Hedging theorems

Lisbonne

Mathematical Aspects of the Theory of Financial Markets with Transaction Costs

Yuri Kabanov

Laboratoire de Mathématiques, Université de Franche-Comté

February 2008

< 日 > < 同 > < 三 > < 三 >

Arbitrage theory for financial markets with transaction costs

Hedging theorems

Contributions Contributions to no-arbitrage criteria

No-arbitrage criteria

- Finite Ω : Kabanov–Stricker (2001).
- Arbitrary Ω : Kabanov–Rásonyi–Stricker (2002), Grigoriev (2005).
- Robust NA : Schachermayer (2004), Kabanov–Rásonyi–Stricker (2003).
- Incomplete information : Bouchard (2007), De Vallière–Kabanov–Stricker (2007).
- Model with bid-ask spread : Jouini-Kallal (1995).

Hedging theorems

Contributions Contributions to no-arbitrage criteria

No-arbitrage criteria

- Finite Ω : Kabanov–Stricker (2001).
- Arbitrary Ω : Kabanov–Rásonyi–Stricker (2002), Grigoriev (2005).
- Robust NA : Schachermayer (2004), Kabanov–Rásonyi–Stricker (2003).
- Incomplete information : Bouchard (2007), De Vallière–Kabanov–Stricker (2007).
- Model with bid-ask spread : Jouini-Kallal (1995).

Hedging theorems

Contributions Contributions to no-arbitrage criteria

No-arbitrage criteria

- Finite Ω : Kabanov–Stricker (2001).
- Arbitrary Ω : Kabanov–Rásonyi–Stricker (2002), Grigoriev (2005).
- Robust NA : Schachermayer (2004), Kabanov–Rásonyi–Stricker (2003).
- Incomplete information : Bouchard (2007), De Vallière–Kabanov–Stricker (2007).
- Model with bid-ask spread : Jouini-Kallal (1995).

Hedging theorems

Contributions Contributions to no-arbitrage criteria

No-arbitrage criteria

- Finite Ω : Kabanov–Stricker (2001).
- Arbitrary Ω : Kabanov–Rásonyi–Stricker (2002), Grigoriev (2005).
- Robust NA : Schachermayer (2004), Kabanov–Rásonyi–Stricker (2003).
- Incomplete information : Bouchard (2007), De Vallière–Kabanov–Stricker (2007).
- Model with bid-ask spread : Jouini–Kallal (1995).

Arbitrage theory for financial markets with transaction costs

Hedging theorems

Contributions Contributions to no-arbitrage criteria

No-arbitrage criteria

- Finite Ω : Kabanov–Stricker (2001).
- Arbitrary Ω : Kabanov–Rásonyi–Stricker (2002), Grigoriev (2005).
- Robust NA : Schachermayer (2004), Kabanov–Rásonyi–Stricker (2003).
- Incomplete information : Bouchard (2007), De Vallière–Kabanov–Stricker (2007).
- Model with bid-ask spread : Jouini-Kallal (1995).

Arbitrage theory for financial markets with transaction costs

Hedging theorems

Contributions Contributions to hedging theorems

Hedging theorems for discrete- and continuous time models

- Two-asset continuous time model : Cvitanić-Karatzas (1996).
- Multi-asset models : Kabanov (1999), Kabanov–Last (2002), Delbaen–Kabanov–Valkeila (2002), Campi–Schachermayer (2006).
- American options : Chalasani–Jha (2001), Bouchard–Temam (2005), De Vallière–Denis–Kabanov (2007).

< 日 > < 同 > < 回 > < 回 > < 回 > <

Arbitrage theory for financial markets with transaction costs

Hedging theorems

Contributions Contributions to hedging theorems

Hedging theorems for discrete- and continuous time models

- Two-asset continuous time model : Cvitanić–Karatzas (1996).
- Multi-asset models : Kabanov (1999), Kabanov–Last (2002), Delbaen–Kabanov–Valkeila (2002), Campi–Schachermayer (2006).
- American options : Chalasani–Jha (2001), Bouchard–Temam (2005), De Vallière–Denis–Kabanov (2007).

< 日 > < 同 > < 回 > < 回 > < 回 > <

Hedging theorems

Contributions Contributions to hedging theorems

Hedging theorems for discrete- and continuous time models

- Two-asset continuous time model : Cvitanić-Karatzas (1996).
- Multi-asset models : Kabanov (1999), Kabanov–Last (2002), Delbaen–Kabanov–Valkeila (2002), Campi–Schachermayer (2006).
- American options : Chalasani–Jha (2001), Bouchard–Temam (2005), De Vallière–Denis–Kabanov (2007).

- ロ ト - (同 ト - - 三 ト - - 三 ト

Outline

Models with transaction costs

- Basic model
- Variants

2 Arbitrage theory for financial markets with transaction costs

- \bullet No-arbitrage criteria for finite Ω
- \bullet No-arbitrage criteria for arbitrary Ω

3 Hedging theorems

Hedging theorems

Basic model Values versus physical units

- There are *d* assets which we prefer to interpret as currencies. Their quotes are given in units of a certain *numéraire* which may not be a traded security. At time *t* the quotes are expressed by the vector of prices $S_t = (S_t^1, \ldots, S_t^d)$; its components are strictly positive. We assume that $S_0 = \mathbf{1} = (1, ..., 1)$.
- The agent's positions can be described either by the vector of "physical" quantities $\hat{V}_t = (\hat{V}_t^1, \dots, \hat{V}_t^d)$ or by the vector $V = (V_t^1, \dots, V_t^d)$ of values invested in each asset; they are related as follows :

$$\widehat{V}_t^i = V_t^i / S_t^i, \quad i \leq d.$$

• Formally, $\widehat{V}_t = \phi_t V_t$, where

$$\phi_t: (x^1, ..., x^d) \mapsto (x^1/S^1_t, ..., x^d/S^d_t).$$

Hedging theorems

Basic model Values versus physical units

- There are *d* assets which we prefer to interpret as currencies. Their quotes are given in units of a certain *numéraire* which may not be a traded security. At time *t* the quotes are expressed by the vector of prices $S_t = (S_t^1, \ldots, S_t^d)$; its components are strictly positive. We assume that $S_0 = \mathbf{1} = (1, ..., 1)$.
- The agent's positions can be described either by the vector of "physical" quantities $\hat{V}_t = (\hat{V}_t^1, \dots, \hat{V}_t^d)$ or by the vector $V = (V_t^1, \dots, V_t^d)$ of values invested in each asset; they are related as follows :

