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Kabanov–Rásonyi–Stricker (2003).

Incomplete information : Bouchard (2007),
De Vallière–Kabanov–Stricker (2007).

Model with bid-ask spread : Jouini–Kallal (1995).

Yuri Kabanov Financial markets with transaction costs. 2 / 37



Models with transaction costs Arbitrage theory for financial markets with transaction costs Hedging theorems

Contributions
Contributions to no-arbitrage criteria

No-arbitrage criteria

Finite Ω : Kabanov–Stricker (2001).
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Basic model
Values versus physical units

There are d assets which we prefer to interpret as currencies.
Their quotes are given in units of a certain numéraire which
may not be a traded security. At time t the quotes are
expressed by the vector of prices St = (S1

t , . . . ,Sd
t ) ; its

components are strictly positive. We assume that
S0 = 1 = (1, ..., 1).
The agent’s positions can be described either by the vector of
“physical”quantities V̂t = (V̂ 1

t , . . . , V̂ d
t ) or by the vector

V = (V 1
t , . . . ,V d

t ) of values invested in each asset ; they are
related as follows :

V̂ i
t = V i

t /S i
t , i ≤ d .

Formally, V̂t = φtVt , where

φt : (x1, ..., xd) 7→ (x1/S1
t , ..., xd/Sd

t ).
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Basic model
Dynamics

The portfolio evolution can be described by the initial condition
V−0 = v (the endowments of the agent when entering the market)
and the increments at dates t ≥ 0 :

∆V i
t = V̂ i

t−1∆S i
t + ∆B i

t ,

B i
t :=

d∑
j=1

Lji
t −

d∑
j=1

(1 + λij
t )Lij

t ,

where Lji
t ∈ L0(R+,Ft) represents the accumulated net amount

transferred from the position j to the position i at the date t ;
(∆Lij

t ), interpreted as an“order”matrix, is a control ; (λij
t ) is the

matrix of transaction costs coefficients : λij
t ∈ L0(R+,Ft), λii = 0.
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Basic model
Dynamics – mathematically, nothing new !

The portfolio dynamics can be described in more conventional
way by a controlled linear difference equation :

∆V i
t = V i

t−1∆Y i
t + ∆B i

t , i = 1, ..., d ,

where Y i , a “stochastic logarithm”of S i , is given as follows :

∆Y i
t =

∆S i
t

S i
t−1

, Y i
0 = 1.

We can take ∆Bt as the control. Any ∆Lt ∈ L0(Md
+,Ft)

defines ∆Bt ∈ L0(−Mt ,Ft) where

Mt :=
{

x ∈ Rd : ∃ a ∈ Md
+ such that x i =

∑
j

[(1+λij
t )aij−aji ]

}
.

A measurable selection arguments show that any increment
∆Bt ∈ L0(−Mt ,Ft) is generated by a certain (in general, not
unique) order ∆Lt ∈ L0(Md

+,Ft).
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Basic model
Dynamics in physical units and the Cauchy formula

The portfolio dynamics in physical units is surprisingly simple
and, financially, obvious :

∆V̂ i
t =

∆B i
t

S i
t

, i = 1, ..., d .

We can write this as :

∆V̂t = ∆̂Bt , −∆̂Bt ∈ M̂t := φtMt .

It follows that

V i
t = S i

t V̂
i
t = S i

t

(
v i +

t∑
s=0

∆B i
s

S i
s

)
.

This is just the Cauchy formula for the solution of the
non-homogeneous linear difference equation.
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Basic model
Solvency cones

The cone Kt := Mt + Rd is the solvency region : x ∈ Kt if
and only if one can find a matrix a ∈ Md

+ such

x i +
∑

j

[aji − (1 + λij
t )aij ] ≥ 0, i ≤ d .

In other words, Kt is the set of portfolios (denominated in
units of the numéraire) which can be converted at time t,
paying the transactions costs, to portfolios without short
positions (i.e. without debts in any asset).
K̂t = M̂t + Rd

+ is the solvency cone when the accounting of
assets (e.g., currencies) is done in terms of physical units.
Note that Mt is a polyhedral cone, namely, Mt = Ψ(Md

+)
where Ψ : Md → Rd is a linear mapping with

[Ψ((aij))]i :=
∑

j

[(1 + λij
t )aij − aji ].

