of banks raises the challenge for the analysis of systemic risk. This kind
of risk is highly dynamic, slowly building up during periods of stability and
rapidly rising during crises and spreading through the network. On the other
hand, the interconnections of banks have a positive side since they enhance
liquidity and increase the risk sharing among the financial institutions.

One of the aim of theoretical studies is to provide regulators comprehen-
sive indicators allowing to monitor the risk of contagion, understood as a
cascade of defaults that may lead to a serious consequences and even to the
collapse of the whole economy. To the moment, there is a substantial progress
in understanding various phenomena causing the contagion on the basis of
modeling using random graphs. Network models became the mainstream of
current researches in the field, see the recent book by T. Hurd [23] and the
references wherein.

Recent crisis revealed that the systemic risk might take various forms.
One of them is an interbank contagion process when, due to the intercon-
nectedness of banks through interbank loans, the default of one bank leads
to losses and subsequent chain of defaults of other banks. This kind of risk
is usually combined with a risk related to a correlation between banks’ port-
folios that consists in the phenomena that a common shock, due to common
asset holdings, affects many banks at once.

Bandt et al. (2009), [14] provided a categorization of systemic risks,
distinguishing between those understood in a broad and in a narrow sense:
contagion effects pose a systemic risk in the narrow sense while in the broad
sense it is a common shock that affects many nodes and once. A similar
idea is developed by Gai and Kapadia (2010), [20], who model two channels
of contagion in financial system that can trigger further rounds of defaults:
contagion due to the direct interbank claims and obligations and contagion
due to common shocks on the asset side of the balance sheet, especially, when
the market for key financial system assets is illiquid.

Deposits also could affect the financial system stability: a large sudden
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withdrawal of funds by depositors in panic could lead to a collapse of the
system. However, in the present paper we do not consider this as one of the
major sources of system risk. in fact, its impact can be minimized and con-
trolled by the central bank intervention imposong an appropriate withdrawal
limit.

A large part of the literature have focused on the analysis of the contagion
effect due to the interbank market while only a few authors studied the
impact of the correlated defaults which is of great importance related to the
magnitude of correlation between the banks balance sheets, to the amount of
external investments and to the appropriate assessment of the risk embedded
in these external assets. Acharya and Yorulmazer (2008), [2] proved that
banks are motivated to increase the correlation between their investments
amplifying by such actions the risk of a common shock. In their analysis,
Elsinger et al. (2006), [? ] combine the two major sources of systemic
risk and find that the correlation in investments is far more important than
financial linkages.

We can also consider a subordinate source of risk due to the fire sale of
external assets of defaulting banks which will lead to other banks default
because of the price depreciation. This is why some banks have an interest
to bailout other peers in order to minimize the default cost of the system
and to prevent fire sale and the writing down of their own external assets.

While the interbank risk is concerned, Gai and Kapadia (2008) show
that the risk of systemic crises is reduced with increasing connectivity while
the amplitude of the systemic crises is increasing at the same time. Higher
connectivity simply creates more channels of contact through which default
could spread, increasing the potential or probability for contagion. However,
in the financial system setup, greater connectivity allows counterparties risk
sharing as exposures are distributed over a wider set of banks, especially, in
periods of stability. In times of crisis, however, the same interconnections
can amplify shocks that spread through the system.

Allen and Gale (2000), [3] demonstrated that the spread of contagion
depends from the network structure of the financial system and strongly in-
terconnected banking systems are less affected by the systemic risk. They
also pointed out that the assumption that the agents have complete infor-
mation on their environment is not realistic. Acharya and Bisin (2014), [1],
compared over-the-counter (OTC) and centralized clearing markets in a gen-
eral equilibrium model. They show that the intransparency of OTC markets
is ex-ante inefficient and will lead to underpricing of counterparty risk.
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The counterparty risk makes it clear that the network structure of finan-
cial system plays an important role when assessing systemic risk.

Empirical analyses of the interbank network structure exist for a number
of countries. It shows that the interbank network has a scale free topology.
This means that there are a few large banks with many interconnections
and many small banks with a few connections. In contrast, other authors
argue that the intransparency of real data makes the random network more
valid to capture the hidden links. More formally, the terminology "scale free
network" means that, at least, when the number of nodes increases to infinity
the number k of connections ("in" or "out") attributed to each node decays
as k−γ, γ > 1.

Georg (2013) [21] proposed a dynamic model of cascading banking de-
faults: at each stage of the cascade, each bank collects all his exposures, pays
all his liabilities, adjust the price of its external assets and, when remains sol-
vent, it optimizes a portfolio of risky and risk-free assets and initiates other
interconnections within the banking system.

On the other hand, Gai and Kapadia (2009) highlighted that in nor-
mal times, developed country banks are robust and minor variations in their
default probabilities do not affect lending decisions on the interbank mar-
ket. But in crises, as illustrated by the sudden failures of Lehman Brothers,
contagion may spread rapidly with banks having little time to alter their
behavior before they are affected. Thus, the almost static behavior of the
system during crisis is best captured by the static model as also applied in
our paper.