$$\widehat{V}_t^i = V_t^i / S_t^i, \quad i \leq d.$$

• Formally, $\widehat{V}_t = \phi_t V_t$, where

$$\phi_t: (x^1, ..., x^d) \mapsto (x^1/S^1_t, ..., x^d/S^d_t).$$

イロト イヨト イヨト 一座

Hedging theorems

Basic model Values versus physical units

- There are *d* assets which we prefer to interpret as currencies. Their quotes are given in units of a certain *numéraire* which may not be a traded security. At time *t* the quotes are expressed by the vector of prices $S_t = (S_t^1, \ldots, S_t^d)$; its components are strictly positive. We assume that $S_0 = \mathbf{1} = (1, ..., 1)$.
- The agent's positions can be described either by the vector of "physical" quantities $\hat{V}_t = (\hat{V}_t^1, \dots, \hat{V}_t^d)$ or by the vector $V = (V_t^1, \dots, V_t^d)$ of values invested in each asset; they are related as follows :

$$\widehat{V}_t^i = V_t^i / S_t^i, \quad i \leq d.$$

• Formally, $\widehat{V}_t = \phi_t V_t$, where

$$\phi_t: (x^1, ..., x^d) \mapsto (x^1/S^1_t, ..., x^d/S^d_t).$$

ヘロト 不得 トイヨト イヨト 二日

The portfolio evolution can be described by the initial condition $V_{-0} = v$ (the endowments of the agent when entering the market) and the increments at dates $t \ge 0$:

$$\Delta V_t^i = \widehat{V}_{t-1}^i \Delta S_t^i + \Delta B_t^i,$$

$$B_t^i := \sum_{j=1}^d L_t^{ji} - \sum_{j=1}^d (1 + \lambda_t^{ij}) L_t^{ij},$$

where $L_t^{ji} \in L^0(\mathbf{R}_+, \mathcal{F}_t)$ represents the accumulated net amount transferred from the position j to the position i at the date t; (ΔL_t^{ij}) , interpreted as an "order" matrix, is a control; (λ_t^{ij}) is the matrix of transaction costs coefficients : $\lambda_t^{ij} \in L^0(\mathbf{R}_+, \mathcal{F}_t)$, $\lambda^{ii} = 0$.

Dynamics

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Hedging theorems

Basic model Dynamics – mathematically, nothing new !

• The portfolio dynamics can be described in more conventional way by a controlled linear difference equation :

$$\Delta V_t^i = V_{t-1}^i \Delta Y_t^i + \Delta B_t^i, \qquad i = 1, ..., d,$$

where Y^{i} , a "stochastic logarithm" of S^{i} , is given as follows :

$$\Delta Y_t^i = \frac{\Delta S_t^i}{S_{t-1}^i}, \quad Y_0^i = 1.$$

• We can take ΔB_t as the control. Any $\Delta L_t \in L^0(\mathbb{M}^d_+, \mathcal{F}_t)$ defines $\Delta B_t \in L^0(-M_t, \mathcal{F}_t)$ where

$$M_t := \Big\{ x \in \mathbf{R}^d : \exists a \in \mathbf{M}^d_+ \text{ such that } x^i = \sum_j [(1 + \lambda^{ij}_t) a^{ij} - a^{ji}] \Big\}.$$

A measurable selection arguments show that any increment $\Delta B_t \in L^0(-M_t, \mathcal{F}_t)$ is generated by a certain (in general, not unique) order $\Delta L_t \in L^0(\mathbb{M}^d_+, \mathcal{F}_t)$.

Hedging theorems

Basic model Dynamics – mathematically, nothing new !

• The portfolio dynamics can be described in more conventional way by a controlled linear difference equation :

$$\Delta V_t^i = V_{t-1}^i \Delta Y_t^i + \Delta B_t^i, \qquad i = 1, ..., d,$$

where Y^{i} , a "stochastic logarithm" of S^{i} , is given as follows :

$$\Delta Y_t^i = \frac{\Delta S_t^i}{S_{t-1}^i}, \quad Y_0^i = 1.$$

• We can take ΔB_t as the control. Any $\Delta L_t \in L^0(\mathbf{M}^d_+, \mathcal{F}_t)$ defines $\Delta B_t \in L^0(-M_t, \mathcal{F}_t)$ where

$$M_t := \Big\{ x \in \mathbf{R}^d: \ \exists \, \mathbf{a} \in \mathbf{M}^d_+ ext{ such that } \mathbf{x}^i = \sum_j [(1 + \lambda^{ij}_t) \mathbf{a}^{ij} - \mathbf{a}^{ji}] \Big\}.$$

A measurable selection arguments show that any increment $\Delta B_t \in L^0(-M_t, \mathcal{F}_t)$ is generated by a certain (in general, not unique) order $\Delta L_t \in L^0(\mathbf{M}^d_+, \mathcal{F}_t)$.

Hedging theorems

Basic model Dynamics in physical units and the Cauchy formula

 The portfolio dynamics in physical units is surprisingly simple and, financially, obvious :

$$\Delta \widehat{V}_t^i = \frac{\Delta B_t^i}{S_t^i}, \qquad i = 1, ..., d.$$

• We can write this as :

$$\Delta \widehat{V}_t = \widehat{\Delta B}_t, \qquad -\widehat{\Delta B}_t \in \widehat{M}_t := \phi_t M_t.$$

• It follows that

$$V_t^i = S_t^i \widehat{V}_t^i = S_t^i \left(v^i + \sum_{s=0}^t \frac{\Delta B_s^i}{S_s^i} \right)$$

This is just the Cauchy formula for the solution of the non-homogeneous linear difference equation.