Yuri Kabanov Financial markets with transaction costs. 9 / 37



Models with transaction costs Arbitrage theory for financial markets with transaction costs Hedging theorems

Basic model
Solvency cones

The cone Kt := Mt + Rd is the solvency region : x ∈ Kt if
and only if one can find a matrix a ∈ Md

+ such

x i +
∑

j

[aji − (1 + λij
t )aij ] ≥ 0, i ≤ d .

In other words, Kt is the set of portfolios (denominated in
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Basic model
Solvency cones and their duals

Generators of Md
+ are the matrices with all zero entries except

a single one equal to unit. Thus,

Mt = cone {(1 + λij
t )ei − ej , 1 ≤ i , j ≤ d}.

Its dual positive cone M∗
t := {w : wx ≥ 0 ∀ x ∈ Mt} is

M∗
t = {w : (1 + λij

t )w i − w j ≥ 0, 1 ≤ i , j ≤ d}.

The cone Kt is also polyhedral :

Kt = cone {(1 + λij
t )ei − ej , ei , 1 ≤ i , j ≤ d},

and its positive dual is

K ∗
t = M∗

t ∩Rd
+ = {w ∈ Rd

+ : (1+λij
t )w i−w j ≥ 0, 1 ≤ i , j ≤ d}.
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Basic model
Comments

Since K̂t = φtKt , we have

K̂t = φtKt = cone {πij
t ei − ej , ei , 1 ≤ i , j ≤ d},

where
πij

t := (1 + λij
t )S j

t/S i
t .

Note that if there is a non-zero transaction costs coefficient
λij

t , then all vectors ei belong to Mt = Kt .

The solvency cone Kt can be generated by many matrices Λt .
Sometimes it is convenient to consider the matrix such that

1 + λij
t ≤ (1 + λik

t )(1 + λkj
t ), ∀ i , j , k.

The financial interpretation is obvious : an“intelligent”
investor will first try all possible chains of transfers from the
ith position to the position j and act accordingly to a
cheapest one, i.e. as the above property is fulfilled.
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Basic model
Interpretation of K0

The linear space K 0
t := Kt ∩ (−Kt) is composed by the positions

which can be converted to zero without paying transaction costs
and vice versa.
Indeed, let x ∈ Kt ∩ (−Kt). According to definition,

x i =
∑

j

[(1 + λij
t )aij − aji ] + hi ,

−x i =
∑

j

[(1 + λij
t )ãij − ãji ] + h̃i .

Summing up, we get that

d∑
i=1

d∑
j=1

λij
t (aij + ãij) +

d∑
i=1

(hi + h̃i ) = 0.

It follows that all summands here are zero and this leads to the
claimed property.
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Modelling in physical units domain

The model is given by the adapted matrix-valued bid-ask
process Π = (πij) where πij > 0 represents a number of units
of the ith asset needed to get in exchange one unit of the jth
asset (of course, πii = 1). In the literature it is usually
assumed that πij ≤ πikπkj (i.e. the investor is “intelligent”).

The solvency region, i.e. the set of y ∈ Rd for which one can
find c ∈ Md

+ such that

y i ≥
∑

j

[πij
t (ω)c ij − c ji ], i ≤ d ,

is cone {πijei − ej , ei , 1 ≤ i , j ≤ d}, i.e. coincides with K̂t .

Is this model more general ? No. Take any
St ∈ L0(K̂ ∗

t \ {0},Ft) and put λij
t := πij

t S i
t/S j

t − 1. Then
S i

t > 0 and λij
t ≥ 0 because Stei > 0, St(π

ij
t ei − ej) ≥ 0...
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Model of stock market

All transactions pass through the money : so the orders are
either ”buy a stock”, or“sell a stock”, i.e. they are the vectors
(∆L2

t , ...,∆Ld
t ) and (∆M2

t , ...,∆Md
t ).

The corresponding d-asset dynamics is given by the system

∆V 1
t =

∑
j≥2

(1− µj
t)∆M j

t −
∑
j≥2

(1 + λj
t)∆Lj

t ,

∆V i
t = V i

t−1∆Y i
t + ∆Li

t −∆M i
t , i = 2, ..., d .

Mt = cone {−(1 + λj
t)e1 + ej , (1− µj

t)e1 − ej , j = 2, ..., d},

Kt =
{

x ∈ Rd : x1+
d∑

j≥2

[(1−µj
t)x

j I{x j>0}−(1+λj
t)x

j I{x j<0}] ≥ 0
}

.