It seems that the majority of existing literature deals with "homogeneous"
models, like Erdös–Renyi model where the network graph is generated by a
matrix whose the non-diagonal entries are identically distributed independent
Bernoulli random variables, see [20], or even models where all nodes has
the same number of connections, [25]. Though such models are convenient
for theoretical studies, they look to be too far from the reality and in the
present paper we investigate the behavior of the systemic risk indicator using
networks with a structure obtained by a preference attachment algorithm
leading to a scale free network.

Under the Basel II accord, improving the quality of default models is
the key risk-management priority. Many researchers have studied the loss or
impact of the systemic risk once a crisis or shock is in place. However, there
is a need to predict and prevent the defaults of banks before it happens. To
the date, the major part of research papers concentrates on studies of static
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or stationary models. In this note we suggest an approach influenced by
the structural model of defaultable securities, see [7]. Namely, we suppose
that the cascade of default is triggered in a natural way when the value
of a portfolio process of some bank falls below a certain level. Financial
market react negatively to such an event. Prices of the external assets drop
down and contagion propagates not only to interconnected banks but also via
correlation. Assuming that the matrix of exposures as well as the vector of
the investments into external assets is known, the regulators, having a model
for the dynamic of the "reference portfolio" can compute, with moving time
horizons, two ‘’alert indicators”: the probability that the default happens
during the planning period and the total losses incurred when the default
happens. The total losses are the aggregation of the losses due to the external
asset price depreciation (correlation) and the losses due to the interbank
linkages (contagion). To simplify our calculation, we assume that there is
a single external risky asset common to all banks in the system and the
difference is only in the size of portfolios. A model where each bank has its
own portfolio structure can be treated in a similar way. Our approach is
rather flexible and can be combined with existing methods of reconstructing
of the exposure matrix.

Thus, the main novelty of our approach, in contrast to the majority of
existing studies concentrated on static or stationary models, is in developing
a dynamic model of financial system before the crisis in combination with
a static contagion model for the crisis. The model is described by a graph
which nodes are banks (or other financial institutions). The directed graph
structure arises from the matrix of liabilities/exposures. Each bank is char-
acterized by a stylized balance sheet. On the asset side there are exposures
(due to the interbank lending) and liquid assets, risky (stocks) and non-risky
(cash). The liability side is composed by the received interbank loans and
the net worth, the quantity, equating both sides of the balance sheet. The
dynamic is introduced via random fluctuations of the value of the risky asset.
Decreasing of its price means that the net worth is decreasing. We suppose
that the risky asset is unique for all banks. One may think of this asset as
a "benchmark (or reference) portfolio". Taking into account that banks try
to mimic behavior of each other ("herding effect"), we believe that this as-
sumption may suit to our highly stylized model but for practical applications
it can be relaxed. Of course, there is a need to introduce dynamics in other
parts of the balance sheet but we prefer avoid this in the paper.
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The paper contains some numerical experiments. Unfortunately, the lia-
bility matrix of a financial system is not publicly available (with rare excep-
tions). By this reason we test applicability of our model on simulated data.
In numerical experiments we use a construction of the scale-free network us-
ing a preferential attachment algorithm, see [4]. We populate the model by
balance sheets and compute the alert indicators. Our experiments show that
the alert indicators can be used as a tool to support regulator’s decision to
increase the stability of the financial system by withdrawal of the license of
the bank having low reliability.

The structure of the article is as follows. In Section 2 we describe the
general network approach to contagion. Section 3 gives the model description
and the definition of the alert indicators. Section 4 is devoted to simulation
results.

2. Network approach

2.1. General principles
The basic ideas are very simple and can be described as follows. The set

G = {1, ..., N} stands for the banking system involving N financial institu-
tions described by an N × N matrix L = (Lij) with non-negative entries
vanishing on the diagonal (Lii = 0) and a vector C ∈ RN with non-negative
components.

The entry Lij represents the liability of the ith bank to the jth bank, i.e.
the debts of i to j or, in other words, the total amount of credit provided by
j to i. By the reciprocity, for the ith bank the value Lji is its exposure to the
bank j. By this reason, in the literature the model quite often is described
by the matrix of the liabilities X = (X ij), X = L′, where ′ is used to denote
the transpose. Let Bij = I{Lij>0}. The matrix B (whose entries are zeros and
units) defines the directed graph structure on the set of N points in a usual
way (as is done in the theory of Markov chains): there is a flesh i → j if
Bij > 0, showing that the ith bank is indebted to the jth bank (attention: in
some papers the direction of fleshes can be opposite). With this observation,
one can use the standard terminology of the network theory and identify
banks with the nodes of the (weighted) oriented graph.

The component Ci of the vector C represents the proper capital reserve
the ith bank; it is solvent if the net worth

NW i :=
∑
j∈G

Lji −
∑
j∈G

Lij + Ci ≥ 0. (2.1)
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If the above solvency condition does not hold, the bank defaults.
It is important to note that the definitions "exposure", "liability", "de-

fault" appeal to a common sense rather having a precise meaning. Their
understanding varies from paper to paper. In practice, the balance sheet
of a bank has a much more complicated structure. E.g., the exposure may
include overnight credits as well as long term loans, the debts are of different
seniority, and so on. The “standard" highly stylized balance sheet, i.e. the
equality Assets = Liabilities presented as a table, containg on the assets
sides the interbank exposures (loans) and external assets (that can be split
in liquid and illiquid, risky and non-risky) while on the liability side there are
interbank borrowings, deposits and, to equate the both side, the net worth
(called also capital reserve or equity) — in the case that the bank is solvent.