Hedging theorems

Basic model Dynamics in physical units and the Cauchy formula

 The portfolio dynamics in physical units is surprisingly simple and, financially, obvious :

$$\Delta \widehat{V}_t^i = \frac{\Delta B_t^i}{S_t^i}, \qquad i = 1, ..., d.$$

• We can write this as :

$$\Delta \widehat{V}_t = \widehat{\Delta B}_t, \qquad -\widehat{\Delta B}_t \in \widehat{M}_t := \phi_t M_t.$$

It follows that

$$V_t^i = S_t^i \widehat{V}_t^i = S_t^i \left(v^i + \sum_{s=0}^t \frac{\Delta B_s^i}{S_s^i} \right)$$

This is just the Cauchy formula for the solution of the non-homogeneous linear difference equation.

Hedging theorems

Basic model Dynamics in physical units and the Cauchy formula

 The portfolio dynamics in physical units is surprisingly simple and, financially, obvious :

$$\Delta \widehat{V}_t^i = \frac{\Delta B_t^i}{S_t^i}, \qquad i = 1, ..., d.$$

• We can write this as :

$$\Delta \widehat{V}_t = \widehat{\Delta B}_t, \qquad -\widehat{\Delta B}_t \in \widehat{M}_t := \phi_t M_t.$$

It follows that

$$V_t^i = S_t^i \widehat{V}_t^i = S_t^i \left(v^i + \sum_{s=0}^t \frac{\Delta B_s^i}{S_s^i} \right).$$

This is just the Cauchy formula for the solution of the non-homogeneous linear difference equation.

Hedging theorems

Basic model Solvency cones

 The cone K_t := M_t + ℝ^d is the solvency region : x ∈ K_t if and only if one can find a matrix a ∈ M^d₊ such

$$x^i+\sum_j [a^{ji}-(1+\lambda^{ij}_t)a^{ij}]\geq 0,\,\,i\leq d.$$

In other words, K_t is the set of portfolios (denominated in units of the numéraire) which can be converted at time t, paying the transactions costs, to portfolios without short positions (i.e. without debts in any asset).

- $\hat{K}_t = \hat{M}_t + \mathbb{R}^d_+$ is the solvency cone when the accounting of assets (e.g., currencies) is done in terms of physical units.
- Note that M_t is a polyhedral cone, namely, $M_t = \Psi(\mathbf{M}^d_+)$ where $\Psi : \mathbf{M}^d \to \mathbb{R}^d$ is a linear mapping with

$$[\Psi((a^{ij}))]^i := \sum [(1+\lambda_t^{ij})a^{ij}-a^{ji}].$$

(日)

Hedging theorems

Basic model Solvency cones

 The cone K_t := M_t + ℝ^d is the solvency region : x ∈ K_t if and only if one can find a matrix a ∈ M^d₊ such

$$x^i+\sum_j [a^{ji}-(1+\lambda^{ij}_t)a^{ij}]\geq 0,\,\,i\leq d.$$

In other words, K_t is the set of portfolios (denominated in units of the numéraire) which can be converted at time t, paying the transactions costs, to portfolios without short positions (i.e. without debts in any asset).

- *K*_t = *M*_t + ℝ^d₊ is the solvency cone when the accounting of assets (e.g., currencies) is done in terms of physical units.
- Note that M_t is a polyhedral cone, namely, $M_t = \Psi(\mathbf{M}^d_+)$ where $\Psi : \mathbf{M}^d \to \mathbb{R}^d$ is a linear mapping with

$$[\Psi((a^{ij}))]^i := \sum [(1 + \lambda_t^{ij})a^{ij} - a^{ji}].$$

< 日 > < 同 > < 三 > < 三 > <

Hedging theorems

Basic model Solvency cones

 The cone K_t := M_t + ℝ^d is the solvency region : x ∈ K_t if and only if one can find a matrix a ∈ M^d₊ such

$$x^i+\sum_j [a^{ji}-(1+\lambda^{ij}_t)a^{ij}]\geq 0,\,\,i\leq d.$$

In other words, K_t is the set of portfolios (denominated in units of the numéraire) which can be converted at time t, paying the transactions costs, to portfolios without short positions (i.e. without debts in any asset).

- *K*_t = *M*_t + ℝ^d₊ is the solvency cone when the accounting of assets (e.g., currencies) is done in terms of physical units.
- Note that M_t is a polyhedral cone, namely, $M_t = \Psi(\mathbf{M}^d_+)$ where $\Psi : \mathbf{M}^d \to \mathbb{R}^d$ is a linear mapping with

$$\left[\Psi((a^{ij}))
ight]^i:=\sum_j [(1+\lambda^{ij}_t)a^{ij}-a^{ji}].$$

Hedging theorems

Basic model Solvency cones and their duals

 Generators of M^d₊ are the matrices with all zero entries except a single one equal to unit. Thus,

$$M_t = \operatorname{cone} \{ (1 + \lambda_t^{ij}) e_i - e_j, \ 1 \le i, j \le d \}.$$

Its dual positive cone $M^*_t := \{w: wx \ge 0 \ \forall x \in M_t\}$ is

$$M^*_t = \{ w: \ (1 + \lambda^{ij}_t) w^i - w^j \ge 0, \ 1 \le i, j \le d \}.$$

• The cone K_t is also polyhedral :

$$K_t = \operatorname{cone} \{ (1 + \lambda_t^{ij}) e_i - e_j, \ e_i, \ 1 \le i, j \le d \},\$$

and its positive dual is

 $\mathcal{K}_t^* = M_t^* \cap \mathbf{R}_+^d = \{ w \in \mathbf{R}_+^d : (1 + \lambda_t^{ij}) w^i - w^j \ge 0, \ 1 \le i, j \le d \}.$

< 日 > < 同 > < 三 > < 三 > <

Hedging theorems

Basic model Solvency cones and their duals

 Generators of M^d₊ are the matrices with all zero entries except a single one equal to unit. Thus,

$$M_t = \operatorname{cone} \{ (1 + \lambda_t^{ij}) \mathbf{e}_i - \mathbf{e}_j, \ 1 \leq i, j \leq d \}.$$

Its dual positive cone $M^*_t := \{w: wx \ge 0 \ \forall x \in M_t\}$ is

$$M_t^* = \{ w: \ (1 + \lambda_t^{ij}) w^i - w^j \ge 0, \ 1 \le i, j \le d \}.$$

• The cone K_t is also polyhedral :

$$K_t = \operatorname{cone} \{ (1 + \lambda_t^{ij}) e_i - e_j, \ e_i, \ 1 \le i, j \le d \},$$

and its positive dual is

$${\mathcal K}^*_t = {\mathcal M}^*_t \cap {\mathbf R}^d_+ = \{ w \in {\mathbf R}^d_+ : \ (1 + \lambda^{ij}_t) w^i - w^j \ge 0, \ 1 \le i,j \le d \}.$$