The model can be imbedded into the model of currency
market by choosing sufficiently large transaction costs
coefficients for the direct exchange of stocks.
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Model with a price spread

This is a model of stock market, i.e. transactions are only
buying or selling shares according to two price processes S̄ and
S where S̄ j ≥ S j > 0, j = 2, ..., d . It can be given in terms of
a single price (quote) process and transaction cost
coefficients. E.g., one can put St := (S̄t + S t) and define
λj

t := S̄ j
t/S j

t − 1, µj
t := 1− S j

t/S j
t . The absence of arbitrage

opportunities means that RT ∩ L0
+ = {0} where the“results”

here are terminal values of the money component of the
portfolio processes (in our terminology this will correspond to
the NAw -property).
Historically, the first criterion of absence of arbitrage was
obtained for such a model. The Jouini–Kallal theorem claims
(under some conditions) that there is no-arbitrage if and only
if there exist a probability measure P̃ ∼ P and an Rd−1-valued
P̃-martingale S̃ such that S j

t ≤ S̃ i
t ≤ S̄ i

t , i = 2, ..., d . If S = S̄ ,
the assertion coincides with the DMW theorem.
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Transactions charging the bank account

The dynamics is given as follows :

∆V 1
t =

∑
j≥2

(∆Lj1
t −∆L1j

t )−
∑
i ,j

γij
t ∆Lij

t ,

∆V i
t = V̂ i

t−1∆S i
t +

∑
j

∆Lji
t −

∑
j

∆Lij
t , i = 2, ..., d ,

where γij
t ∈ [0, 1[, γii = 0.

For this model, linear and with polyhedral cone constraints on
the controls, the solvency cone is again a polyhedral one :

Kt = cone {γije1+ei , (1+γ1i )e1−ei , (−1+γj1)e1+ej , ei , i , j ≤ d}.
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Outline

1 Models with transaction costs
Basic model
Variants

2 Arbitrage theory for financial markets with transaction costs
No-arbitrage criteria for finite Ω
No-arbitrage criteria for arbitrary Ω

3 Hedging theorems
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Principal problems

Problem 1. What are analogs of no-arbitrage criteria ?

Problem 2. What are analogs of hedging theorem ?
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No-arbitrage problem : definitions

We consider the basic model in the case where Ω is finite and
use the Stiemke theorem to get an idea.

Let RT be the set of all VT which are the terminal variables
of the processes

∆V i
t = V̂ i

t−1∆S i
t + ∆B i

t , V i
−1 = 0,

AT := RT − L0(KT ,FT ) = RT − L0(R+,FT ).

We denote MT
0 (K̂ ∗ \ {0}) the set of martingales

Z = (Zt)t≤T such that Zt ∈ L0(K̂ ∗
t \ {0}) for all t. Elements

of MT
0 (K̂ ∗ \ {0}) are called consistent price systems.

We define the strict arbitrage opportunity as a strategy B such
that the terminal value VT of the portfolio process V = V B

with V−1 = 0 belongs to L0(Rd
+) but is not equal to zero.
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No-arbitrage problem : NAw for finite Ω

We say that a model has the weak no-arbitrage property (in
symbols : NAw ) if it does not admit strict arbitrage
opportunities, i.e. RT ∩ L0(Rd

+) = {0} or, equivalently,

R̂T ∩ L0(Rd
+) = {0} where R̂T = φTRT is the set of

attainable results in physical units.

Other (“obviously”) equivalent conditions :

AT ∩ L0(Rd
+) = {0}.

RT ∩ L0(KT ,FT ) ⊆ L0(∂KT ,FT ) ...

Theorem (Kabanov–Stricker, 1999)

Suppose that Ω is finite. Then the following conditions are
equivalent :
(a) RT ∩ L0(Rd

+) = {0} (i.e. NAw ) ;

(b) MT
0 (K̂ ∗ \ {0}) 6= ∅.
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Proof of the NAw -criterion for finite Ω

We apply (in the finite-dimensional space L0(Rd ,FT )) :

Lemma (Stiemke, modern version)

Let K and R be closed cones in Rn and K be proper. Then

R ∩ K = {0} ⇔ (−R∗) ∩ intK ∗ 6= ∅.

Take R = R̂T and K = L0(Rd
+,FT ). These sets are polyhedral

cones. By the lemma R̂T ∩ L0(Rd
+) = {0} if and only if there

exists η in the interior of L0(Rd
+,FT ) which belongs to −R̂∗T .

This means that the components of η are strictly positive and
Eξη ≤ 0 for all ξ ∈ R̂T .