2.2. Defaults
In the literature, the typical descriptions of the contagion process and

defaults “in cascade" can be found, e.g., in [23]. We present them in a
succinct way as follows. Let us denote by Iout(i) (respectively, by Iin(i)) the
set of banks to which the bank i has a liability (respectively, an exposure).
That is, Iout(i) is the set of nodes terminal for the fleshes (arcs) outgoing from
the node i while Iin(i) is the set of nodes with fleshes ending at this node.
We denote by nout(i) and nin(i) the cardinality of the corresponding sets,
i.e. the numbers of outgoing and ingoing fleshes. Clearly, nout(i) =

∑
j B

ij,
nin(i) =

∑
j B

ji.
The default of the bank i triggers the following procedure. The bank is

excluded from the network. Debts are collected from debtors at liquidation.
Creditors loose a fraction 1−R of their exposures to i, where the parameter
R is referred to as recovery rate. Formally, one can think that the matrix
L is replaced by the matrix L̄ obtained by replacing the elements of the ith
row and ith column by zeros. The transformed vector of capital reserves C̄
has the components C̄j = Cj + RLij − Lji, j 6= i, C̄i = 0. Put D0(i) := {i}
and skip further the argument i here and in further definitions (depending
also on R). For some j (different from i) the solvency condition∑

k∈G\D0

L̄kj −
∑

k∈G\D0

L̄jk + C̄j ≥ 0, (2.2)

which can be written also as∑
k∈G

Lkj −
∑
k∈G

Ljk + Cj − (1−R)Lij ≥ 0, (2.3)
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may fail. We denote by D1 := D1(i) the set of such indices, corresponding to
the first-order defaults in the cascade of the defaults triggered by the default
of i. In the same way, the contagion is propagated further, to the set of banks
D2 = D2(i) which is a subset of indices j outside of the union D1

0 of D0 and
D1 and such that the solvency condition becomes negative:∑

k∈G

Lkj −
∑
k∈G

Ljk + Cj − (1−R)
∑
k∈D1

0

Lkj < 0.

Continue in the same way, for the set Dn
0 , we put Dn+1

0 := Dn
0 ∪Dn+1 where

Dn+1 is the set of indices j in the complement of Dn
0 such that

N∑
k∈G

Lkj −
∑
j∈G

Ljk + Cj − (1−R)
∑
k∈Dn

0

Ljk < 0.

The process stops if Dn+1 = ∅. One can consider the value

L(i) := (1−R)
N∑
n=0

∑
j∈Dn+1

∑
k∈Dn

0

Ljk

as the total losses incurred by the cascade of defaults triggered by the default
of the ith bank.

It is not difficult to extend the above definitions to obtain expressions for
losses triggered by simultaneous defaults of a group of banks.

2.3. Practical aspects and difficulties
On the first sight, the above formulae are of great help for the researchers

in financial systemic risk providing them N functions of the recovery rate
which allows to classify banks accordingly to their systemic importance. The
described procedure also can be used to find the most vulnerable banks,
sensitive to defaults of others. However, the practical implementation is not
so straightforward. Indeed, in the majority of cases the exposure matrix
X (having one million entries for a system with N = 1000) is not publicly
available though a certain subset of its entries may be known. Usually, only
the sums of elements along each line and each column can be extracted from
the balance sheets. If only this information is available, one cannot recover
the matrix L in a unique way: one needs to solve the system of 2N equations∑

j∈G

Lji = ai,
∑
j∈G

Lij = bi, 1 ≤ i, j ≤ N, (2.4)
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with N2 −N unknown Lij ≥ 0, i 6= j, and all Lii = 0.
Obviously, the system (2.4) has the non-negative solution xij = ajbi/

∑
i b
i

(note that
∑

i b
i =

∑
j a

j). But this is not the needed solution since not all
xii = 0. In the literature, see [27], it is recommended to take as the matrix
X the solution of the entropy minimization problem:∑

ij

ln
Lji

xji
→ min,

under constraints (2.4), Lij ≥ 0 and Lii = 0 for all i, j.
This approach is criticized since it leads to a matrix generating a complete

graph and the overestimation of stability of financial system. On the other
hand, in some cases, a part of the matrix L is known, e.g., the absence of
connections between some nodes can be a plausible hypothesis. The entropy
minimization method can be easily adapted to such cases leading to a rather
realistic recovery of the exposure matrix.

2.4. Probabilistic modeling
Due to the lack of the information on the real structure of the financial

system, there is an interest to generate numerically models which have, at
least, basic features of such models.

Apparently, the liability matrix L and the reserve vector R are random
and evolve as stochastic processes. Due to the high dimensionality of the
problem their modeling is extremely complicated and simplifying assump-
tions are unavoidable. The majority of available studies consider static mod-
els or stationary models and start modeling with the description of the inci-
dence matrix B.