< 日 > < 同 > < 回 > < 回 > < 回 > <

Arbitrage theory for financial markets with transaction costs

Hedging theorems

Basic model Comments

• Since
$$\widehat{K}_t = \phi_t K_t$$
, we have
 $\widehat{K}_t = \phi_t K_t = \operatorname{cone} \{ \pi_t^{ij} e_i - e_j, e_i, 1 \le i, j \le d \}$

where

$$\pi_t^{ij} := (1 + \lambda_t^{ij}) S_t^j / S_t^i.$$

- Note that if there is a non-zero transaction costs coefficient λ_t^{ij} , then all vectors e_i belong to $M_t = K_t$.
- The solvency cone K_t can be generated by many matrices Λ_t.
 Sometimes it is convenient to consider the matrix such that

$$1 + \lambda_t^{ij} \le (1 + \lambda_t^{ik})(1 + \lambda_t^{kj}), \qquad \forall i, j, k.$$

The financial interpretation is obvious : an "intelligent" investor will first try all possible chains of transfers from the *i*th position to the position *j* and act accordingly to a cheapest one, i.e. as the above property is fulfilled.

Arbitrage theory for financial markets with transaction costs

Hedging theorems

Basic model Comments

Since
$$\widehat{K}_t = \phi_t K_t$$
, we have
 $\widehat{K}_t = \phi_t K_t = \operatorname{cone} \{ \pi_t^{ij} e_i - e_j, e_i, 1 \le i, j \le d \},$

where

$$\pi_t^{ij} := (1 + \lambda_t^{ij}) S_t^j / S_t^i.$$

• Note that if there is a non-zero transaction costs coefficient λ_t^{ij} , then all vectors e_i belong to $M_t = K_t$.

The solvency cone K_t can be generated by many matrices Λ_t.
 Sometimes it is convenient to consider the matrix such that

$$1 + \lambda_t^{ij} \le (1 + \lambda_t^{ik})(1 + \lambda_t^{kj}), \qquad \forall i, j, k.$$

The financial interpretation is obvious : an "intelligent" investor will first try all possible chains of transfers from the *i*th position to the position *j* and act accordingly to a cheapest one, i.e. as the above property is fulfilled.

Arbitrage theory for financial markets with transaction costs

Hedging theorems

Basic model Comments

Since
$$\widehat{K}_t = \phi_t K_t$$
, we have
 $\widehat{K}_t = \phi_t K_t = \operatorname{cone} \{ \pi_t^{ij} e_i - e_j, e_i, 1 \le i, j \le d \},$

where

$$\pi_t^{ij} := (1 + \lambda_t^{ij}) S_t^j / S_t^i.$$

- Note that if there is a non-zero transaction costs coefficient λ_t^{ij} , then all vectors e_i belong to $M_t = K_t$.
- The solvency cone K_t can be generated by many matrices Λ_t.
 Sometimes it is convenient to consider the matrix such that

$$1+\lambda_t^{ij}\leq (1+\lambda_t^{ik})(1+\lambda_t^{kj}), \qquad orall i,j,k.$$

The financial interpretation is obvious : an "intelligent" investor will first try all possible chains of transfers from the *i*th position to the position *j* and act accordingly to a cheapest one, i.e. as the above property is fulfilled.

Hedging theorems

Basic model Interpretation of K₀

The linear space $K_t^0 := K_t \cap (-K_t)$ is composed by the positions which can be converted to zero without paying transaction costs and vice versa.

Indeed, let $x \in K_t \cap (-K_t)$. According to definition,

$$\begin{aligned} x^{i} &= \sum_{j} [(1+\lambda_{t}^{ij})a^{ij}-a^{ji}]+h^{i}, \\ -x^{i} &= \sum_{j} [(1+\lambda_{t}^{ij})\tilde{a}^{ij}-\tilde{a}^{ji}]+\tilde{h}^{i}. \end{aligned}$$

Summing up, we get that

$$\sum_{i=1}^{d} \sum_{j=1}^{d} \lambda_t^{ij} (a^{ij} + \tilde{a}^{ij}) + \sum_{i=1}^{d} (h^i + \tilde{h}^i) = 0.$$

It follows that all summands here are zero and this leads to the claimed property.

Yuri Kabanov

Hedging theorems

Basic model Interpretation of K₀

The linear space $K_t^0 := K_t \cap (-K_t)$ is composed by the positions which can be converted to zero without paying transaction costs and vice versa.

Indeed, let $x \in K_t \cap (-K_t)$. According to definition,

$$\begin{aligned} x^{i} &= \sum_{j} [(1+\lambda_{t}^{ij})a^{ij}-a^{ji}]+h^{i}, \\ -x^{i} &= \sum_{j} [(1+\lambda_{t}^{ij})\tilde{a}^{ij}-\tilde{a}^{ji}]+\tilde{h}^{i}. \end{aligned}$$

Summing up, we get that

$$\sum_{i=1}^d \sum_{j=1}^d \lambda_t^{ij} (a^{ij} + \tilde{a}^{ij}) + \sum_{i=1}^d (h^i + \tilde{h}^i) = 0.$$

It follows that all summands here are zero and this leads to the claimed property.

Yuri Kabanov

Hedging theorems

Modelling in physical units domain

- The model is given by the adapted matrix-valued bid-ask process $\Pi = (\pi^{ij})$ where $\pi^{ij} > 0$ represents a number of units of the *i*th asset needed to get in exchange one unit of the *j*th asset (of course, $\pi^{ii} = 1$). In the literature it is usually assumed that $\pi^{ij} \leq \pi^{ik} \pi^{kj}$ (i.e. the investor is "intelligent").
- The solvency region, i.e. the set of $y \in \mathbf{R}^d$ for which one can find $c \in \mathbf{M}^d_+$ such that

$$y^i \ge \sum_j [\pi^{ij}_t(\omega)c^{ij} - c^{ji}], \quad i \le d,$$

is cone $\{\pi^{ij}e_i - e_j, e_i, 1 \le i, j \le d\}$, i.e. coincides with \widehat{K}_t .

