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Abstract This paper is a survey of recent results on the clearing in financial systems.

Mathematically, the principal questions of the reviewed studies are on the existence and

uniqueness of solutions of specific nonlinear equations x = f(x) where f : Rd → Rd

is a mapping defined via stochastic and substochastic matrices. Some algorithms of

calculations of fixed points are discussed.
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1 Inroduction

To explain the clearing problem we start with the simplest example of a financial system

with two agents each of them having in cash one dollar. The first agent got from the

second a credit 1000 dollars. By circumstances, the second agent needs a cash and

borrows from the first agent 900 dollars in credit. As a result, both agents have large

liabilities with respect to each other. This means that in this system circulates money

much larger than the proper capital of agents. Potentially, if one of them, by reasons

not described in the model, fails to pay its debt, the creditor will suffer huge losses.

That is why the regulators are motivated to force the agents to clear their positions by

reimbursing the credits, fully or partially, diminishing in this way eventual consequences

of defaults. For the complex financial systems involving large numbers of agents, with

chains of borrowing, the clearing problem, that is the reduction of absolute values of

credits by reimbursement, is more complicated.
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In the influential paper [5] published in 2001, Eisenberg and Noe suggested a clear-

ing procedure in a simple static model describing a financial system composed of N

banks (under ”banks” one can understand various financial institutions). The assets of

each bank are of two types: the cash (or any external asset) and the credits provided

to other banks of the system, called exposures; they are, in turn, the liabilities for

its debtors. The clearing means simultaneous repaying all debts. Each bank returns

to its counterparties the debts pro rata of their relative volume using its cash reserve

and obtained repayments of the credited banks. The rule is: for each bank either all

debts are paid in full or the zero level of equity is attained; in the latter case the

bank defaults. The totals reimbursed by the banks form an N -dimensional clearing

vector. It was shown that clearing vectors must satisfy a nonlinear equation involving

a stochastic matrix with rows formed by the fractions of the total liabilities of each

bank to its creditors. The key observation is that this equation is a fixpoint problem

for a monotone mapping f of a closed N -dimensional interval into itself. The existence

of such points follows immediately from the Knaster–Tarski theorem, a beautiful and

fairy simple result which proof needs only a few lines of arguments. The uniqueness

of the clearing vector is a more delicate result. An elegant proof in [5] involves the

graph structure of the system built in the same way as is usually done in the theory

of Markov chains.

A more general model with crossholdings was developed by Suzuki, [16], indepen-

dently and at the same time, but unfortunately, being published in a rarely available

journal, until recently it was rarely cited.

The ideas of the Eisenberg–Noe paper happened to be very fruitful and the model

and methods used to its analysis were generalized in many directions having not only

financial importance but posing an interesting mathematical questions in more sophis-

ticated situations: on the uniqueness of clearing vector, on efficient numerical methods

of its calculation, and so on. Nowadays the clearing problem became an important

chapter of the new mathematical discipline — theory of systemic risk.

The algorithm of calculating the largest clearing vector in a finite number of steps,

extending one suggested in [5], was investigated in a model with default losses by Rogers

and Luitgard Veraart, [13]. Mathematically, the model is a minor generalization but it

is interesting from the point of view of applications: it provides a natural framework

to investigate problems of merging and rescue (bailout) of defaulting banks.

In the deep study [7] Elsinger considered a model combining crossholdings, in the

same spirit as in [16], with seniorities of liabilities. To avoid cumbersome formulae we

present both generalization separately.

In the real world banks protect themselves from the default risk of their debtors

using such financial instruments as credit default swaps (CDS), i.e. by buying from

third parties contingent claims with pay-offs covering losses if the debtor is insolvent.

Mathematically, this means that the liability matrices may depend on the clearing

vector. Model of this type was analyzed by Fisher in [9] on the basis of ideas from [16].

A specific class of models deals with situations where banks, besides the cash and

liabilities, may have one or more illiquid assets whose selling might influence the market

prices, see [2] (one-asset model) and [6] (multi-asset model).

In this review we try to present in a unified way the essential mathematical content

of the aforementioned papers with detailed proofs. In Section 2 we discuss briefly

the general principles and results of the seminal Eisenberg–Noe paper and explain the
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adaptation of the classical Gauss elimination algorithm to non-linear fixpoint problems

due to Sonin, [15].

Section 3 deals with the Rogers–Veraart model and contains the algorithm of com-

puting the largest clearing vector in finite number of steps. In Section 4 we present

results for the Suzuki–Elsinger model with cross-holdings. Section 5 contains results

on the Elsinger model with seniority of debts. Existence and uniqueness of clearing

vectors in the Fischer model are given in Section 6. Models with illiquid assets and

price impact are discussed in Section 7 in the multi-asset setting generalizing the mod-

els of Amini–Filipovic–Minca [2] and aslo Feinstein [8]. For the reader convenience we

conclude by Appendix with a short information about the Knaster–Tarski theorem

adapted to our needs.

Notations. We denote by ≥ the partial ordering in Rn and its subsets induced

by the cone Rn
+. In other words, the inequality y ≥ x is understood componentwise.

Also the symbols x∧ y and x∨ y mean, respectively, the componentwise minimum and

maximum, x+ := x∨0, x− := (−x)+. The notation [x, z] is used for the order interval,

i.e. [x, z] := {y ∈ Rn : x ≤ y ≤ z}. If A ⊆ [x, z], then inf A is the unique element

y ∈ [x, z] such that y ≤ y for all y ∈ A and for any ỹ such that ỹ ≤ y for all y ∈ A we

have that ỹ ≤ y. That is, the component yi = inf{yi : y ∈ A} for i ∈ {1, . . . , n}.
We use the matrix notations where the vectors are columns, ′ is the symbol of

transpose, 1′ := (1, . . . , 1) (the dimension of the vector is supposed to be clear from

the context). If D ⊂ {1, . . . , n}, then 1D is the vector with the ith component equal to

1 if i ∈ D and 0 otherwise. The diagonal matrix ΛD := diag 1D in the matrix notations

is a substitute for the indicator function when vectors from Rn are interpreted as a

function on {1, . . . , n}. Symbols |.|1 and |.|∞ denote l1-norm and l∞-norm, respectively.

2 The Eisenberg–Noe model

2.1 The model description and existence of clearing vectors

In the paper [5], Eisenberg and Noe investigated a financial system composed of N

banks represented by the points of the set N := {1, . . . , N}. The model is given by

the pair (e, L) where e ∈ RN
+ is interpreted as a vector of cash reserves (or external

assets) and the N × N -matrix L with entries lij ≥ 0 and the zero diagonal describes

the interbank liabilities: lij is the value borrowed by the bank i from the bank j.

The transpose L′ is called the exposure matrix. The vector l = L1 with li =
∑
j l
ij

describes the total interbank liabilities. Respectively, the vector x := L′1 describes the

total exposures of the banks.

The equity (or the bank value) is the quantity

ci := (ei + xi − li)+.

Note that this quantity provides a limited information on the situation: the value ci = 0

does not show how deeply the bank i is in trouble.

Put

πij :=
lij

li
=

lij∑
j l
ij
, if li 6= 0, and πij := δij otherwise, (2.1)

where the Kronecker symbol δij = 0 for i 6= j and δii = 1. Then πij describes the

fraction of the value of the debtor i due to the creditor j of the total interbank debt
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of i; Π = (πij) is called relative liabilities matrix. The value πii = 1 means that the

bank i has no interbank debts.

In general, a financial system may have a complicated structure, with cyclical in-

terdependences and banks having large exposures within cycles. To reduce them, the

authors of [5] suggested a clearing mechanism satisfying several natural requirements:

limited liability, absolute priority, and proportionality. Formally, this leads to the con-

cept of clearing payment vector p ∈ [0, l] =
∏
i[0, l

i] satisfying the following properties:

a. Limiting liability. For every i,

pi ≤ ei +
∑
j

πjipj .

b. Absolute priority. For every i, either pi = li, or

pi = ei +
∑
j

πjipj .

One may think that the central clearing authority forces each bank to make a “fair”

repayment of debts in such a way that, having the total payment pi ≤ li, the bank i

pays to j the fraction piπij in such a way that either its total debts are paid (pi = li)

or all the resources are exhausted (pi < li).

Alternatively, the condition a. and b. can be written in the following way:

p = (e+Π ′p) ∧ l (2.2)

where the minimum is understood in the componentwise sense, i.e. accordingly to the

partial ordering defined by the cone RN
+ .

Remark. An attentive reader may observe a striking resemblance of (2.2) with the

Bellman equation

v = (e+Πv) ∨ l (2.3)

whose minimal solution (the smallest (1,−e)-excessive majorant in the terminology of

Shiryaev) is the payoff function

v(x) = sup
τ
Ex

(
l(Xτ ) +

τ−1∑
s=0

e(Xs)
)

in the optimal stopping problem with cost of observations where X is the discrete-time

Markov process with values in N , transition matrix Π, and initial state x, see [14],

Section 2.14.