The simplest model is based on the hypothesis that the non-diagonal
elements of the incidence matrix B are independent identically distributed
Bernoulli random variables, see, e.g., [29] where low-parameter models are
suggested to evaluate the impact of various factors on the financial stability.
In addition to N and p = P (Bij = 1), there are three more parameters: the
total value of assets A, the value of external assets C, and the net worth as
the percentage of the total value of assets γ. These parameters are used to
generate the balance sheets. In our notations, the interbank exposures and
liabilities for the ith bank are defined as follows:

ai = (A− C)
nin(i)

|B|
, bi = (A− C)

nout(i)

|B|
,
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where |B| :=
∑

ij B
ij. The value of external assets of the bank are defined

by the formula

Ci = (bi − ai)I{ai<bi} +
1

N

(
C −

∑
j

(bj − aj)I{aj<bj}
)
.

If the second term is positive, then all banks in the system are solvent. Since
aj and bj are random, one should have a sufficiently high ratio C/A (in [29]
it was always taken greater then 0.3). The quantity γ(ai − bi + Ci) models
the net worth while (1− γ)(ai − bi + Ci) stands for the consumer deposits.

3. Dynamic models and alert indicators

3.1. Structural model
The aim of the model is to provide regulators two functions on the current

state of the system which can be used to calculate the alert indicators. The
first one is the probability that the system will suffer a cascade of defaults
before a specified time horizon. The second indicator is the total losses
incurred by the cascade of defaults, if it happens.

We suppose that at time zero the regulators dispose the liability matrix
L or its transpose the exposure matrix X = L′ (in reality, this information
is public only in rare countries, like Brasil, but can be available to central
banks) and the vector of capital reserves C which is decomposed into non-
risky reserve c (say, Treasury bonds) and investments y into a single risky
asset which can be interpreted as a market index or a market portfolio. In
our very stylized model all these values are fixed up to the time horizon T .
Of course, in reality the banks trade and portfolios are composed in many
assets. Nevertheless, quite often banks mimic the behavior of each other
and one may guess that a typical portfolio value has the same evolution
as a certain reference portfolio. We describe its dynamics by a geometric
Brownian motion:

dSt/St = µdt+ σdWt.

That is,
St = S0e

σWt+(µ−σ2/2)t.

At time zero all banks supposed to be solvent.
The default cascade will be triggered at the instant when one of the

solvency conditions will be violated.
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The solvency condition for the ith bank has the form:

Vt + yi0S0e
σWt+(µ−σ2/2)t ≥ 0. (3.5)

where
Vt := bit − ait + cit,

bit :=
∑
j∈G

Ljit , ait :=
∑
j∈G

Lijt .

Hypothesis: Vt = V for all t ∈ [0, T ].
The above assumption allows us to provide the regulators some easily

calculated indicators of the system stability. Without any doubts, in the
present oversimplified form they can be criticized. For example, we assume
that the interbank operations to a large extend are balanced by liquid assets.
In favor of this are evidences that interbank lending is not the main activity
of banks. We also assume a rigidity of the investment portfolio. Again,
econometric studies confirm that banks have a tendency to follow similar
behavior. The benchmark portfolio process may have various dynamics and
various theoretical and statistical models can be used for its description.

Put
λi :=

1

σ
ln

V i

yiS0

with a convention that λi := −∞, if V i ≤ 0. Let i0 be the index corre-
sponding to the largest of values of λi. We may assume, with very minor loss
of generality, that all finite values of λi are different (the coincidence is not
expected in the present context) and that λi0 is finite (otherwise there will
be no defaults).

Let us introduce the stopping time

τ := inf{t ≥ 0 : wt + βt ≤ λi0}

where β := µ/σ−σ/2. If τ ≤ T , the system will have a default and it happens
with the node i0; the price of the market portfolio at this date will be S0e

σλi0 .
The distribution of τ is the well-known inverse Gaussian distribution (see;
e.g., [11]) and we have that

P (τ ≤ T ) = Φ(h1(T )) + e2βλ
i0Φ(h2(T )),
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where Φ is the standard Gaussian distribution function and

h1(T ) :=
λi0 − βT√

T
, h2(T ) :=

λi0 + βT√
T

.

The default of the bank i0 generates a cascade of the defaults. It seems
reasonable to suppose that the market reacts to such an event and the risky
asset may loss a certain percentage of its value. With this assumption the
set D1 = D1(i0) of first order defaults of the banks correspond to the indices
j such that∑

k∈G

Lkj −
∑
j∈G

Ljk + cj + αyjS0e
λi0 − (1−R)Lij0 < 0, (3.6)

D1
0(i0) := D0∪D1 etc. The parameter α ∈]0, 1] represents the default impact

on the price of the reference portfolio.
The second alert indicator is the amount of total losses

L(i0) := (1−R)
N∑
n=0

∑
j∈Dn+1

∑
k∈Dn

0

Ljk.

In the considered setting it can be augmented, e.g., by the losses of non-
defaulted banks due to a depreciation of their portfolios:

L̃(i0) := (1− α)
∑

j∈G\DN
0

yjS0e
λi0 .

3.2. Discussion
The model introduced above has an advantage of its simplicity. It com-

bines structural approach to defaultable securities with ideas of modern the-
ory of financial networks. The alert indicators have a simple and compre-
hensive meaning. They can be easily computed at the monitoring dates tm
(when the new balance sheets are communicated) for the moving time hori-
zons tm + T . This allows regulator to see dangerous trends in the evolution
of the system. It is worth noting that the model combines two channels of
contagions: via the network as well as via the correlation due to common
source of randomness.