• Is this model more general? No. Take any $S_t \in L^0(\widehat{K}_t^* \setminus \{0\}, \mathcal{F}_t)$ and put $\lambda_t^{ij} := \pi_t^{ij} S_t^i / S_t^j - 1$. Then $S_t^i > 0$ and $\lambda_t^{ij} \ge 0$ because $S_t e_i > 0$, $S_t(\pi_t^{ij} e_i - e_j) \ge 0$...

3

Hedging theorems

Modelling in physical units domain

- The model is given by the adapted matrix-valued bid-ask process $\Pi = (\pi^{ij})$ where $\pi^{ij} > 0$ represents a number of units of the *i*th asset needed to get in exchange one unit of the *j*th asset (of course, $\pi^{ii} = 1$). In the literature it is usually assumed that $\pi^{ij} \leq \pi^{ik} \pi^{kj}$ (i.e. the investor is "intelligent").
- The solvency region, i.e. the set of $y \in \mathbf{R}^d$ for which one can find $c \in \mathbf{M}^d_+$ such that

$$y^i \ge \sum_j [\pi^{ij}_t(\omega)c^{ij} - c^{ji}], \quad i \le d,$$

is cone $\{\pi^{ij}e_i - e_j, e_i, 1 \le i, j \le d\}$, i.e. coincides with \widehat{K}_t .

• Is this model more general? No. Take any $S_t \in L^0(\widehat{K}_t^* \setminus \{0\}, \mathcal{F}_t)$ and put $\lambda_t^{ij} := \pi_t^{ij} S_t^i / S_t^j - 1$. Then $S_t^i > 0$ and $\lambda_t^{ij} \ge 0$ because $S_t e_i > 0$, $S_t(\pi_t^{ij} e_i - e_j) \ge 0$...

Hedging theorems

Modelling in physical units domain

- The model is given by the adapted matrix-valued bid-ask process $\Pi = (\pi^{ij})$ where $\pi^{ij} > 0$ represents a number of units of the *i*th asset needed to get in exchange one unit of the *j*th asset (of course, $\pi^{ii} = 1$). In the literature it is usually assumed that $\pi^{ij} \leq \pi^{ik} \pi^{kj}$ (i.e. the investor is "intelligent").
- The solvency region, i.e. the set of $y \in \mathbf{R}^d$ for which one can find $c \in \mathbf{M}^d_+$ such that

$$y^i \geq \sum_j [\pi^{ij}_t(\omega)c^{ij} - c^{ji}], \quad i \leq d,$$

is cone $\{\pi^{ij}e_i - e_j, e_i, 1 \le i, j \le d\}$, i.e. coincides with \widehat{K}_t .

• Is this model more general? No. Take any $S_t \in L^0(\widehat{K}_t^* \setminus \{0\}, \mathcal{F}_t)$ and put $\lambda_t^{ij} := \pi_t^{ij} S_t^i / S_t^j - 1$. Then $S_t^i > 0$ and $\lambda_t^{ij} \ge 0$ because $S_t e_i > 0$, $S_t(\pi_t^{ij} e_i - e_j) \ge 0$...

Arbitrage theory for financial markets with transaction costs

Hedging theorems

Model of stock market

• All transactions pass through the money : so the orders are either "buy a stock", or "sell a stock", i.e. they are the vectors $(\Delta L_t^2, ..., \Delta L_t^d)$ and $(\Delta M_t^2, ..., \Delta M_t^d)$.

• The corresponding *d*-asset dynamics is given by the system

$$\begin{split} \Delta V_t^1 &= \sum_{j \ge 2} (1 - \mu_t^j) \Delta M_t^j - \sum_{j \ge 2} (1 + \lambda_t^j) \Delta L_t^j, \\ \Delta V_t^i &= V_{t-1}^i \Delta Y_t^i + \Delta L_t^i - \Delta M_t^i, \quad i = 2, ..., d. \\ \bullet \ M_t &= \operatorname{cone} \{ -(1 + \lambda_t^j) \mathbf{e}_1 + \mathbf{e}_j, \ (1 - \mu_t^j) \mathbf{e}_1 - \mathbf{e}_j, \ j = 2, ..., d \}, \\ \mathcal{K}_t &= \Big\{ x \in \mathbb{R}^d : \ x^1 + \sum_{j \ge 2}^d [(1 - \mu_t^j) x^j I_{\{x^j > 0\}} - (1 + \lambda_t^j) x^j I_{\{x^j < 0\}}] \ge 0 \Big\}. \end{split}$$

• The model can be imbedded into the model of currency market by choosing sufficiently large transaction costs coefficients for the direct exchange of stocks.

Arbitrage theory for financial markets with transaction costs

Hedging theorems

Model of stock market

- All transactions pass through the money : so the orders are either "buy a stock", or "sell a stock", i.e. they are the vectors $(\Delta L_t^2, ..., \Delta L_t^d)$ and $(\Delta M_t^2, ..., \Delta M_t^d)$.
- The corresponding *d*-asset dynamics is given by the system

$$\begin{split} \Delta V_t^1 &= \sum_{j \ge 2} (1 - \mu_t^j) \Delta M_t^j - \sum_{j \ge 2} (1 + \lambda_t^j) \Delta L_t^j, \\ \Delta V_t^i &= V_{t-1}^i \Delta Y_t^i + \Delta L_t^i - \Delta M_t^i, \quad i = 2, ..., d. \\ \bullet \ M_t &= \operatorname{cone} \{ -(1 + \lambda_t^j) e_1 + e_j, \ (1 - \mu_t^j) e_1 - e_j, \ j = 2, ..., d \}, \\ K_t &= \Big\{ x \in \mathbb{R}^d : \ x^1 + \sum_{j \ge 2}^d [(1 - \mu_t^j) x^j I_{\{x^j > 0\}} - (1 + \lambda_t^j) x^j I_{\{x^j < 0\}}] \ge 0 \Big\}. \end{split}$$

• The model can be imbedded into the model of currency market by choosing sufficiently large transaction costs coefficients for the direct exchange of stocks.