It remains to note that the martingale Zt = E (η|Ft) belongs
to MT

0 (K̂ ∗ \ {0}). For ζ ∈ L0(K̂t ,Ft) ⊆ −R̂T + L0(Rd
+) we

have that EZtζ = Eηζ ≥ 0. This means that Zt ∈ L0(K̂ ∗
t ,Ft).
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Relation with the Harrison–Pliska theorem

Suppose that Λ = 0 and the first asset is the numéraire, i.e.
∆S1

t = 0. Let V̄t =
∑

i≤d V i
t . It follows that

∆V̄t =
d∑

i=1

V̂ i
t−1∆S i

t = Ht∆St ,

where Ht ∈ L0(Rd ,Ft−1). There is a linear relations for the
components V̂ i

t−1 but it is of no importance : ∆S1
t = 0. The

set of V̄T is exactly RT of the model of frictionless market
and the classical NA-condition RT ∩ L0

+ = {0} is equivalent to
the NAw -condition.

If Λ = 0, then the cone K̂ ∗
t = R+St . The property

Zt ∈ L0(K̂ ∗
t ,Ft) means that Zt = ρtSt for some ρt ≥ 0. Thus,

Z ∈MT
0 (K̂ ∗ \ {0}) if and only if there is a martingale ρ > 0

such that ρS is a martingale ; we may assume that Eρt = 1.
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No-arbitrage problem : NAs
T for finite Ω

A strategy B is a weak arbitrage opportunity at time t ≤ T if
V B

t ∈ Kt but P(V B
t /∈ K 0

t ) > 0 where K 0
t := Kt ∩ (−Kt). The

absence of such strategies at time t is referred to as the strict
no arbitrage property NAs

t :

Rt ∩ L0(Kt ,Ft) ⊆ L0(K 0
t ,Ft),

or, equivalently, in the realm of physical values :

R̂t ∩ L0(K̂t ,Ft) ⊆ L0(K̂ 0
t ,Ft).

Theorem (Kabanov–Stricker, 1999)

For finite Ω the following conditions are equivalent :
(a) RT ∩ L0(KT ,FT ) ⊆ L0(K 0

T ,FT ) (i.e. NAs
T ) ;

(b) AT ∩ L0(KT ,FT ) ⊆ L0(K 0
T ,FT ) ;

(c) there is Z (T ) ∈MT
0 (K̂ ∗ \ {0}) with Z

(T )
T ∈ L1(ri K̂ ∗

T ,FT ).
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No-arbitrage problem : NAs for finite Ω

The proof is based on a generalization of the Stiemke lemma.

Note that NAs
T does not imply NAs

t for t < T . In other
words, a weak arbitrage opportunities may disappear next day.

We use the notation NAs when NAs
t holds for every t ≤ T

and formulate the following corollary :

Theorem (Kabanov–Stricker, 1999)
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(b) At ∩ L0(Kt ,Ft) ⊆ L0(K 0
t ,Ft) for all t ;

(c) for each t ≤ T there exists a process Z (t) ∈Mt
0(K̂

∗ \ {0})
with Z

(t)
t ∈ L1(ri K̂ ∗

t ,Ft).
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No-arbitrage problem in an abstract setting

By the experience with models of frictionless markets one may
guess that the above no-arbitrage criteria hold true also for
arbitrary Ω.

But not !

Mathematically, the problem of no-arbitrage for market with
transaction costs is very intriguing.

As we observed, the portfolio dynamics is given by a
controlled linear difference equation with conic constrains on
the controls. So, it is quite natural to treat the no-arbitrage
criteria in the general framework of such equations. The
Cauchy formula provides an explicit representation for the
solution, corresponding, in financial context, to the dynamics
given in the physical units domain. These considerations leads
a fairly simple abstract setting.
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No-arbitrage problem in an abstract setting

We are given a sequence of set-valued mappings G = (Gt)
called C-valued process specified by a countable sequence of
adapted Rd -valued processes X n = (X n

t ) such that for every t
and ω only a finite but non-zero number of X n

t (ω) is different
from zero and Gt(ω) := cone {X n

t (ω), n ∈ N}, i.e. Gt(ω) is
polyhedral. [Think that there is only a finite number of
generators.]
Let G and G̃ be closed cones. We say that G is dominated by
G̃ if G \ G 0 ⊆ ri G̃ where G 0 := G ∩ (−G ). We extend this
notion to C-valued processes. It can be formulated in terms of
the dual cones : G \ G 0 ⊆ ri G̃ ⇔ G̃ ∗ \ G̃ ∗0 ⊆ riG ∗.
If G has an interior (as in the case of financial models where
Gt = K̂t ⊇ Rd),

G \ G 0 ⊆ int G̃ ⇔ G̃ ∗ \ {0} ⊆ riG ∗.
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No-arbitrage problem in an abstract setting

Let G be a C-valued process,
At

0(G ) := At(G ) := −
∑t

s=0 L0(Gs ,Fs).