The existence of p solving the equation (2.2) is obvious in view of the classical

Brouwer fixpoint theorem: f : p 7→ (e + Π ′p) ∧ l is a continuous mapping of the

convex compact set [0, l] into itself. The important contribution of Eisenberg and Noe

is the observation that the set of clearing vectors is not only non-empty but it has

the minimal and the maximal clearing vectors p and p̄, respectively. This assertion

follows immediately from the Knaster–Tarski fixpoint theorem (much simpler than the

Brouwer one): the monotone mapping f : p 7→ (e+Π ′p)∧ l of the complete lattice [0, l]

into itself has the largest and the smallest fixed points, see Section 8 for details.

Using the identity (x − y)+ = x − x ∧ y we can rewrite the equation (2.2) in the

following equivalent form:

(e+Π ′p− l)+ = e+Π ′p− p, (2.4)

where the left-hand side is the equity vector c(p) of the system after clearing.



5

Lemma 2.1 The equity after clearing does not depend on the clearing vector.

Proof. As Π is a stochastic matrix, 1′Π ′ = 1′. Therefore, multiplying the above rep-

resentation (2.4) from the left by 1′ we get that

1′(e+Π ′p− l)+ = 1′e,

i.e., the sum of equities is equal to the sum of the initial cash reserves, whatever is the

clearing vector. On the other hand, by monotonicity, we have that

(e+Π ′p− l)+ ≤ (e+Π ′p̄− l)+.

If the both side here are not equal, then 1′(e + Π ′p − l)+ < 1′(e + Π ′p̄ − l)+ in

contradiction with the invariance of the total of equities. 2

Since c(p) does not depend on p, we shall use c to denote the equity vector after

clearing.

Remark. Unlike our definition (2.1), the authors of [5] used the convention 0/0 = 0

when li = 0. In the proofs it is essential that the matrix Π is stochastic and they

immediately imposed the additional assumption that all li > 0, excluding in this way

the case where some banks may provide credits without borrowing within the system.

Another specific feature of the Eisenberg–Noe is the assumption that the cash reserves

ei ≥ 0 which also can be avoided. The negative value of ei means that the bank has

external debt and the amount |ei| appears in the liability side of the balance sheet.

2.2 Sufficient condition for the uniqueness of the clearing vector

As in the theory of Markov chains we associate with the stochastic matrix Π the

structure of directed graph on N by relating with each pair i, j with πij > 0 the arrow

i→ j denoting, in the considered context, that j is the creditor of i if i 6= j. The arrow

i→ i corresponds to the case where li = 0 and means that the bank i has no liabilities

to the banks in the system; in the theory of Markov chains such i is an absorbing state.

In the language of graph theory the banks are the nodes of N .

We denote by o(i) the orbit of i defined as the set of all j ∈ N \{i} for which there

is a directed path i → i1 → i2 → ... → j. So, if o(i) is not empty, it is the set of all

direct or indirect creditors of i.

Note that k /∈ o(i) if and only if πjk = 0 for all j ∈ o(i).

Lemma 2.2 Let the market be cleared by a vector p ∈ [0, l]. Let I = o(i) be an orbit

such that 1′Ie > 0. Then 1′Ic > 0. That is, if an orbit has a node with a strictly positive

cash endowment, then this orbit after clearing has a node with a strictly positive equity

value.

Proof. Multiplying the identity (2.4) from the left by 1′I and noticing that (1′IΠ
′)j = 1

for j ∈ I, we obtain that

1′Ic = 1′I(e+Π ′p− l)+ = 1′I(e+Π ′p− p) ≥ 1′Ie > 0

implying the claim. 2

A financial system is called regular if 1′o(i)e > 0 for every orbit o(i) 6= ∅.
Note that if o(i) is empty, i.e. li = 0, then p̄i = 0. This property follows from the

relation (2.4) whose ith component in this case is

ei + (Π ′p̄)i = ei + (Π ′p̄)i − p̄i.
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Theorem 2.3 Suppose that the financial system is regular. Then p = p̄.

Proof. Suppose that p and p̄ are not equal, i.e. p ≤ p̄ but for some i we have the strict

inequality pi < p̄i and, therefore, o(i) 6= ∅.
By the above lemma, there exists m ∈ o(i) with the equity value cm > 0. Let

us consider a path i → i1 → ... → m assuming without loss of generality m is the

first node with strictly positive equity. If m = i1, a contradiction is immediate: since

cm > 0, we have the representation

cm = em +
∑
j

πjmpj − lm, cm = em +
∑
j

πjmp̄j − lm

implying the impossible equality∑
j

πjm(p̄j − pj) = 0

(the sum includes is a strictly positive term corresponding to j = i).

Suppose that m 6= i1. Thus, ci1 = 0 and, in virtue of (2.4),

ei1 +
∑
j

πji1pj − pi1 = 0, ei1 +
∑
j

πji1 p̄j − p̄i1 = 0,

Thus,

p̄i1 − pi1 =
∑
j

πji1(p̄j − pj) > 0.

The property that pi < p̄i propagates along the path and we have an obvious reduction

to the considered one-step case. 2

Remark. The above theorem reveals that the problem to find a clearing vector is ill-

posed. Indeed, adding an infinitesimally small amount ε > 0 (say, one cent) to the

initial endowments leads to a unique clearing vector. Similar effect will have a small

increase in liabilities.

The above proof is rather straightforward and uses graph-theoretical language. An

alternative one, based on spectral properties of stochastic matrices, can be found in

[1]. The theorem can be formulated in the equivalent form: if any connected compo-

nent of the graph which is not a singleton contains a node with strictly positive cash

endowment, then the clearing vector is unique.

2.3 The Gauss elimination algorithm

Let J 6= ∅ be a proper subset of N . Changing the numbering we may assume without

loss of generality that J := {1, . . . ,m}, 1 ≤ m < N . We introduce the notations

ΠJ := (πij)i,j∈J , ΠJc = (πij)i,j∈Jc , eD := (ei)i∈J , etc. Supposing that p solves the

equation p = e+Π ′p, we rewrite the latter in the form(
pJ
pJc

)
=

(
eJ
eJc

)
+

(
Π ′J R′

T ′ Π ′Jc

)(
pJ
pJc

)
. (2.5)
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Thus, we have that

pJ = eJ +Π ′JpJ +R′pJc , (2.6)

pJc = eJc + T ′pJ +Π ′JcpJc . (2.7)

Suppose that the matrix Im−ΠJ is invertible. Substituting in (2.7) the expression for

pJ from (2.6) we obtain that the vector p1 := pJc ∈ RN−m solves the equation

p1 = e1 +Π ′1p1, (2.8)

where

e1 := eJc + T ′(Im −Π ′J )−1eJ , (2.9)

Π1 := R(Im −ΠJ )−1T +ΠJc . (2.10)

It is easily seen that Π1 is a stochastic matrix (substochastic if we start with the

substochastic matrix Π). The equation (2.8) is of the same type as the initial one but

of a lower dimension and its solution, via (2.6), gives us the solution of the former. Of

course, for m = 1 the reduction to a lower dimension described above is nothing but

the Gauss elimination algorithm for solving linear equation in RN .

As was observed by Sonin in a different context, namely, of the Bellman equations

arising in the optimal stopping theory, see [15] and references therein, the elimination

algorithm can be modified to solve the fixpoint problem of the type p = (e+Π ′p) ∧ l,
even with an arbitrary positive matrix. Indeed, if the set of indices

D0 := {i ∈ N : ei + (Π ′l)i < li} = ∅,

then the solution is p = l. If this set is non-empty, take its subset J 6= ∅. Without loss

of generality we may assume that J = {1, . . . ,m}. In an analogy with (2.6), (2.7) we

get that

pJ = (eJ +Π ′JpJ +R′pJc) ∧ lJ , (2.11)

pJc = (eJc + T ′pJ +Π ′JcpJc) ∧ lJc . (2.12)

By definition of J the first equation is linear: it is the same as (2.6). Thus, if the matrix

Im −ΠJ is invertible, then p1 := pJc solves the equation of lower dimension

p1 = (e1 +Π ′1p1) ∧ lJc , (2.13)

with e1 and Π1 given by (2.9) and (2.10).

As in the classical Gauss algorithm, we take J = {1}. If π11 6= 1, we can eliminate

p1 reducing the problem to the search of the vector (p2, . . . , pN ) satisfying the equation

of the same type. If π11 = 1, then e1 = 0 and R′pJc = 0. This means that p1 is not

determined by the first equation and it can be taken as a free parameter p1 ∈ [0, l1]. In

particular, it has to be taken equal to l1 in the case of search of the maximal solution.

The problem is reduced to the same problem, in the dimension N − 1, when R′ has all

components equal to zero, and even in the dimension N −1−k when R′ has k nonzero

components. Indeed, for the latter the corresponding components of the solution must

be equal to zero.