Arbitrage theory for financial markets with transaction costs

Hedging theorems

Model of stock market

- All transactions pass through the money : so the orders are either "buy a stock", or "sell a stock", i.e. they are the vectors $(\Delta L_t^2, ..., \Delta L_t^d)$ and $(\Delta M_t^2, ..., \Delta M_t^d)$.
- The corresponding *d*-asset dynamics is given by the system

$$\begin{split} \Delta V_t^1 &= \sum_{j \ge 2} (1 - \mu_t^j) \Delta M_t^j - \sum_{j \ge 2} (1 + \lambda_t^j) \Delta L_t^j, \\ \Delta V_t^i &= V_{t-1}^i \Delta Y_t^i + \Delta L_t^i - \Delta M_t^i, \quad i = 2, ..., d. \\ \bullet \ M_t &= \operatorname{cone} \{ -(1 + \lambda_t^j) e_1 + e_j, \ (1 - \mu_t^j) e_1 - e_j, \ j = 2, ..., d \}, \\ K_t &= \Big\{ x \in \mathbb{R}^d : \ x^1 + \sum_{j \ge 2}^d [(1 - \mu_t^j) x^j I_{\{x^j > 0\}} - (1 + \lambda_t^j) x^j I_{\{x^j < 0\}}] \ge 0 \Big\}. \end{split}$$

 The model can be imbedded into the model of currency market by choosing sufficiently large transaction costs coefficients for the direct exchange of stocks.

Arbitrage theory for financial markets with transaction costs

Hedging theorems

Model of stock market

- All transactions pass through the money : so the orders are either "buy a stock", or "sell a stock", i.e. they are the vectors $(\Delta L_t^2, ..., \Delta L_t^d)$ and $(\Delta M_t^2, ..., \Delta M_t^d)$.
- The corresponding *d*-asset dynamics is given by the system

$$\begin{split} \Delta V_t^1 &= \sum_{j \ge 2} (1 - \mu_t^j) \Delta M_t^j - \sum_{j \ge 2} (1 + \lambda_t^j) \Delta L_t^j, \\ \Delta V_t^i &= V_{t-1}^i \Delta Y_t^i + \Delta L_t^i - \Delta M_t^i, \quad i = 2, ..., d. \\ \bullet \ M_t &= \operatorname{cone} \{ -(1 + \lambda_t^j) e_1 + e_j, \ (1 - \mu_t^j) e_1 - e_j, \ j = 2, ..., d \}, \\ K_t &= \Big\{ x \in \mathbb{R}^d : \ x^1 + \sum_{j \ge 2}^d [(1 - \mu_t^j) x^j I_{\{x^j > 0\}} - (1 + \lambda_t^j) x^j I_{\{x^j < 0\}}] \ge 0 \Big\}. \end{split}$$

• The model can be imbedded into the model of currency market by choosing sufficiently large transaction costs coefficients for the direct exchange of stocks.
Arbitrage theory for financial markets with transaction costs

Hedging theorems

Model with a price spread

- This is a model of stock market, i.e. transactions are only buying or selling shares according to two price processes \overline{S} and \underline{S} where $\overline{S}^j \geq \underline{S}^j > 0$, j = 2, ..., d. It can be given in terms of a single price (quote) process and transaction cost coefficients. E.g., one can put $S_t := (\overline{S}_t + \underline{S}_t)$ and define $\lambda_t^j := \overline{S}_t^j / S_t^j - 1$, $\mu_t^j := 1 - \underline{S}_t^j / S_t^j$. The absence of arbitrage opportunities means that $R_T \cap L_+^0 = \{0\}$ where the "results" here are terminal values of the money component of the portfolio processes (in our terminology this will correspond to the NA^w -property).
- Historically, the first criterion of absence of arbitrage was obtained for such a model. The Jouini–Kallal theorem claims (under some conditions) that there is no-arbitrage if and only if there exist a probability measure $\tilde{P} \sim P$ and an \mathbb{R}^{d-1} -valued \tilde{P} -martingale \tilde{S} such that $\underline{S}_t^i \leq \tilde{S}_t^i \leq \bar{S}_t^i$, i = 2, ..., d. If $\underline{S} = \bar{S}$, the assertion coincides with the DMW theorem $\mathbb{R} \times \mathbb{R} \times \mathbb{R}$

Arbitrage theory for financial markets with transaction costs

Hedging theorems

Model with a price spread

- This is a model of stock market, i.e. transactions are only buying or selling shares according to two price processes \overline{S} and \underline{S} where $\overline{S}^j \geq \underline{S}^j > 0$, j = 2, ..., d. It can be given in terms of a single price (quote) process and transaction cost coefficients. E.g., one can put $S_t := (\overline{S}_t + \underline{S}_t)$ and define $\lambda_t^j := \overline{S}_t^j / S_t^j - 1$, $\mu_t^j := 1 - \underline{S}_t^j / S_t^j$. The absence of arbitrage opportunities means that $R_T \cap L_+^0 = \{0\}$ where the "results" here are terminal values of the money component of the portfolio processes (in our terminology this will correspond to the NA^w -property).
- Historically, the first criterion of absence of arbitrage was obtained for such a model. The Jouini–Kallal theorem claims (under some conditions) that there is no-arbitrage if and only if there exist a probability measure $\tilde{P} \sim P$ and an \mathbb{R}^{d-1} -valued \tilde{P} -martingale \tilde{S} such that $\underline{S}_t^i \leq \tilde{S}_t^i \leq \bar{S}_t^i$, i = 2, ..., d. If $\underline{S} = \bar{S}$, the assertion coincides with the DMW theorem.