Surely, the model is highly stylized. How serious are the weak points and
how the model can be improved?
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1. It is assumed that the investment in the single risky asset are static
though in reality there is an intensive trading. For a fixed input there is only
the bank triggering the default is uniquely determined.

To our mind, these objections should be examined carefully. Due to ex-
treme complexity of financial systems (recall that they may contain hundreds
of banks) and complexity of individual balance sheets, for more sophisticated
models one can have an accumulation of various factors: misspecification er-
rors, calibration errors, data aggregation errors etc. That is why simplifying
hypotheses seems to be inevitable. It seems that we can accept that banks
investment portfolios are close to the most performant one.

Of course, the predetermined bank triggering of the default cascade is
not intuitive. However, as we know from the literature the matrix L is rarely
known and should be reconstructed from the aggregated exposure of the
banks. It is not difficult to implement a random reconstruction procedure,
for each realized reconstruction one can compute conditional alert indicators,
and take the average.

4. Numerical experiments

4.1. Network construction
We present here numerical simulations to offer further insight into the role

of the external assets in contributing to a systemic risk in the financial sys-
tem and to show an impact of parameters range to financial stability. Table
1 summarizes the baseline simulations parameters. The system comprises N
banks. As in Eboli (2004), [15], we consider the banking system as a network
of nodes, where each node represents a bank (or any other financial institu-
tion) and each link represents a directional lending relationship between two
nodes (two banks). We believe that network reflects its "genetic" structure.
The development of the system starts from relatively small kernel composed
from a few banks. A newly created bank establishes relationships preferably
with more "important" nodes of the network, namely, those that already
have more connections than others. Also, well connecting bank, usually, has
better chances not to be eliminated from the system (“too connected to fail).

As an example let us make a look on the development of banking system
in Russia. In the USSR the number of banks were about a dozen. The first
commercial bank was registered in August 1988 (Cooperative bank "Patent",
Leningrad). Already to the end of 1989 the country had 43 commercial banks.
Afterwards the number of banks in Russia evolved (approximately) as follows:
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1991 – 1400, 1994 – 2300, 1997 – 2000, 2003 – 1300, 2011 – 1000.
In 2016 the total number is less than 700. To compare: the USA in 2014

had more than 6800 banks.
Of course, the evolution of the banking system is a rather complicated

process but, statistically, it leads to a network having common features with
other type of networks like internet connections. In particular, interbank
networks have a scale free topology with a few large banks having many
interconnections and many small banks with a few connections. By this
reason, we generate our simulating financial system using the methodology
introduced in Barabási and Albert (1999), [4]. We are based on the idea
that a larger and more connected bank is usually more trusted and as a
consequence, other system banks tend to deal with it rather than with a less
connected one.

The algorithm starts with creating the initial network (the “seed") with a
small amount of nodes n. The connections between them are taken randomly,
and the maximal number of connections (“in" and “out") is limited by m as
well as the total number M of connections (in our experiments n = 10,
m = 5, M = 20). When drawing the network, we allow for the possibility
that two banks can be linked to each other via both lending and borrowing
links but at most one in the same direction is possible between the 2 banks.

Remark. In general, we expect that the structure of the initial network
has a relatively small impact on the resulting network which may be in dozens
or even hundred times larger than the “seed". So, the initial network involving
a few nodes can be created in various way, e.g., as Erdös–Rényi network with
the matrix B = (bij) where entries bi,j, i 6= j, form a set of independent
identically distributed Bernoulli random variables with P (bi,j = 1) = p.

To generate a scale free network, assuming that a seed network of n banks
is randomly generated as mentioned above, we proceed recursively. At each
step we add m′ < m new nodes choosing each time a partner i between the
existing nodes and selecting accordingly to the Connection Probability P (i)
defined as follows:

P (i) =
total number of connections of i

total number of connections of the network
,

where i is an existing node in the network. Nodes will be added each time
until we reach a network size limit equal to N . As shown on Figure 2, the
distribution of a number of nodes in our model is in a conformity with that
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Parameter Description value Range of
variation

n Number of banks in the initial random
graph

10 fixed

N Total number of banks in the network 250 fixed
m Maximum number of connection in the

random network
5 fixed

m′ Maximum number of connection in the
scale free network

3 fixed

Table 1: Summary of the parameters considered in the network construction of the model.

Parameter Description Value Range of
variation

A Value of the total assets of the
network

10,000,000,000 fixed

β Proportion of external assets from
the total assets of a bank

0.5 fixed

S0 Initial price of risky asset 10,000 fixed
T Time horizon 40 fixed

Table 2: Summary of the system benchmark parameters

one can expect from a typical scale free network topology where a few nodes
have a high number of connections while the majority of nodes have a small
number of connections. In particular, on the realization of the algorithm
depicted on the scatterplot only 6 banks from 250 have each at least 25
connections while 185 have an most 5 connections.

For any realization of the random graph, we populate the individual
banks’ balance sheets in a manner consistent with bank level and aggregate
balance sheet identities.

Amongst assets we distinguish external assets (investors’ borrowing), de-
noted by Ci, and interbank assets (other banks borrowing), denoted by ai.
Thus, for the bank i, the asset part of the balance sheet can be decomposed
as

Total assets = Ci + ai, i = 1, . . . , N.