There are other procedures of calculations of the clearing vectors. The vector p̄ can

be obtained by the iterative procedure pn = f(pn−1), n ≥ 1, starting from p0 = l.

Indeed, since f is monotone we get easily that p̄ ≤ pn+1 ≤ pn; the decreasing bounded
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sequence pn has a limit point p∞ ∈ [p̄, l]. The continuity of f implies that p∞ = f(p∞).

Since p̄ is the largest fixed point, p∞ = p̄. The same procedure but starting from

the zero vector provides a sequence converging to p. Of course, to reach the limit

this procedure needs, in general, infinite number of iterations. Similarly to the Gauss

elimination algorithm, the Fictitious Default algorithm suggested in [5] attains the

clearing vector (supposed to be unique) at N + 1 steps at most. In the next section we

describe this algorithm in a slightly more general framework. It is interesting that an

analogous algorithm was discovered independently in the theory of optimal stopping,

see [12].

3 The Rogers–Veraart model

3.1 Default losses and GA algorithm

In the Rogers–Veraart model, [13], which is an extension of the Eisenberg–Noe model,

the clearing vectors are solutions of the following non-linear equation:

p = (I − Λ(p))l + Λ(p)(αe+ βΠ ′p), (3.1)

where e ∈ RN
+ and Λ(p) := diag 1D with D := {i ∈ N : ei + (Π ′p)i < li}. The

parameters α, β ∈]0, 1] express the default losses: one can think that if the ith bank fails,

the amount (1−α)ei+(1−β)(Π ′p)i is used to cover the liquidation expenditures. Thus,

the model is given by the quadruple (e, L, α, β). The Eisenberg–Noe model corresponds

to the case α = β = 1.

Let us denote by f(p) the right-hand side of (3.1). Apparently, p 7→ f(p) is an

increasing function of [0, l] into [0, l]. Thus, the Knaster–Tarski theorem ensures that

there are the smallest p and largest p̄ clearing vectors. Also, f is continuous from

above, i.e. f(pn)→ f(p∞) when a decreasing sequence of pn converges to p∞, and the

procedure described at the end of previous section leads to p̄ when it starts from l. If

α < 1 or β < 1, then the continuity of the function p 7→ f(p) in general fails and we

cannot guaranty the convergence for the iterations starting from the zero vector.

Now we describe a procedure called in [13] the Greatest Clearing Vector Algorithm

(GA). It is the recursively defined sequence pn ∈ RN
+ , n ≥ 0, with the initial value

p0 := l and the general term

pn+1 := (I − Λn)l + Λnp̂n+1, n ≥ 0, (3.2)

where Λn := diag 1Dn
, Dn := {i ∈ N : ei + (Π ′pn)i < li}, and p̂n+1 is the maximal

solution from those laying in [0, Λnpn] of the linear equation p = fn(p),

fn(p) := Λn
(
αe+ βΠ ′(I − Λn)l + βΠ ′Λnp

)
. (3.3)

Let us check, using the monotonicity of fn(p) on RN
+ , that this sequence is well-

defined and decreasing. To this aim observe that

f0(Λ0l) = Λ0(αe+ βΠ ′l) ≤ Λ0(e+Π ′l) ≤ Λ0l.

So, the increasing function f0 maps the set [0, Λ0p0] into itself. By the Knaster–Tarski

theorem the required maximal fixed point p̂1 exists. Obviously, p1 ≤ l = p0.
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Suppose that pk ∈ [0, l] for k ≤ n are already determined (so, p̂k are also deter-

mined) and form a decreasing sequence. Thus, Dn ⊇ Dn−1. Put ∆n := diag 1Dn\Dn−1
.

Taking into account that ∆nl = ∆npn, Λn−1pn = Λn−1p̂n, and pn ≤ l, we get that

fn(Λnpn) = Λn−1
(
αe+ βΠ ′(I − Λn−1)l + βΠ ′Λn−1pn

)
+∆n

(
αe+ βΠ ′(I − Λn−1)l + βΠ ′Λn−1pn

)
≤ Λn−1p̂n +∆nl = Λnpn.

Thus, the monotone function fn maps the set [0, Λnpn] into itself and the existence of

the required maximal element p̂n+1 ≤ Λnpn is ensured by the Knaster–Tarski theorem.

This means that the recursive sequence is well-defined. It follows from (3.2) that

pn+1− pn = −∆nl+Λnp̂n+1−Λn−1pn ≤ −∆nl+Λnpn−Λn−1pn = ∆n(pn− l) ≤ 0.

Proposition 3.1 There exists n0 ≤ N + 1 such that pn = p̄ for all n ≥ n0 − 1.

Proof. For the maximal solution p̄ of (3.1) we have, trivially, p̄ ≤ p0 = l. Suppose that

we already established that p̄ ≤ pn. By definition, Λnpn+1 = Λnp̂n+1 = p̂n+1 where

p̂n+1 ∈ [0, Λnpn] is the maximal solution of the equation

p̂n+1 = Λn
(
αe+ βΠ ′(I − Λn)l + βΠ ′Λnp̂n+1

)
.

Due to the induction hypothesis Λ(p̄) ≥ Λn and we obtain from (3.1) that

Λnp̄ = Λn(αe+ βΠ ′(I − Λn)p̄+ βΠ ′Λnp̄).

Since p̄ ≤ l, Corollary 8.2 ensures that p̂n+1 ≥ Λnp̄. Thus, pin+1 ≥ p̄i for i ∈ Dn. For

i ∈ Dcn this inequality is obvious.

Let n0 := min{n ≥ 0: Dn+1 = Dn}. The subsets Dn are increasing and contain

at most N elements. So, n0 ≤ N+1. Since Λn0+1 = Λn0 , the vectors p̂n0+1 and p̂n0+2

are the maximal fixed points of the same function fn0 considered, respectively, on the

order intervals [0, Λn0pn0 ] and [0, Λn0+1pn0+1]. It follows that p̂n0+1 ≥ p̂n0+2 and

pn0+1 ≥ pn0+2. Hence, pn0+1 = pn0+2 and Λn0+1 = Λn0+2. Note that

fn0+1(p̂n0+2) = Λn0+1(αe+ βΠ ′(I − Λn0+1)l + βΠ ′Λn0+1p̂n0+2)

= Λn0+1(αe+ βΠ ′pn0+2)

It follows that

pn0+1 = pn0+2 = (I − Λn0+1)l + Λn0+1(αe+ βΠ ′pn0+1),

i.e. pn0+1 solves the equation (3.1). Since pn0+1 dominates its maximal solution p̄, it

coincides with the latter. 2

3.2 The Gauss elimination algorithm in the Rogers–Veraart model

The Gauss elimination algorithm can be adjusted to calculate clearing vectors in the

model with default costs in a finite number of steps.

If D0 := {i ∈ N : ei + (Π ′l)i < li} = ∅, then the maximal solution of (3.1) is l.

If D0 6= ∅, we can assume without loss of generality that e1 + (Π ′l)1 < l1. Using the
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block representations of matrices as in (2.3) and taking J = {1}, we rewrite (3.1) in

the form

p1 = αe1 + βπ11p1 + βR′p̃, (3.4)

p̃ = (IN−1 − Λ̃)l̃ + Λ̃(αẽ+ β(T ′p1 + Π̃ ′p̃)), (3.5)

where p̃, ẽ, and l̃ are vectors obtained by deleting the first component of the vectors p,

e, and l while Π̃ and Λ̃ are (N − 1)× (N − 1) matrices obtained from of Π and Λ by

deleting the first row and the first column.

Let us consider first the case β < 1. Then βπ11 < 1. Solving the equation (3.4)

with respect to p1 and substituting the obtained expression, namely,

p1 = α(1− βπ11)−1e1 + β(1− βπ11)−1R′p̃,

into (3.5), we get that

p̃ = (IN−1 − Λ̃)l̃ + Λ̃(αe1 + βΠ ′1p̃), (3.6)

where

e1 := ẽ+ β(1− βπ11)−1e1T ′, (3.7)

Π1 := Π̃ + β(1− βπ11)−1RT. (3.8)

Also, Λ̃ = 1D̃ where D̃ := {i ∈ N \{1} : ẽi+(Π ′1p̃)
i}. The matrix Π1 is substochastic.

The equation (3.6) is of the same type as (3.1) but in the dimension N − 1. Successive

descending to lower dimensions may stop either at the equation whose solution is a

vector formed by components of l, or by a linear equation with a single unknown

variable admitting a unique solution. It remains to compute p by successive ascending

via the explicit formulae exactly as in the Gauss algorithm.

When β = 1 it may happen that π11 = 1. In such a case the equation (3.4) does not

define p1 and one can take as p1 any value from the interval [0, l1]. In particular, for

the maximal solution the needed value is p1 = l1. Note also that e1 = 0 and R′pJc = 0.