Hedging theorems

Transactions charging the bank account

• The dynamics is given as follows :

$$\begin{split} \Delta V_t^1 &= \sum_{j\geq 2} (\Delta L_t^{j1} - \Delta L_t^{1j}) - \sum_{i,j} \gamma_t^{ij} \Delta L_t^{ij}, \\ \Delta V_t^i &= \widehat{V}_{t-1}^i \Delta S_t^i + \sum_j \Delta L_t^{ji} - \sum_j \Delta L_t^{ij}, \quad i = 2, ..., d, \end{split}$$

where $\gamma_t^{ij} \in [0, 1[, \gamma^{ii} = 0.$

• For this model, linear and with polyhedral cone constraints on the controls, the solvency cone is again a polyhedral one :

$$K_t = \operatorname{cone} \{ \gamma^{ij} e_1 + e_i, \ (1 + \gamma^{1i}) e_1 - e_i, \ (-1 + \gamma^{j1}) e_1 + e_j, \ e_i, \ i, j \le d \}.$$

Hedging theorems

Transactions charging the bank account

• The dynamics is given as follows :

$$\begin{split} \Delta V_t^1 &= \sum_{j\geq 2} (\Delta L_t^{j1} - \Delta L_t^{1j}) - \sum_{i,j} \gamma_t^{ij} \Delta L_t^{ij}, \\ \Delta V_t^i &= \widehat{V}_{t-1}^i \Delta S_t^i + \sum_j \Delta L_t^{ji} - \sum_j \Delta L_t^{ij}, \quad i = 2, ..., d, \end{split}$$

where $\gamma_t^{ij} \in [0, 1[, \gamma^{ii} = 0.$

• For this model, linear and with polyhedral cone constraints on the controls, the solvency cone is again a polyhedral one :

$$\mathcal{K}_{t} = \operatorname{cone} \{ \gamma^{ij} e_{1} + e_{i}, \ (1 + \gamma^{1i}) e_{1} - e_{i}, \ (-1 + \gamma^{j1}) e_{1} + e_{j}, \ e_{i}, \ i, j \leq d \}.$$

< 日 > < 同 > < 三 > < 三 >

Arbitrage theory for financial markets with transaction costs

Hedging theorems

Outline

Models with transaction costs

- Basic model
- Variants

2 Arbitrage theory for financial markets with transaction costs

- No-arbitrage criteria for finite $\boldsymbol{\Omega}$
- No-arbitrage criteria for arbitrary $\boldsymbol{\Omega}$

3 Hedging theorems

Arbitrage theory for financial markets with transaction costs

Hedging theorems

Principal problems

Problem 1. What are analogs of no-arbitrage criteria?

Problem 2. What are analogs of hedging theorem?

Hedging theorems

No-arbitrage problem : definitions

- We consider the basic model in the case where Ω is finite and use the Stiemke theorem to get an idea.
- Let R_T be the set of all V_T which are the terminal variables of the processes

$$\Delta V_t^i = \widehat{V}_{t-1}^i \Delta S_t^i + \Delta B_t^i, \quad V_{-1}^i = 0,$$

 $A_{\mathcal{T}} := R_{\mathcal{T}} - L^0(K_{\mathcal{T}}, \mathcal{F}_{\mathcal{T}}) = R_{\mathcal{T}} - L^0(\mathbb{R}_+, \mathcal{F}_{\mathcal{T}}).$

- We denote M^T₀(K^{*} \ {0}) the set of martingales
 Z = (Z_t)_{t≤T} such that Z_t ∈ L⁰(K^{*}_t \ {0}) for all t. Elements of M^T₀(K^{*} \ {0}) are called consistent price systems.
- We define the strict arbitrage opportunity as a strategy B such that the terminal value V_T of the portfolio process V = V^B with V₋₁ = 0 belongs to L⁰(ℝ^d₊) but is not equal to zero.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Hedging theorems

No-arbitrage problem : definitions

- We consider the basic model in the case where Ω is finite and use the Stiemke theorem to get an idea.
- Let R_T be the set of all V_T which are the terminal variables of the processes

$$\Delta V_t^i = \widehat{V}_{t-1}^i \Delta S_t^i + \Delta B_t^i, \quad V_{-1}^i = 0,$$

$$A_T := R_T - L^0(K_T, \mathcal{F}_T) = R_T - L^0(\mathbb{R}_+, \mathcal{F}_T).$$

- We denote M₀^T(K̂* \ {0}) the set of martingales
 Z = (Z_t)_{t≤T} such that Z_t ∈ L⁰(K̂^{*}_t \ {0}) for all t. Elements of M₀^T(K̂* \ {0}) are called consistent price systems.
- We define the strict arbitrage opportunity as a strategy B such that the terminal value V_T of the portfolio process V = V^B with V₋₁ = 0 belongs to L⁰(ℝ^d₊) but is not equal to zero.

・ロ・ ・ 四・ ・ 回・ ・ 日・ ・

Hedging theorems

No-arbitrage problem : definitions

- We consider the basic model in the case where Ω is finite and use the Stiemke theorem to get an idea.
- Let R_T be the set of all V_T which are the terminal variables of the processes

$$\Delta V_t^i = \widehat{V}_{t-1}^i \Delta S_t^i + \Delta B_t^i, \quad V_{-1}^i = 0,$$

$$A_{\mathcal{T}} := R_{\mathcal{T}} - L^0(K_{\mathcal{T}}, \mathcal{F}_{\mathcal{T}}) = R_{\mathcal{T}} - L^0(\mathbb{R}_+, \mathcal{F}_{\mathcal{T}}).$$

- We denote M₀^T(K̂* \ {0}) the set of martingales
 Z = (Z_t)_{t≤T} such that Z_t ∈ L⁰(K̂_t* \ {0}) for all t. Elements of M₀^T(K̂* \ {0}) are called consistent price systems.
- We define the strict arbitrage opportunity as a strategy B such that the terminal value V_T of the portfolio process V = V^B with V₋₁ = 0 belongs to L⁰(ℝ^d₊) but is not equal to zero.

イロト イヨト イヨト 一座

No-arbitrage problem : definitions

- We consider the basic model in the case where Ω is finite and use the Stiemke theorem to get an idea.
- Let R_T be the set of all V_T which are the terminal variables of the processes

$$\Delta V_t^i = \widehat{V}_{t-1}^i \Delta S_t^i + \Delta B_t^i, \quad V_{-1}^i = 0,$$

$$A_{\mathcal{T}} := R_{\mathcal{T}} - L^0(K_{\mathcal{T}}, \mathcal{F}_{\mathcal{T}}) = R_{\mathcal{T}} - L^0(\mathbb{R}_+, \mathcal{F}_{\mathcal{T}}).$$

- We denote M₀^T(K̂* \ {0}) the set of martingales
 Z = (Z_t)_{t≤T} such that Z_t ∈ L⁰(K̂_t* \ {0}) for all t. Elements of M₀^T(K̂* \ {0}) are called consistent price systems.
- We define the strict arbitrage opportunity as a strategy B such that the terminal value V_T of the portfolio process V = V^B with V₋₁ = 0 belongs to L⁰(ℝ^d₊) but is not equal to zero.