Moreover, the external assets can be of two types: risky ri and riskless (cash)
li, so that Ci = ri + li. Introducing the parameter θ as a proportion of cash
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Figure 1: Illustration of a financial network generated by the algorithm and limited to 40 banks for clarity
of the figure.

Parameter Description Value Range
of varia-
tion

α Percentage of price degradation following
the panic in the market during the crisis

1 0 to 1

R Recovery rate 0.5 0 to 1
θ Percentage of riskless asset from total ex-

ternal asset
0.4 0 to 1

σ Volatility of the risky asset price 0.4 0 to 1
µ Drift of the risky asset price 0.2 0 to 1

Table 3: Summary of the balance sheet parameters

holdings, the volume of the risky assets is ri = (1 − θ)Ci The liabilities of
each bank are composed of the net worth of a bank, denoted by NW i, and
the interbank borrowing, denoted by bi. Hence for the bank i, we have that

Total liabilities = NW i + bi, i = 1, . . . , N.

An example of a bank balance sheet as generated by the simulator is also

16



Figure 2: Representation of the scale free topology.

shown in Figure 3.
We construct balance sheets for individual banks in a sequence of steps.

The entry parameter is the total value of all assets in the system denoted
by A and the parameter β which defines the proportion of the external asset
C representing the total loans made to ultimate investors and thus relating
to the total size of the flow of funds from savers to investors through the
banking system. That is, β = C/A. The aggregate assets of the whole
banking industry can be written as A = C+I, where I = (1−β)A represents
the aggregate volume of interbank exposures, i.e. I :=

∑
i,j L

ij.
Dividing the total interbank assets by the total number of nodes in the

network we arrive at the level of each bank. So, weights of all links are
equal banks borrow and lend by equal portions w = I/|B|. Though this
looks not very realistic, we accept such a hypothesis to reduce the number
of parameters. Hence, using w and the structure of the network, we can
calculate for each bank the volume of its liabilities ai = nin(i)w and exposures
bi = nout(i)w. For any bank to be able to operate we require that the value
of its external assets is not less than its net interbank borrowing, that is,
we have: Ci ≥ bi − ai. We fulfill this constraint by applying the following
two-step algorithm.
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Figure 3: Representation of the balance sheet.

First, for each bank, we fill up the bank external assets part of the balance
sheet is such a way that its external assets plus interbank lending will equalize
its interbank borrowing. That is, we provide first the bank i the volume
C̃i = (bi − ai)− where C̃i is the fraction of the total volume C reserved for
the external assets. At the second stage what is left in aggregated external
assets is equally distributed among all banks. Note that the total of external
assets is equal to C. Hence, in the second step we distribute C̄ = C−

∑N
i=1 C̃

i

equally among all N banks. Hence, we have Ci = C̃i + C̄/N . The constraint
can become difficult to meet if the percentage of external asset is too low.
Since the distribution of links is stochastic, some banks may be assigned
interbank borrowing much larger than interbank lending. When the total
amount of external assets is low, there may not be enough assets to go round
to close all balance sheet gaps opened up in this way. To avoid this difficulty
we make sure that the total volume of external assets is at least 30% of the
total volume of all assets.

Although the model applies to fully heterogeneous banks, for the purpose
of illustration and simplicity we consider one common risky asset for all banks
(full correlation among the banks). Further studies can be conducted for
portfolios composed of many different risky assets. Furthermore, we choose
the risky asset evolving according to value of a reference portfolio whose
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dynamics follows a geometric Brownian motion:

dSt
St

= µdt+ σdWt,

that is
St = S0e

σWt+(µ−σ2/2)t).

Since St = S0 at time t = 0, we can define yi as the amount of the risky
assets in the portfolio of each bank with yi = ri/S0.

Hence, we complete the asset side of the bank balance sheet as well as
interbank borrowing b on the liability side. The determination of the remain-
ing component, the net worth (equity) NW on the liability side is relatively
straightforward. The net worth is set as NW = a + C − b. This completes
the construction of the banking system and of each constituent bank balance
sheet.

Now we calculate the probability of the first default. Then we specify
which bank will first default to check the price of the risky asset at the
time of default Sτ where τ is the time of the first default (1st stopping
time). This generates a loss in the asset price from S0 to Sτ on each bank
i which will suffer a loss of yi(S0 − Sτ ). The sum of these losses is equal
to
∑N

i=1 y
i(S0 − Sτ ) and is denoted as Corr_loss (correlation loss). In what

follows we assume that the first default will affect the neighborhood and will
trigger a cascade of default due to the loss transmission through the interbank
connections. The sum of the total losses generated by the cascade of default
is denoted as Con_loss and is equal to (1−R)

∑N
n=0

∑
i∈Dn+1

∑
∈Dn

. Having
the probability as well as:

Network total loss= Correlation loss + Contagion loss

we can calculate

Probable loss Indicator = P × Total loss.

In what follows, we vary the parameters in our experiments.

4.2. Experiment 1: The influence of the external assets volume and its risk-
less proportion on the probability and losses.