Let the set A := {j ≥ 2: πj1 > 0} contains k elements (changing the numbering we

can always assume that A := {2, . . . , k + 1}). Then pj = 0 for all j ∈ A. The initial

problem is reduced to finding solutions of the equation

p̃ = (IN−1−k − Λ̃)l̃ + Λ̃(αẽ+ βΠ̃ ′p̃), (3.9)

where Λ̃ and Π̃ are (N − 1 − k) × (N − 1 − k) matrices obtained from Λ̃ and Π̃ by

deleting the rows and columns numbered by elements of the set {1} ∪A, the vectors l̃

and ẽ are obtained from l and e by deleting the components numbered by the elements

of the same set of indices.

3.3 Merging and rescue consortium

To describe the merging of a group of k banks it is convenient to put it, without loss

of generality, at the end of the list. We assign to the new bank the index 0 leaving

unchanged the indices of the m = N − k remaining banks. Formal description is as

follows. Let M := {m + 1, . . . , N} be a subset having at least 2 elements. The model
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(e, L, α, β) is replaced by the model (eM , LM , α, β) where eM = (e0, e1, . . . , em) with

e0 := 1Me and the entries of (m+ 1)× (m+ 1) matrix LM = (lijM ) are:

l00 = 0, l0iM =
∑
j∈M

lji, li0M =
∑
j∈M

lij , lijM = lij , 1 ≤ i, j ≤ m.

A stress test of the system consists in replacing the cash vector e by a smaller one

ê > 0. Suppose that D0 := {i ∈ N : êi + (Π ′l)i < li} 6= ∅. The bailout cost (of the

stressed system) is defined as 1′D0
δ where the vector δ := (l −Π ′l − ê) ∨ 0 represents

an extra cash needed by the banks to be solvent after paying in full their liabilities.

Let p∗ be the largest clearing vector in the model (ê, L, α, β).

A set of banks A ⊆ Dc0 has a rescue incentive if

1′A(e+Π ′l − l)− 1′D0
δ > 1′A(e+Π ′p∗ − p∗)+,

i.e. the total value of the banks from A under assumption that they get back all credits

in full minus the bailout cost dominates their total value in the case of clearing by

p∗. The weaker inequality 1′A(e + Π ′l − l) > 1′D0
δ means that the set A has rescue

ability, that is have sufficient resources to cover the debts of the failing banks D0 if the

liabilities will be payed in full. Thus, a group of banks having incentive can create a

rescue consortium.

If in the initial system all banks are solvent, its equity vector c = e + Π ′l − l. In

the stressed system cleared by a vector p∗ the equity vector is

(ê+Π ′p∗ − l)I{l≤p∗}.

Proposition 3.2 Suppose that in the model (e, L, 1, 1) every bank is solvent and let

ê ∈ [0, e] is such that at least one bank in the model (ê, L, 1, 1) is insolvent. Then the

latter system does not have rescue consortiums.

4 The Suzuki–Elsinger model with crossholdings

4.1 Existence of equilibrium

Now we consider a version of the Suzuki–Elsinger model, [16], [7], with crossholdings

defined by a substochastic matrix Θ = (θij) where θij ∈ [0, 1] is a share of the bank i

held by the bank j.

In this model the clearing vector and the equity vectors are interdependent and the

problem is formulated in the spirit of equilibrium problem, that is as a simultaneous

search of both vectors satisfying an equation in R2N . The latter can be presented in

several equivalent forms.

We assume in this section as the standing hypothesis that there is no group com-

posed by banks owned completely by banks of this group, that is the condition:

H. There is no non-empty subset A ⊆ {1, . . . , N} such that 1′AΘ = 1′A.

In other words, there is no A 6= ∅ such that∑
j∈A

θij = 1 ∀ i ∈ A,

that is Θ does not contain stochastic submatrices.
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Lemma 4.1 The condition H holds if and only if unit is not an eigenvalue of Θ.

Proof. Suppose that H holds but x ∈ RN \ {0} is such that Θx = x. Let us consider

the set of indices A := {i ∈ N : |xi| = |x|∞}. Then for any i ∈ A

|xi| = |(Θx)i| ≤
∑
j

θij |xj | ≤ |xi|
(∑
j∈A

θij +
∑
j∈Ac

θij
)
≤ |xi|.

It follows that
∑
j∈A θ

ij = 1 (otherwise |xi| < |xi|) contradicting H.

Conversely, suppose that ΛAΘΛA1 = ΛA1 for some A 6= ∅. Then x 7→ Θx is a

monotone mapping of the complete lattice 1A + [0,1Ac ] into itself. The fixed point of

this mapping, existing in virtue of the Knaster–Tarski theorem, is the (right) eigenvec-

tor of Θ corresponding to the unit eigenvalue. 2

Clearly, the above lemma could be formulated as the equivalence of the condition

H and the invertibility of the matrix I −Θ (or I −Θ′).
For any substochastic matrix Θ the spectral radius ρ(Θ) ≤ |Θ|∞ ≤ 1 and ρ(Θ) is

its eigenvalue (see, e.g., Ths. 5.6.9 and 8.3.1 in [10]). Thus, the condition H holds if

and only if ρ(Θ) < 1. It is useful to recall that ρ(Θ) is the infimum of the matrix norms

of Θ and so in our case

(I −Θ′)−1 =

∞∑
n=1

Θ′n.

Due to this representation it is obvious that the mapping x 7→ (I−Θ′)−1x is increasing.

Lemma 4.2 Suppose that H holds. Let y ∈ RN and let B := {i ∈ N : yi < 0} 6= ∅.
Then 1′BΛB(I −Θ′)ΛBy < 0.

Proof. Note that

1′BΛB(I −Θ′)ΛBy =
∑
i∈B

yi −
∑
i∈B

∑
j∈B

θjiyj =
∑
i∈B

yi −
∑
j∈B

yj
∑
i∈B

θji ≤ 0

since the sum of elements in each row of a substochastic matrix is less or equal than

unit. The inequality above holds as equality only if
∑
i∈B θ

ji = 1 for every j ∈ B but

such a case contradicts the condition H. 2

Lemma 4.3 For every x ∈ RN the equations

v = (x+Θ′v)+, (4.1)

w = x+Θ′w+ (4.2)

have unique solutions v = v(x) ∈ RN
+ and w = w(x) ∈ RN .

The mappings x 7→ v(x) and x 7→ w(x) are order preserving, positive homogeneous,

convex, and satisfy the Lipschitz condition.

Proof. Existence. If x ∈ RN
+ , the solutions are given explicitly: v = w = (I−Θ′)−1x. Let

us denote the right-hand sides of (4.1) and (4.2) by f1(v;x) and f1(w;x), respectively.

Then fk(., x) ≤ fk(., x+), k = 1, 2, and both mappings v 7→ fk(., x) are increasing on

RN . Note that

f1((I−Θ′)−1x+, x) = (x+Θ′(I−Θ′)−1x+)+ ≤ x++Θ′(I−Θ′)−1x+ = (I−Θ′)−1x+.
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It follows that the restriction of f1(., x) on the order interval [0, (I−Θ′)−1x+] maps the

latter into itself and, by the Knaster–Tarski theorem, this restriction has the minimal

v and the maximal v̄ fixed points.

Similarly, f2((I−Θ′)−1x+, x) ≤ (I−Θ′)−1x+ and the restriction of f2(., x) on the

order interval [x, (I −Θ′)−1x+] has the minimal w and the maximal w̄ fixed points.

Uniqueness. Let ṽ be a fixed point of the mapping v 7→ f1(v, x) not necessary

laying in [0, (I − Θ′)−1x+]. Suppose that the set of indices B := {i ∈ N : ṽi > vi} is

non-empty. Note that ΛB ṽ = ΛBx+ ΛBΘ
′ṽ and ΛBv ≥ ΛBx+ ΛBΘ

′v. Hence,

ΛB(v − ṽ) ≥ ΛBΘ′(v − ṽ) ≥ ΛBΘ′ΛB(v − ṽ).

We get from here that

1′BΛB(I −Θ′)ΛB(v − ṽ) ≥ 0

in contradiction with Lemma 4.2. So, B = ∅ and ṽ ≤ v. It follows that the fixed point

ṽ also belongs to the interval [0, I −Θ′)−1x+] and ṽ = v.

Taking the positive part of both sides (4.2) we conclude that for any solution w of

this equation w+ solves (4.1), i.e. coincides with the unique solution of the latter. But

w is uniquely determined by w+.

Positive homogeneity. If λ ∈ R+ and v(x) solves (4.1), then λv(x) solves the equa-

tion v = (λx+Θ′v) and, by the uniqueness of solution, v(λx) = λv(x). Similar argument

works for (4.2).

Convexity and the Lipschitz property. For any x ∈ RN the recursively defined

sequence

vn+1(x) = (x+Θ′vn(x))+, n ≥ 1, v0(x) = x,

evolves in the interval [x, (I −Θ′)−1x+] and any its limit point is the solution of (4.1).