We say that G satisfies :
– weak no-arbitrage property NAw if

At(G ) ∩ L0(Gt ,Ft) ⊆ L0(∂Gt ,Ft) ∀ t ≤ T ;

– strict no-arbitrage property NAs if

At(G ) ∩ L0(Gt ,Ft) ⊆ L0(G 0
t ,Ft) ∀ t ≤ T ;

– robust no-arbitrage property NAr if G is dominated by G̃
satisfying NAw .

It is an easy exercise to check that if G dominates the
constant process Rd

+ then NAw holds if and only if
AT (G ) ∩ L0(Rd

+) = {0}.
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No-arbitrage problem in an abstract setting

Theorem (Schachermayer, 2004, KRS, 2003)

Assume that G dominates Rd
+. Then

NAr ⇔ MT
0 (riG ∗) 6= ∅.

Theorem (Penner, 2003)

Assume that L0(G 0
s ,Fs−1) ⊆ L0(G 0

s−1,Fs−1) ∀ s ≤ T. Then

NAs ⇔ MT
0 (riG ∗) 6= ∅.

The hypothesis of the 2nd theorem holds trivially when G 0 = {0}
(the efficient friction condition in financial context). More
interesting, it is fulfilled for the the market model for which the
subspace K 0

t = Kt ∩ (−Kt) is constant over time (e.g., the
transaction costs are constant) and NAs holds. In such a case NAr

and NAs coincide.
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No-arbitrage problem in an abstract setting
Grigoriev theotem

Theorem

Let d = 2. Then the following conditions are equivalent :
(A) AT

0 ∩ L0(Rd
+) = {0} ;

(C ) ĀT
0 ∩ L0(Rd

+) = {0} ;
(D) MT

0 (G ∗ \ {0}) 6= ∅.

Example A two-asset one-period model satisfying NAw for
which A1

0 is not closed. Let Ω = N, F = 2Ω, P(k) = 2−k ,
F0 = {∅,Ω}, F1 = F . Take G0 = cone {2e2 − e1, e1 − e2} and
G1 = cone {2e1 − e2, e2 − e1}. The vector e1 + e2 belongs to both
G ∗

0 and G ∗
1 and, hence, the constant process Z = e1 + e2 is an

element of M1
0(G

∗ \ {0}). The random variable ξ with
ξ(k) = k(e2 − e1) does not belong to the set A1

0 but lays in the
closure of the latter.
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No-arbitrage problem in an abstract setting
Example : NAw holds but M1

0(G
∗ \ {0}) = ∅

A three-dimensional one-period model. Take G ∗
0 = R+η,

G ∗
1 = cone {η1, η2} where η = (3, 1, 1) and η1 = (4, 1, 1) are

deterministic vectors in R3
+ while η2 is a random one with

η2(k) = (2, 1, 1 + 1/k).
Clearly, M1

0(G
∗ \ {0}) = ∅ : one cannot find random variables

α, β ≥ 0 to meet the conditions Eα = Eβ = 1/2 and Eβγ = 0,
where γ(k) = 1/k, needed to ensure that EZ1 = Z0.
Let ξ0 ∈ −G0 and ξ1 ∈ −L0(G1,F) be such that ξ = ξ0 + ξ1 takes
values in R3

+. The latter condition implies that η1ξ ≥ 0. Since
η1ξ1 ≤ 0, we have η1ξ0 ≥ 0. Also η2(k)ξ0 ≥ 0 whatever is k. But

η1ξ0 + lim
k

η2(k)ξ0 = 2ηξ0 ≤ 0

and, therefore, both terms in the lhs are zero. So, η1ξ0 = 0. As a
result, η1ξ = η1ξ2 ≤ 0. With ξ taking values in R3

+ this is possible
only when ξ = 0 and NAw holds.
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No-arbitrage problem in an abstract setting
One more example

Thus, a straightforward generalization of the Grigoriev
theorem for an arbitrary C-valued process fails to be true
already in dimension three. However, the above
counterexample does not exclude that it holds in a narrower
class of financial models.