Given the balance sheet above we want to compute the probability of
default when the proportion of the risky asset varies. For the sake of more
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profit and wealth, banks have the choice to invest in either risky assets, or
riskless assets. It is known that the revenue in risky assets can be much larger
than riskless ones. Thus, banks have more tendency to invest there while
keeping an eye on the risks and their liabilities towards other banks making
sure they can settle when needed. Therefore, we will check the probability of
first default that can trigger a cascade of default in the system based on the
percentage of the risky assets. Regulators may impose a minimum threshold
on the level of riskless assets (θ) held by banks as well as define a certain
proportion that a bank can invest in external assets. That is why we will
consider both parameters in this experience to check how both of them can
affect the vulnerability of the system and what is the optimal requirement
on the riskless assets thresholds for each volume of external investments.

As for the following pictures, this experiment illustrates that with an in-
crease of the riskless assets level, the probability of the first default decreases
to become zero after a certain threshold of θ. We can also note that this
threshold is smaller with an increasing volume of assets β.

For example, for β = 0.55, the probability of default is always less than
0.5 decreasing with θ and becomes null after θ = 0.6. If the system is engaged
with high level of external investments β > 0.75, the probability of default
is very low with a very low rate of riskless assets θ = 0.55. This means that
the system is rather stable even if the level of risky assets is high. On the
other hand, for a high level of external assets investments as shown in the
figure below, the probability of first default remains low even with high level
of risky assets.

In the following experiments, we will fix β = 0.5 as we assume that banks
have the same probability to invest in external and internal assets.

4.3. Experiment 2: The influence of the volatility and drift of the risky asset
price

Now we want to study how the volatility and drift of the asset price can
also affect the probability taking into consideration also the level of the risky
assets in banks balance sheet. The volatility reflects the risk of changing the
portfolio price due to external and internal factors.

Assuming that the portfolio of risky asset price has a volatility that varies
from 0.1 to 1, we can conclude that for the volatility less than 0.25 , the
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Figure 4: Probability of default with β percentage of external assets and θ proportion of riskless assets

probability of default is low for any θ level. When volatility increases above
0.25 , the probability of default increases with θ decreasing and volatility
increasing. The pattern of every plot is changing with θ : having the plot
concave for high θ and convex for low θ shows that the behavior of the
volatility influences more the probability of default since for higher θ the
increase in probability is faster than the lower one. So, summarizing, the
volatility should be limited to a certain extend in order to save the network
from a high probable default otherwise a high impact will be affecting the
asset price which in its turn will trigger a higher indicator of default.
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Figure 5: Probability of default with θ and
volatility of the asset price.

Figure 6: Zooming on probability of default
with θ and volatility of the asset price.

Figure 7: Probability of default with θ
and the drift of the asset price.

Figure 8: Zooming on probability of default
with θ and the drift of the asset price.

Moreover, we also evaluate the effect of the asset price drift on the prob-
ability considering at the same time the level of the risky assets in Banks’
balance sheet. We conclude that a portfolio price with high drift or high
average of return will for sure lead to a more stable financial system. The
optimal portfolio would be with high drift and low volatility.

Figure 7 shows for each level θ the variation of the probability relatively to
the drift. We can see in particular that for θ = 0.5 the level of drift required
to assure a probability less than 0.2 is also 0.5 but if we have a θ = 0.6 we
can see that the required level of drift in this case is 0.05.

Figure 8 highlights the relation between the volatility and the drift af-
fecting the probability of default. It is normal that the probability of default
increases with increasing volatility and decreases with increasing drift. But
we can also see from Figure 7 that when volatility is very high the influence
of the increasing drift is reduced.
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4.4. Experiment 3: the impact of recovery rate and the level of the riskless
asset in the banks’ balance sheet on the losses

In our model, the system loss is another parameter that influence the
indicator as probability of first default can be low; however, when it happens
the loss in the system can be huge. Therefore, we analyze the behavior of
the network when recovery rate is changing knowing that recovery rate is one
of the main influencer of the losses due to the default cascade. The figure
below shows that the total loss in the system decreases when recovery rate
is increasing due to the fact that defaulted banks need to settle their due
payment. We can clearly observe that there is a linear relation between the
recovery rate and contagion losses.

Figure 9: Contagion losses.

4.5. Experiment 4: the impact of the fire sale on the losses
We can also consider a subordinate source of risk due to the fire sale

of external assets of defaulting banks which will lead to other banks default
because of the price depreciation. In bad times in order to compensate certain
losses, distressed banks tend to sell assets in a depressed price, a situation
called asset fire sale. Because of the correlation between the banks’ balance
sheets having common assets, the decrease in the asset price affects all banks
holding these assets and as a consequence a cascade of losses created by
others banks too. In this experiment, we want to compute what will be the
losses resulting from the “fire sale” mechanism that will respectively add to
the total loss of the system. It is expected that the fire sales loss will increase
with the drop rate of the price but it is worth to note that the increase is
very sharp and fast.
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Figure 10: Fire sale losses.

4.6. Experiment 5: removing the weakest bank to make the system more re-
silient

The financial system is a number of financial institutions, in our paper
considered as banks. Every bank has his investment strategy, priorities,
relationship and connections as a consequence different influence, power, and
risk level in the financial system. Banks balance sheets are populated on the
quarterly basis and can be available to regulators at any time. Thus it is
possible to understand the risk level of each bank to be defaulted. Since
banks default can generate a default cascade, it is worth to verify if it is
better to exclude the risky bank from the financial network. It is important
to determine the weakest bank that can default anytime either due to a
market price drop or liquidity shortage.