Since the latter admits a unique solution, the sequence vn(x) has a limit v(x). The

obvious induction argument shows that the function x 7→ vn(x) is convex and so is the

function x 7→ v(x). But a finite convex function is locally Lipschitz. Since v is positive

homogeneous, it has the Lipschitz property. The claimed properties for the solution w

of (4.2) holds because they hold for w+ solving (4.1).

Monotonicity. Let ∆ := w(x + h) − w(x) where h ∈ RN
+ . Put A := {i : ∆i < 0}

and define the diagonal matrix Λ := diag 1A. The elementary inequality a < b implies

that a+ − b+ ≥ a− b, the inequality a ≥ b implies that a+ − b+ ≥ 0. Therefore,

Θ′(w+(x+ h)− w+(x)) ≥ Θ′Λ∆

and

Λ∆ = Λh+ ΛΘ′(w+(x+ h)− w+(x)) ≥ Λh+ ΛΘ′Λ∆.

Regrouping terms and summing up the components we get that

1′Λ(I −Θ′)Λ∆ ≥ 1Λh ≥ 0.

If A 6= ∅, we arrive to a contradiction since the left-hand side above is∑
j∈A

∆j −
∑
j∈A

(∑
i∈A

θij
)
∆j < 0 (4.3)

in virtue of the hypothesis H: all sums in parentheses are less than unit and at least

one should be strictly less. Thus, A = ∅, i.e. w(x) is order preserving.
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It remains to prove the monotonicity of v. Let h ∈ RN
+ , ∆ := v(x + h) − v(x),

A := {i : ∆i < 0},

B0 := {i : xi + (Θ′v(x))i = 0},
B1 := {i : xi + (Θ′v(x))i > 0},
B2 := {i : xi + (Θ′v(x))i < 0}.

Define the diagonal matrices Λ := diag 1A and Λk := diag 1Bk
for k = 0, 1, 2.

Note that for i ∈ B2 we have obviously vi(x+ h) ≥ vi(x) = 0. Moreover,

∆i = vi(x+ h) = (xi + hi + (Θ′v(x+ h))i)+ = 0

when |h| is sufficiently small. For i ∈ B0 we have ∆i = vi(x + h) ≥ 0. For i ∈ B1 we

have xi + h+ (Θ′v(x+ h))i > 0 when |h| is sufficiently small and, therefore,

Λ1∆ = Λ1(h+Θ′Λ1∆+Θ′Λ0∆) ≥ Λ1(h+Θ′Λ1∆).

Since A ⊆ B1 we get that Λ∆ ≥ Λh+ ΛΘ′Λ∆ and, as above, A = ∅. 2

We consider the following system of equations whose set of solutions will be denoted

by Γ1 ⊆ [0, l]×RN
+ :

p = (e+Π ′p+Θ′V )+ ∧ l, (4.4)

V = (e+Π ′p− p+Θ′V )+. (4.5)

For (p, V ) ∈ Γ1 the components p and V are called, respectively, clearing vector and

equity.

Accordingly to Lemma 4.3 for every p the equation (4.5) admits a unique solution,

namely, V (p) := v(e+Π ′p− p) which is Lipschitz in p. Thus, the equation

p = (e+Π ′p+Θ′V (p))+ ∧ l (4.6)

has a solution in virtue of the Brouwer theorem claiming that a continuous mapping

(given by the left-hand side above) of a convex compact set ([0, l] in our case) has a

fixed point. So,

Γ1 = {(p, V (p)) : p solves (4.6)} 6= ∅.

We also introduce the system

p = (e+Π ′p+Θ′U)+ ∧ l, (4.7)

U = (e+Π ′p− l +Θ′U)+ (4.8)

with the set of solutions Γ2 ⊆ [0, l]×RN
+ and the system

p = (e+Π ′p+Θ′W+)+ ∧ l, (4.9)

W = e+Π ′p− l +Θ′W+ (4.10)

with the set of solutions Γ3 ⊆ [0, l]×RN .

Introducing the equation

p = (e+Π ′p+Θ′U(p))+ ∧ l (4.11)
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and using Lemma 4.3 we can prove that

Γ2 = {(p, U(p)) : p solves (4.11)} 6= ∅,

where U(p) := v(e+Π ′p−l). Since the latter function is monotone, we can apply to the

equation (4.11) the Knaster–Tarski theorem providing additional useful information:

there exists the smallest p and the largest p̄ solutions of (4.11). The monotonicity of

U(p) allows to conclude that Γ2 has the minimal and the maximal elements, namely,

(p, U(p)) and (p̄, U(p̄)).

In the same way, introducing the equation

p = (e+Π ′p+Θ′W+(p))+ ∧ l (4.12)

and defining the function W (p) = w(e+Π ′p− l), we prove that the set

Γ3 = {(p,W (p)) : p solves (4.12)}

contains the minimal and the maximal elements (p,W (p)) and (p̄,W (p̄)), respectively.

It remains to show that Γ1 also has the minimal and the maximal elements and

establish the relations between all these sets.

Let us introduce the function ϕ : RN ×RN → RN ×RN
+ with ϕ(x, y) := (x, y+).

Lemma 4.4 Γ1 = Γ2 = ϕ(Γ3).

Proof. (Γ1 ⊆ Γ2) Let (p, V (p)) ∈ Γ1. If V i(p) > 0, then (e+Π ′p− p+Θ′V (p))i > 0.

Rewriting the last inequality as pi < (e + Π ′p + Θ′V (p))i we obtain in view of (4.6)

that pi = li. Thus, for such i we have that

V i(p) = ((e+Π ′p− l +Θ′V (p))i)+.

If V i(p) = 0, then the above equality holds trivially due to (4.6). That is, V (p) solves

the equation (4.8) for U . Hence, due to the uniqueness of solution, V (p) = U(p) and

(p, V (p)) ∈ Γ2.

(Γ2 ⊆ Γ1) Let (p, U(p)) ∈ Γ2. If 0 ≤ pi < li, then, accordingly to equation (4.11),

pi = ((e+Π ′p+Θ′U(p))i)+, implying via (4.8) that U i(p) = 0 and

U i(p) = ((e+Π ′p− p+Θ′U(p))i)+.

If pi = li, this equality follows directly from the definition of U(p). Thus, U(p) solves

(4.5) and, therefore, coincides with V (p). But this means that (p, U(p)) ∈ Γ2.

(ϕ(Γ3) ⊆ Γ2) Let (p,W (p)) ∈ Γ3. By definition, W (p) satisfies the equation (4.10).

Taking the positive part of both sides of this equation, we obtain that W+(p) satisfies

the equation (4.8). Hence, (p,W+(p)) ∈ Γ2.

(Γ2 ⊆ ϕ(Γ3)) Let (p, U(p)) ∈ Γ2. Note that

W (p) := e+Π ′p− l +Θ′U(p) ≤ (e+Π ′p− l +Θ′U(p))+ = U(p)

and W i(p) = U i(p) if W i(p) ≥ 0. Thus, W+(p) = U(p). It follows that W (p) solves

(4.10) and (p,W (p)) ∈ Γ3. 2
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4.2 Uniqueness

In the sequel we use the abbreviations: V := V (p), V̄ := V (p̄),

∆p := p̄− p ≥ 0, ∆V := V̄ − V ≥ 0,

Ap := {i : ∆p > 0}, AV := {i : ∆V > 0}. We define the diagonal matrices

Λp := diag 1Ap
, ΛV := diag 1AV

, Λ := diag 1Ap∪AV
.

Lemma 4.5 The following identities hold:

Λ(I −Θ′)ΛV = 0, Λ(Π ′ − I)Λp = 0. (4.13)

Proof. Note that V ≥ e+Πp− p+ Θ′V and for each i ∈ Ap ∪ AV necessarily p̄i > 0

and V̄ i = ei + (Π ′p̄)i − p̄i + (Θ′p̄)i. Thus,

Λ∆V ≤ Λ(Π ′ − I)∆p + ΛΘ′∆V .

Taking into account that ∆V = Λ∆V and ∆p = Λ∆p, we get from here that

1′Λ(I −Θ′)Λ∆V ≤ 1′Λ(Π ′ − I)Λ∆p.

Inspecting the explicit expressions (similar to that in (4.3)) we conclude that the right-

hand side above is less or equal to zero while the left-hand side is greater or equal to

zero. So,

1′Λ(I −Θ′)Λ∆V = 0, 1′Λ(Π ′ − I)Λ∆p = 0. (4.14)

Since ∆iV > 0 on AV and ∆ip > 0 on Ap, these equalities are equivalent to (4.13). 2

Theorem 4.6 Suppose that for any subset of indices A 6= ∅ there is j ∈ A such that∑
i∈A

θij < 1,
∑
i∈A

πij < 1.

Then (p, V (p)) = (p̄, V (p̄)).