There is a rather complicated example of four-asset
two-period model satisfying NAs for which M2

0(G
∗ \ {0}) = ∅.
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1 Models with transaction costs
Basic model
Variants

2 Arbitrage theory for financial markets with transaction costs
No-arbitrage criteria for finite Ω
No-arbitrage criteria for arbitrary Ω

3 Hedging theorems
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Hedging theorem for European options
Finite Ω

The formal description of the convex set of hedging
endowments (in values or in physical units since we use a
convention that at all S i

0 = 1) is as follows :

Γ := {v ∈ Rd : ∃ B ∈ B such that v + V B
T �T C}

It is easy to see that Γ = {v ∈ Rd : Ĉ ∈ v + ÂT
0 }.

We introduce also the closed convex set

D :=

{
v ∈ Rd : sup

Z
E (ZT Ĉ − Z0v) ≤ 0

}
where Z runs the set MT

0 (K̂ ∗ \ {0}) assumed to be
non-empty.

Theorem (K.–Stricker, 2001)

Let Ω be finite and MT
0 (K̂ ∗ \ {0}) 6= ∅. Then Γ = D.
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Hedging theorem for European options
Finite Ω : proof

Let ξ =
∑T

t=0 ξt with ξt ∈ −L0(K̂t ,Ft). Then

EZT Ĉ ≤ EZT

(
v +

∑
t≤T

ξt

)
= Z0v +

∑
t≤T

EZtξt ≤ Z0v .

if Z ∈MT
0 (K̂ ∗ \ {0}) and the“easy” inclusion Γ ⊆ D holds.

Take now v /∈ Γ. To show that v /∈ D it is sufficient to find
Z ∈MT

0 (K̂ ∗) with Z0v < EZT Ĉ . Since Ĉ 6∈ v + ÂT
0 , it can

be separated :
sup

ξ∈v+bAT
0

Eηξ < EηĈ

for some d-dimensional random variable η. Define a
martingale Zt := E (η|Ft). It follows that EZtξt ≥ 0 for all
ξt ∈ L0(K̂t ,Ft) implying that Z ∈MT

0 (K̂ ∗). Taking ξ = v
and using the martingale property, we get the desired
inequality EZ0v < EηĈ .
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Hedging theorem for European options
Abstract setting, arbitrary Ω

We fix a d-dimensional random variable ζ (which correspond
in financial context to Ĉ , the contingent claim expressed in
physical units). Define the set

Γ = {v ∈ Rd : ζ ∈ v + AT
0 }.

Let Z be the set of martingales from MT
0 (riG ∗) such that

E (ZT ζ)− < ∞. Put

D :=

{
v ∈ Rd : sup

Z∈Z
E (ZT ζ − Z0v) ≤ 0

}
.

Theorem (K.–Rasonyi–Stricker, 2002)

Suppose that MT
0 (riG ∗) 6= ∅. Then Γ = D.
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Hedging theorem for American options
Finite Ω

Abstract setting : the model is given by C-valued process
G = (Gt), t ≥ T , dominating Rd

+.
The pay-off process Y = (Yt) is now Rd -valued.
we denote by X 0 the set of X = (Xt) with X−1 = 0 and
∆Xt ∈ −L0(Gt ,Ft) for t = 0, 1, ...,T and put

Γ := {v ∈ Rd : ∃X ∈ X 0 such that v + Xt − Yt ∈ Gt ∀ t}.
We introduce the set AT

0 (.) of hedgeable American claims
consisting of all processes Y which can be dominated by a
portfolio process with zero initial capital.
By analogy with the results available for frictionless market
and the hedging theorems for European-type options under
transaction costs one may guess that

Γ = {v ∈ Rd : E (ZτYτ − Z0v) ≤ 0 ∀Z ∈M(G ∗), τ ∈ T }.
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Hedging theorem for American options
Finite Ω : a theorem

To formulate the correct result we introduce the notation

Z̄t :=
T∑

r=t

E (Zr |Ft).

Define the set of adapted bounded processes

Z(G ∗,P) := {Z : Zt , Z̄t ∈ L∞(G ∗
t ,Ft), t = 0, 1, ...,T}.

Clearly, all bounded martingales from M(G ∗,P) belongs to
Z(G ∗,P).

Theorem (Bouchard–Temam, 2005)

Suppose that Ω is finite. Then

Γ =
{

v ∈ Rd : E
∑

t

ZtY−Z̄0v ≤ 0 ∀Z ∈ Z(G ∗,P)
}

.
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