In this experiment, we create a scale free network of 250 nodes using
the same methodology as above and determine the bank i, having the high-
est probability to default or, in other words, the weakest bank to default.
We also calculate, on the basis of the above, the probable loss Indicator of
this network. In some cases, we may have more than one bank defaulting
simultaneously.

Once the bank is identified, we want to check if removing the bank from
the network is healthier for the financial system. Of course, such an action
has important consequences the owner, employees as well as debtors and

24



creditors in this bank. We describe the modification on the balance sheet of
this bank and all banks connected and in relation to this bank as follows:

- removed bank pays all his liabilities to all his creditors and as a con-
sequence updates his creditors’ balance sheets aj by adding the amount of
money bank i has landed from bank j to the riskless assets.

- removed bank collects all his exposures from all his debtors and as a
consequence updates his debtors balance sheets bj by removing the amount
of money bank i has credited to bank j. Bank j is supposed to pay to bank
i from their external assets (riskless assets and risky assets, so either bank
j has to pay from his liquid reserve or sell some external assets to pay his
due).

We conduct this experience and compute the probability, total loss and
indicator having the vulnerable bank (banks) in the system and after remov-
ing it (them) from the network.

The figure below confirms that when removing the risky bank, the prob-
ability of default will decrease. This means that the system becomes more
resilient to default.

Now we check the total losses that may occur in the system due to a
default in the above two mentioned cases and we note that, contrary to the
probability, the total losses will be higher in the case where it has been de-
cided to remove the vulnerable banks. The reason could be that the external
assets prices that have decreased to Sτ causing the first default in the first
round has to decrease more to trigger the default after removing the set
of banks that could defaulted on Sτ . In this case, though the probability is
lower, the increase in the total losses from before to after removing the banks
is due to the fact that the risky assets price should drop more and, accord-
ingly, the correlation losses increase. On the other hand, since the shock on
the net worth of every bank becomes higher, we expect that the contagion
losses are larger now. Having both correlations and contagion losses higher,
this will lead to a high total loss as shown on the plot below. it is worthy to
note that for small recovery rate the increase of the total loss after removing
the weak banks is even higher.

5. Conclusions

In this paper we develop a financial network model of interbank inter-
actions which incorporates a dynamical behavior of banks portfolios and

25



(a) Probability of default

(b) Total system loss

Figure 11: Comparison between before and after removing the weak bank(s).

combines it with cascade defaults. It is assumed that the portfolios contains,
together with riskless asset, a unique risky asset, which can be interpreted
as a market index or a benchmark portfolio and whose price evolution is
described by a geometric Brownian motion. This part of modeling follows
ideas of the so-called structural approach well known in the context of pric-
ing defaultable securities. A crisis starts when the net worth of a bank hits
zero triggering a cascade of defaults. The time to default and the total losses
calculated for the “frozen" parameters of the balance sheets can constitute
indicators of the “health" of financial system. They can be easily monitored,
on a regular basis, by the regulators. Usually, the detailed structure of the
system is available only to regulators but it is not public. By this reason, we
complete our study by numerical experiments with simulated data. Due to
complexity of financial systems this is a non-trivial problem. The network
graph is build by a version of preferable attachment algorithm augmented
by a procedure of simulations of balance sheets. Results of the experiments
are presented by plots showing dependence of the indicators as functions of
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parameters. In particular, we present an experiment with removing the weak-
est bank from the system. We believe that developing our approach on the
basis of practical data can provide regulator additional tools of monitoring
vulnerability of banking system and measuring its stability.
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ДИНАМИЧЕСКИЕ МОДЕЛИ СИСТЕМНOГО
РИСКА И ЗАРАЖЕНИЯ

Юрий Кабанов, Рита Мокбель, Халил Эль Битар

Резюме
Современные финансовые системы являются сложными сетями взаимо-

связанных финансовых институтов (банков, хедж-фондов, страховых
компаний и.т.д.) и дефолт одного из них может вызвать цепную реакцию
дефолтов других институтов системы. После недавних финансовых кризисов
важность системного риска вышла на первый план и теоретические исследования
в этой области интенсифицировались. Большая часть известных в результатов
относится к статическим моделям, которые посвящены процессам, происходящим
в системе, когда каскад дефолтов уже начался. В данной работе мы
предлагаем динамическую модель так называемого структурного типа,
когда дефолт начинается в момент выхода некоторого стохастического
процесса из области. Каскад инициируется в момент достижения критического
уровня процессом, описывающим портфели банков. Мы полагаем, что
вероятность выхода и суммарные издержки в результате каскада дефолтов,
могут служить индикаторами, позволяющие регуляторам осуществлять
мониторинг системы и предпринимать упреждающие коррекции для понижения
системного риска. В работе проводится численное моделирование системы,
которая строится на основе случайного графа, полученного при помощи
алгоритма предпочтительного присоединения. Приводятся результаты
численных экспериментов при различных значениях параметров.

Ключевые слова: системный риск, финансовые сети, заражение, дефолт.
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