Proof. The identities (4.14) (equivalent to (4.13)) can be written as∑
j∈AV

∆jV −
∑
j∈AV

( ∑
i∈AV ∪Ap

θij
)
∆jV = 0,

∑
j∈Ap

∆jp −
∑
j∈Ap

( ∑
i∈AV ∪Ap

πij
)
∆jp = 0.

Applying the assumption with A = Ap ∪AV we get the result. 2

Theorem 4.7 Suppose that for any subset of indices A such that for all i ∈ A∑
j∈A

θij = 1 or
∑
j∈A

πij = 1

it holds that ∑
i∈A

ei >
∑
i∈A

(
1−

∑
j∈A

πij
)
li.

Then the clearing vector is unique. In particular, in the case of the Eisenberg–Noe

model where Θ = 0, if for any subset of indices A such that
∑
j∈A π

ij = 1 for all

i ∈ A also holds the inequality
∑
i∈A e

i > 0, then the clearing vector is unique.
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Proof. We start from the equality

ΛV̄ = Λ(e+ (Π ′ − I)p̄+Θ′V̄ ).

Regrouping terms and multiplying from the left by 1′ we obtain the identity

1′Λ(I −Θ′)ΛV̄ + 1′Λ(I −Π ′)Λp̄ = 1′Λe+ 1′ΛΠ ′(I − Λ)p̄+ 1′ΛΘ′(I − Λ)V̄ .

Note that V̄ i = 0 for i ∈ Ap \AV . Therefore, (Λ− ΛV )V̄ = 0. Combining with (4.13)

we conclude that the first term in the left-hand side of the above identity is zero.

If i ∈ AV \ Ap, that is, p̄i = pi, and V̄ i > V i ≥ 0, then in virtue of definitions

V̄ i = ei + (Π ′p̄)i − p̄i + (Θ′V (p̄))i > 0, implying, via (4.6), that p̄i = li. Thus,

(Λ− Λp)p̄ = (Λ− Λp)l. (4.15)

Using the second relation in (4.13) we obtain that the second term in the left-hand

side of the identity is equal to 1′Λ(I −Π ′)Λl. So,

1′Λ(I −Π ′)Λl = 1′Λe+ 1′Π ′(I − Λ)p̄+ 1′Θ′(I − Λ)V̄ ≥ 1′Λe.

That is, ∑
i∈Ap∪AV

(
1−

∑
j∈Ap∪AV

πij
)
li ≥

∑
i∈Ap∪AV

ei.

Applying the assumption with A = Ap ∪AV we get the result. 2

Remark. In the early paper by Suzuki the model was analyzed using a different ap-

proach. In the above notations the equations (2), (3) of [16], with the positive part (2),

can be written as

p = (e+Π ′p+Θ′V )+ ∧ l =: g1(p, V ),

V = (e+Π ′p− l +Θ′V )+ =: g2(p, V ),

where the second equation is the equation for W+. If λ := |Π ′|1 ∨ |Θ′|1 < 1, then

the mapping (p, V ) 7→ g(p, V ) is a contraction in (R2N
+ , |.|1). Indeed, the elementary

inequality

|a+ ∧ c− b+ ∧ c|+ |(a− c)+ − (b− c)+| ≤ |a− b|, a, b ∈ R, c ∈ R+,

implies that

|g(p, V )− g(p̃, V )|1 ≤ |Π ′(p− p̃)|1 + |Θ′(V − Ṽ )|1 ≤ |Π ′|1|p− p̃|1 + |Θ′|1|V − Ṽ |1
≤ λ(|p− p̃|1 + |V − Ṽ |1).

With this the existence and uniqueness of equilibrium is obvious.
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5 The Elsinger model: debts of different seniorities

We consider a version of the Elsinger model where the interbank debts may be senior

and junior. In this model the system of N banks is described by the vector of cash

reserves and by M matrices L1 = (lij1 ), ..., LM = (lijM ) representing the hierarchy of

liabilities with decreasing seniority. That is, the element lij1 represents the debt of the

bank i to the bank j of the highest seniority etc.,
∑
j l
ij
S is the total of debts of the

bank i of the seniority S.

The relative liabilities are defined by the matrix ΠS with

πijS =
lijS
liS

=
lijS∑
j l
ij
S

(by convention, 0/0 := 1).

The clearing procedure requires the complete reimbursement of the debts starting

from the highest priority and, for each seniority, the distribution is proportional to the

volume of obtained credits of this seniority. For the bank i we denote by piS the value

distributed to cover the debts of the seniority S. So, the clearing is described by the

set of vectors pS , S = 1, . . . ,M , which can be considered as a single “long” vector from

(RN )M satisfying the system of equations

pi1 =
(
ei +

∑
S

∑
j

πjiS p
j
S

)
∧ li1,

piS =
(
ei +

∑
S

∑
j

πjiS p
j
S −

∑
r<S

lir

)+
∧ liS , 1 < S ≤M.

In a vector form they can be written as follows:

pS =
(
e+

∑
S

Π ′SpS −
∑
r<S

lr

)+
∧ lS , S = 1, ...,M. (5.1)

It is clear that, for the partial ordering in (RN )M induced by the cone (RN
+ )M , the

function

(p1, ..., pM ) 7→
((

e+
∑
S

Π′Sp
∗
S

)+
∧ l1, ...,

(
e+

∑
S

Π′Sp
∗
S −

∑
r<M

lr
)+
∧ lM

)

is a monotone mapping of the order interval [0, l1]× ...× [0, lM ] ⊂ (RN )M into itself.

Thus, according to the Knaster–Tarski theorem the set of fixed points of this mapping,

i.e. the solutions of the equation (5.1), is non-empty and has the maximal and the

minimal elements.

In the case of liabilities of different seniority after clearing by the vector p ∈ (RN )M

the equity vector c ∈ RN has the form:

c =
(
e+

∑
S

Π ′SpS −
∑
S

lS

)+
.

Lemma 5.1 The equity vector does not depend on the clearing vector.
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Proof. Note that (
e+

∑
S

Π ′SpS

)
∧
∑
S

lS =
∑
S

pS .

Therefore, (
e+

∑
S

Π ′SpS −
∑
S

lS

)+
= e+

∑
S

Π ′SpS −
∑
S

pS .

With this identity the reasoning is analogous to that with a single seniority class. 2

In an attempt to use language of graphs in the uniqueness theorem in the spirit

of Eisenberg–Noe the authors used in [6] a specific graph structure induced by the

matrices ΠS .

For a given clearing vector p we define the default index di of the node i as the

smallest r such that

p̄ir = ei +
∑
S

∑
j

πjiS p̄
j
S −

∑
r′<r

lir′ .

In another words, di is the lowest seniority for which the bank equity after clearing is

equal to zero. Define the matrix ∆ = ∆(p) by putting ∆ij = 1 if πij
d(i)

> 0, and ∆ij = 0

otherwise. We use the notation i ; j if ∆ij = 1 and denote by O(i) the ∆-orbit of i,

that is the set of all j 6= i for which there is a directed path i; i1 ; i2 ; ...; j.

Arguments similar to those in the proof of Theorem 2.3 lead to the following result:

Theorem 5.2 Suppose that for the clearing vector p̄ any non-empty ∆-orbit O(i) is

such that 1′O(i)e > 0. Then the clearing vector is unique.

6 The Fischer model: clearing with derivatives

In the paper [9] Fisher generalized the Suzuki–Elsinger model to cover systems where

banks besides of straight debts may have liabilities in terms of derivatives having

different seniorities.

Mathematically, this means that matrices LS may depend on the clearing vectors.

The clearing equations for the situation with cross-holdings can be represented as

follows:

pS =
(
e+Θ′V +

∑
r≤M

Π ′rpr −
∑
r<S

lr(p)
)+
∧ lS(p), S = 1, ...,M, (6.1)

V =
(
e+Θ′V +

∑
r≤M

Π ′rpr −
∑
S

pS

)+
. (6.2)

Economically, Fisher’s model is quite different from those previously discussed be-

cause now the matrices ΠS are disconnected from LS(p) and become input parameters

of the model.

Theorem 6.1 Suppose that the functions p 7→ lS(p) are bounded and continuous,

|Θ| < 1. Then the system (6.1), (6.2) has a solution.



20

Proof. By virtue of Lemma 4.3 the equation (6.2) has a solution V (p) for any p and this

solution is continuous in p. Plugging V (p) into (6.1) we obtain in the right-hand side a

continuous function which maps into itself the compact convex set [0, l∗1]×· · ·× [0, l∗M ]

where l∗S = supp lS(p). The application of the Brouwer theorem leads to the claim. 2

In particular, the above theorem ensures the existence of clearing vector in the

model with credit default swaps (CDS) where L1 is the matrix of the straight debts

having the highest priority and

lijS := λijS (lS − pS)+, S ≥ 2,

where λijS ≥ 0 are arbitrary constants.

Lemma 6.2 The system (6.1), (6.2) is equivalent to the system

pS =
(
e+Θ′V +

∑
r≤M

Π ′rpr −
∑
r<S

lr(p)
)+
∧ lS(p), S = 1, ...,M, (6.3)

V =
(
e+Θ′V +

∑
r≤M

Π ′rpr −
∑
S

lS(p)
)+

. (6.4)

Proof. If we fix V and take p that satisfies the relations (6.1), then the right-hand sides

of (6.2) and (6.4) coincide. 2

The paper [9] contains results on the existence and uniqueness of solution of (6.3),

(6.4) without the assumption on boundedness of lS but with a more stringent condition

on coefficients, namely, on the matrices ΠS .

Theorem 6.3 Suppose that e ≥ 0, the functions p 7→ lS(p) are continuous, and

|Θ|∞ < 1, |ΠS |∞ < 1 for all S. Then the system (6.3), (6.4) has a solution.

Proof. Put ΠM+1 := Θ, pM+1 := V , and lM+1 :=∞ = (∞, . . . ,∞). Slightly abusing

notations we retain the symbol p for theN(M+1)-dimensional vector (p1, ..., pM , pM+1)

and write the system (6.3), (6.4) in a more compact form p = Φ(p) where

ΦS(p) :=
(
e+

∑
r≤M+1

Π ′rpr −
∑
r<S

lr(p)
)+
∧ lS(p), S = 1, ...,M + 1.

For y ∈ R, a1, . . . , aM ∈ R+ we have the identity

M∑
S=1

(
y −

∑
r<S

ar

)+
∧ aS +

(
y −

∑
r≤M

ar

)+
= y (6.5)

easily verified by induction based on the observation that w+ ∧ a = w+ − (w − a)+

when w ∈ R and a ∈ R+.

Using it, we infer that for any p ∈ R
N(M+1)
+∑

S≤M+1

ΦS(p) = e+
∑

S≤M+1

Π ′SpS

and ∑
S≤M+1

|ΦS(p)|1 = |e|1 +
∑

S≤M+1

|Π ′SpS |1 ≤ |e|1 + θ
∑

S≤M+1

|pS |1
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where θ := maxS≤M+1 |Π ′S |1. In particular, if

∑
r≤M+1

|pr|1 ≤
1

1− θ |e|1, (6.6)

then also ∑
S≤M+1

|ΦS(p)|1 ≤
1

1− θ |e|1.

So, the continuous function p 7→ Φ(p) maps the convex compact set of p ∈ R
N(M+1)
+

satisfying (6.6) into itself and, by the Brouwer theorem, has a fixed point, i.e. the

equation p = Φ(p) has a solution.

Note that if p = Φ(p), then the so-called accounting equation is fulfilled∑
S≤M+1

pS = e+
∑

S≤M+1

Π ′SpS

and, therefore,∑
S≤M+1

|pS |1 = |e|1 +
∑

S≤M+1

|Π ′SpS |1 ≤ |e|1 +
∑

S≤M+1

|Π ′S |1|pS |1

implying that

(1− θ)
∑

S≤M+1

|pS |1 ≤
∑

S≤M+1

(1− |Π ′S |1)|pS |1 ≤ |e|1.

Thus, any solution of the equation p = Φ(p) satisfies (6.6).

Remark. It is easily seen that the claim of the theorem holds also in the case where the

matrices Π ′S depend on p continuously and θ := supp |Π ′S(p)|1 < 1 for S = 1, . . . ,M+1.

The uniqueness result of [9] is based on the following elementary statement:

Lemma 6.4 Let ar, br ∈ R be such that br ≥ ar ≥ 0, r ≥ 1. Let A0 := 0, B0 := 0,

Ar :=
∑
j≤r aj , Br :=

∑
j≤r bj for r ≥ 1. If w, z ∈ R are such that

z − w ≥ BM −AM , (6.7)

then

z − w =
∑
r≤M

∣∣(z −Br−1)+ ∧ br − (w −Ar−1)+ ∧ ar
∣∣+
∣∣(z −BM )+ − (w −AM )+

∣∣.
Proof. Since bM − aM ≥ 0 the inequality (6.7) implies that z − w ≥ BM−1 − AM−1.

As for (6.5) we can use induction arguments but based this time on the identity

|v+ ∧ b− u+ ∧ a| = |v+ − u+| − |(v − b)+ − (v − a)+|

which holds when b ≥ a ≥ 0 and v − u ≥ b− a. 2
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Theorem 6.5 In addition to the assumptions of preceding theorem suppose that

lir(p) = ψir

( ∑
r≤M+1

(Π ′rpr)
i
)

where ψir : R+ → R+ are increasing functions such that for any u, v ∈ R+, v ≥ u, we

have the bound

v − u ≥
∑
r≤M

(
ψir(v)− ψir(u)

)
, i = 1, . . . , N.

Then the system (6.3), (6.4) has a unique solution.

Proof. We check that Φ is a contraction mapping in the space R
N(M+1)
+ in the metric

induced by the l1-norm. Let p and p̃ be two vectors. Define

xi :=
∑

r≤M+1

(Π ′rpr)
i, yi := ei + xi, Σir :=

∑
j≤r

ψjr(xi),

and x̃i, ỹi, Σ̃ir similarly; put also ψiM+1(xi) = ψiM+1(x̃i) :=∞. With these definitions

|Φ(p)− Φ(p̃)|1 =
∑
i≤N

∑
r≤M+1

∣∣(yi −Σir−1)+ ∧ ψir(xi)− (ỹi − Σ̃ir−1)+ ∧ ψir(x̃i)
∣∣.

The hypothesis of the theorem allows us to apply Lemma 6.4, choosing a correspon-

dence with its notations in dependence of the sign of the difference xi−x̃i, and conclude

that the interior sum is equal to |yi − ỹi| = |xi − x̃i|. Thus,

|Φ(p)− Φ(p̃)|1 =
∑
i≤N

∣∣∣∣∣ ∑
r≤M+1

(Π ′r(pr − p̃r))i
∣∣∣∣∣ ≤ ∑

r≤M+1

|Π ′r(pr − p̃r)|1

≤
∑

r≤M+1

|Π ′r|1|pr − p̃r|1 ≤ θ|p− p̃|1,

where θ := maxS≤M+1 |Π ′S |1 < 1. 2

7 Models with illiquid assets and a price impact

7.1 Selling with equal proportions

In the paper [2], developing ideas of [3], it is considered a setting where banks own also a

single illiquid asset. Its selling implies replacing the nominal price in the balance sheets

by the market price decreasing with respect to the supply volume. More interesting

are situations where banks own several illiquid assets selling of which leads to price

impacts depending on selling strategies. We present here the simplest generalization

considered in [6] supposing that each bank is obliged to sell the illiquid assets in equal

proportions as in [4].

Let us consider single seniority clearing problem where the bank i owns not only the

cash ei but also K illiquid assets, in quantities yi1, . . . , yiK represented in the model

by yi, the ith row of the matrix Y = (yim), i ≤ N , m ≤ K. The nominal prices per

unit of illiquid assets are strictly positive numbers Q1, ..., QK . The clearing requires
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their partial or total sale influencing the market price. If the bank sells uim ∈ [0, yim]

units of the m-th assets for the price qm, its total increase in cash is

(Uq)i =

K∑
m=1

uimqm.

The price formation is modeled by the inverse demand function F0 : RK → RK

assumed to be continuous and monotone decreasing (that is, F0(z) ≤ F0(x) when

z ≥ x in the component-wise sense) and such that F0(0) = Q and Fm0 (Y ′1) > 0 for

m = 1, . . .K. So, in the absence of supply the market prices are the nominal prices and

they are strictly positive even when all illiquid assets are sold.

The clearing rules: each bank pays debts in accordance to the matrix of relative

liabilities and sell illiquid assets if it has insufficient amount of cash. The result of

clearing should be: all debts of the bank are covered or its resources are completely

exhausted.

Suppose that the bank i must sell all assets in the same proportion

αi(q) =

(
li − ei −

∑
j π

jipj
)+

∑
k y

ikqk
∧ 1, i ∈ N . (7.1)

For a fixed market price the bank does not sell illiquid assets if its cash reserve and

the collected debts cover the liabilities. In the another extreme case where

li − ei −
∑
j

πjipj ≥
∑
k

yikqk = (Y q)i

all illiquid assets have to be sold and the bank defaults. In the intermediate case the

bank sells a share αi ∈]0, 1[ of the mth asset, adding to its cash account the amount

li − ei −
∑
j π

jipj∑
k y

ikqk
yimqm.

The total increase in cash allows to cover the liabilities.

Under such a rule the ith bank sells uim units of the mth asset where

uim := uim(p, q) :=
yim

(
li − ei −

∑
j π

jipj
)+

∑
k y

ikqk
∧ yim.

The total supply of the illiquid assets is the vector U ′(p, q)1 where U(p, q) is the matrix

with entries given by the above formula.

An equilibrium vector (p∗, q∗) ∈ [0, l]× [F0(Y ′1), Q] is a solution of the system of

N +K equations written in the matrix form as

p = (e+ U(p, q)q +Π ′p) ∧ l, (7.2)

q = F0(U ′(p, q)1). (7.3)

It is not difficult to verify that (e + U(p, q)q + Π ′p) ∧ l = (e + Y q + Π ′p) ∧ l and

the equation (7.2) can be written in the form

p = (e+ Y q +Π ′p) ∧ l, (7.4)
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see [2] and [6].

The existence of the equilibrium is easy. Indeed, we check that

U ′(p, q)1 ≥ U ′(p̃, q̃)1, U(p, q)q +Π ′p ≤ U(p̃, q̃)q̃ +Π ′p̃

when (p̃, q̃) ≥ (p, q). Denoting F (p, q) the right-hand side of the first equation we obtain

that (p, q) 7→ (F (p, q), F0(U ′(p, q))1) is a monotone mapping of the order interval

[0, l] × [F0(Y ′1), Q] into itself. Accordingly to Knaster–Tarski theorem the set of its

fixed points is nonempty and contains the minimal and maximal elements (p∗, q∗) and

(p̄∗, q̄∗).
For a fixed q the function p → F (p, q) is monotone. Thus, by the Knaster–Tarski

theorem the set of solutions of the equation (7.2) is nonempty and contains, in partic-

ular, the maximal element p̄(q).

For any fixed q ∈ [F0(Y ′1), Q] the largest solution p̄ = p̄(q) of (7.2) is

p̄ = sup{p ∈ [0, l] : p ≤ (e+ U(p, q)q +Π ′p) ∧ l}.

Thus, q 7→ p̄(q) is an increasing (and continuous) function on [F0(Y ′1), Q]. It follows

that the supply function

q 7→ ζ(q) := U ′(p̄(q), q)1

is decreasing and, therefore, the q 7→ F0(ζ(q)) is an increasing (and continuous) map-

ping of the interval [F0(Y ′1), Q] into itself. Hence, it has the minimal and maximal

fixed points we shall denote q1 and q2.

Theorem 7.1 Let the function x 7→ x′F0(x) be strictly increasing on [F0(Y ′1), Q].

Then there is q∗ such that the set of solutions of the system (7.2), (7.3) is contained

in the interval with the extremities (p(q∗), q∗) and (p̄(q∗), q∗). In particular, if for each

q the solution of (7.2) is a unique, then the solution of the system is also unique.

For the proof and discussion of this result see [6].

7.2 Selling with maximization of goal functionals

In the above model the banks are constrained to sell their illiquid assets in equal

proportions and the strategy matrix U = U(p, q) has a specific form. In a natural

extension of this model the row ui = (ui1, . . . , uiK) representing the strategy of the

bank i is composed by arbitrary functions uim = uim(p, q) on [0, l]× [F0(Y ′1), Q] with

values in [0, yim] such that Uq = (l− e−Π ′p)+, i.e. each bank sells the illiquid assets

either to cover, without excess, the shortfall or to exhaust all resources.

For a fixed strategy U the equilibrium vector (p∗, q∗) ∈ [0, l]× [F0(Y ′1), Q] defined

as the solution of the system (7.4), (7.3) always exists if the function (p, q) 7→ U(p, q)

is continuous (by the Brouwer theorem). More interesting is the game-theoretic setting

in which strategies are also elements of equilibrium.

For a given strategy matrix U and i define the maximization problem

Φi(v, U)→ max,

over the set

Γ i(p, q) := {v ∈ RK : v′q = (yiq)∧ (li− ei− (Π ′p)i)+, vm ∈ [0, yim], m = 1, . . . ,K}.
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It is assumed that each function Φi is continuous and does not depend on the row ui
of the matrix U . Economically interesting is the case where Φi depends only on the

vector U ′1 − u′i, i.e. the decision of the bank i is based on the knowledge of the total

supply of each illiquid asset by all other banks.

Let us denote by Gi(p, q, U) the set of solutions of the above problem and by

V i(p, q, U) its optimal value.

Define the set-valued mapping Ψ by putting

Ψ(p, q, U) := {(e+ Y q +Π ′p) ∧ l} × {F0

(
U ′1

)
} ×

∏
i≤N

Gi(p, q, U).

Theorem 7.2 Suppose that for each U the functions v 7→ Φi(v, U) are quasiconcave

on [0, Y ′1]. Then there exists the triple (p∗, q∗, U∗) ∈ Ψ(p∗, q∗, U∗).

Proof. The function v 7→ Φi(v, U) is continuous and Γ i(p, q) 6= ∅ is compact. Thus,

the set Gi(p, q, U) is nonempty. Moreover, it is closed and convex, being an inter-

section of all nonempty convex closed subsets {v ∈ Γ i(p, q) : Φi(v, U) ≥ a} over all

a < V i(p, q, U). Hence, Ψ has nonempty compact convex values and the existence of

the equilibrium (p∗, q∗, U∗) follows from the Kakutani fixpoint theorem. The only hy-

pothesis of the latter remaining to verify is that the graph of Ψ is closed. It is sufficient

to check that the graph of each set-valued mapping Gi is closed.

So, let (pn, qn, Un, vn) → (p̃, q̃, Ũ , ṽ) where vn ∈ Gi(pn, qn, Un). We need to prove

that Φi(ṽ, Ũ) = V i(p̃, q̃, Ũ). Take ε > 0. Since a function defined on a compact is

uniformly continuous, we have, for all sufficiently large n, that for any v with the

components vm ∈ [0, yim]

Φi(v, Un)− ε ≤ Φi(v, Ũ) ≤ Φi(v, Un) + ε. (7.5)

In particular, for v = vn we obtain that

V i(pn, qn, Un)− ε ≤ Φi(vn, Ũ) ≤ V i(pn, qn, Un) + ε. (7.6)

Taking in (7.5) supremum over v in Γ i(p, q) we get that

V i(pn, qn, Un)− ε ≤ sup
v∈Γ i(pn,qn)

Φi(v, Ũ) ≤ V i(pn, qn, Un) + ε.

Since the market prices qi are bounded away from zero, Γ i(pn, qn) → Γ i(p̃, q̃) in the

Haussdorf metric. It follows that for sufficiently large n

V i(pn, qn, Un)− 2ε ≤ sup
v∈Γ i(p̃,q̃)

Φi(v, Ũ) ≤ V i(pn, qn, Un) + 2ε. (7.7)

Taking in (7.6) and (7.7) liminf in n, we get that |Φi(ṽ, Ũ)−V i(p̃, q̃, Ũ)| ≤ 3ε implying

the required property. 2

Remark. In [8] the goal functionals are Φi(v, U) := yiF0(U ′1−u′i+v). This means that

the bank i maximizes the total value of its available illiquid assets calculated in the

prices q using the clearing vector p and knowing the total sell of each asset by other

banks (note that functional does not depend on ui). To our opinion, a more natural

choice of the goal functional could be Φi(v, U) := (yi − v′)F0(U ′1− u′i + v).
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8 Appendix. Knaster–Tarski fixpoint theorem

LetX be a set with a partial ordering≥ and let A be its nonempty subset. By definition,

supA is an element x̄ such that x̄ ≥ x for all x ∈ A and if y is such that y ≥ x for all

x ∈ A then y ≥ x̄. The definition of inf A follows the same pattern but with the dual

ordering ≤. A partially ordered set X is complete lattice if for any its nonempty subset

A there exist inf A and supA.

Theorem 8.1 Let X be a complete lattice and let f : X → X be an order-preserving

mapping, L := {x : f(x) ≤ x}, U := {x : f(x) ≥ x}. The set L∩U of fixed points of f

is non-empty and has the smallest and the largest fixed points which are, respectively,

x := inf L and x̄ := supU .

Proof. Note that L 6= ∅ since it contains the element supX. Take arbitrary x ∈ L.

Then x ≤ x implying that f(x) ≤ f(x) ≤ x. Thus, f(x) ≤ x as x is inf L. So, x ∈ L.

Since f(L) ⊆ L, also f(x) ∈ L, hence, x ≤ f(x), i.e. x = f(x). All fixed points belong

to L and, therefore, x is the smallest one.

The proof of the statement for the largest fixed point is analogous. 2

Corollary 8.2 Let fi, i = 1, 2, be two order-preserving mappings of a complete lattice

(X,≥) into itself such that f2 ≥ f1. Let xi := inf Li and x̄i := supUi be their smallest

and largest fixed points. Then x2 ≥ x1 and x̄2 ≥ x̄1.

The claim is obvious because L1 = {x : f1(x) ≤ x} ⊇ {x : f2(x) ≤ x} = L2 and

U1 = {x : f1(x) ≥ x} ⊆ {x : f2(x) ≥ x} = U2, see [11].

These general results are applied in this paper to the order intervals [a, b] ⊂ Rd

with the component-wise ordering, i.e. induced by the cone Rd
+.
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