・ロト ・ 同ト ・ ヨト ・ ヨト

Hedging theorems

No-arbitrage problem : NA^{w} for finite Ω

- Other ("obviously") equivalent conditions :
- $A_T \cap L^0(\mathbb{R}^d_+) = \{0\}.$
- $R_T \cap L^0(K_T, \mathcal{F}_T) \subseteq L^0(\partial K_T, \mathcal{F}_T) \dots$

Theorem (Kabanov–Stricker, 1999)

Hedging theorems

No-arbitrage problem : NA^{w} for finite Ω

- Other ("obviously") equivalent conditions :
- $A_T \cap L^0(\mathbb{R}^d_+) = \{0\}.$
- $R_T \cap L^0(K_T, \mathcal{F}_T) \subseteq L^0(\partial K_T, \mathcal{F}_T) \dots$

Theorem (Kabanov–Stricker, 1999)

Hedging theorems

No-arbitrage problem : NA^{w} for finite Ω

- Other ("obviously") equivalent conditions :

•
$$A_T \cap L^0(\mathbb{R}^d_+) = \{0\}.$$

• $R_T \cap L^0(K_T, \mathcal{F}_T) \subseteq L^0(\partial K_T, \mathcal{F}_T) \dots$

Theorem (Kabanov–Stricker, 1999)

Hedging theorems

No-arbitrage problem : NA^{w} for finite Ω

- Other ("obviously") equivalent conditions :
- $A_T \cap L^0(\mathbb{R}^d_+) = \{0\}.$
- $R_T \cap L^0(K_T, \mathcal{F}_T) \subseteq L^0(\partial K_T, \mathcal{F}_T) \dots$

Theorem (Kabanov–Stricker, 1999)

Hedging theorems

No-arbitrage problem : NA^{w} for finite Ω

- Other ("obviously") equivalent conditions :

•
$$A_T \cap L^0(\mathbb{R}^d_+) = \{0\}.$$

• $R_T \cap L^0(K_T, \mathcal{F}_T) \subseteq L^0(\partial K_T, \mathcal{F}_T) \dots$

Theorem (Kabanov–Stricker, 1999)

Arbitrage theory for financial markets with transaction costs OOO OOO OOO OOO OOO

Hedging theorems

Proof of the NA^{w} -criterion for finite Ω

We apply (in the finite-dimensional space $L^0(\mathbb{R}^d, \mathcal{F}_T)$) :

Lemma (Stiemke, modern version)

Let K and R be closed cones in \mathbb{R}^n and K be proper. Then

 $R \cap K = \{0\} \quad \Leftrightarrow \quad (-R^*) \cap \operatorname{int} K^* \neq \emptyset.$

Take R = R
_T and K = L⁰(R^d₊, F_T). These sets are polyhedral cones. By the lemma R
_T ∩ L⁰(R^d₊) = {0} if and only if there exists η in the interior of L⁰(R^d₊, F_T) which belongs to -R
_T^{*}. This means that the components of η are strictly positive and Eξη ≤ 0 for all ξ ∈ R
_T.

• It remains to note that the martingale $Z_t = E(\eta | \mathcal{F}_t)$ belongs to $\mathcal{M}_0^T(\widehat{K}^* \setminus \{0\})$. For $\zeta \in L^0(\widehat{K}_t, \mathcal{F}_t) \subseteq -\widehat{R}_T + L^0(\mathbb{R}^d_+)$ we have that $EZ_t\zeta = E\eta\zeta \ge 0$. This means that $Z_t \in L^0(\widehat{K}^*_t, \mathcal{F}_t)$

Hedging theorems

Proof of the NA^{w} -criterion for finite Ω

We apply (in the finite-dimensional space $L^0(\mathbb{R}^d, \mathcal{F}_T)$) :

Lemma (Stiemke, modern version)

Let K and R be closed cones in \mathbb{R}^n and K be proper. Then

 $R \cap K = \{0\} \quad \Leftrightarrow \quad (-R^*) \cap \operatorname{int} K^* \neq \emptyset.$

Take R = R_T and K = L⁰(ℝ^d₊, F_T). These sets are polyhedral cones. By the lemma R_T ∩ L⁰(ℝ^d₊) = {0} if and only if there exists η in the interior of L⁰(ℝ^d₊, F_T) which belongs to -R^{*}_T. This means that the components of η are strictly positive and Eξη ≤ 0 for all ξ ∈ R_T.

• It remains to note that the martingale $Z_t = E(\eta | \mathcal{F}_t)$ belongs to $\mathcal{M}_0^T(\widehat{K}^* \setminus \{0\})$. For $\zeta \in L^0(\widehat{K}_t, \mathcal{F}_t) \subseteq -\widehat{R}_T + L^0(\mathbb{R}^d_+)$ we have that $EZ_t\zeta = E\eta\zeta \ge 0$. This means that $Z_t \in L^0(\widehat{K}^*_t, \mathcal{F}_t)$

Hedging theorems

Proof of the NA^{w} -criterion for finite Ω

We apply (in the finite-dimensional space $L^0(\mathbb{R}^d, \mathcal{F}_T)$) :

Lemma (Stiemke, modern version)

Let K and R be closed cones in \mathbb{R}^n and K be proper. Then

 $R \cap K = \{0\} \quad \Leftrightarrow \quad (-R^*) \cap \operatorname{int} K^* \neq \emptyset.$

Take R = R_T and K = L⁰(ℝ^d₊, F_T). These sets are polyhedral cones. By the lemma R_T ∩ L⁰(ℝ^d₊) = {0} if and only if there exists η in the interior of L⁰(ℝ^d₊, F_T) which belongs to -R^{*}_T. This means that the components of η are strictly positive and Eξη ≤ 0 for all ξ ∈ R_T.

It remains to note that the martingale Z_t = E(η|F_t) belongs to M₀^T(K̂^{*} \ {0}). For ζ ∈ L⁰(K̂_t, F_t) ⊆ -R̂_T + L⁰(ℝ^d₊) we have that EZ_tζ = Eηζ ≥ 0. This means that Z_t ∈ L⁰(K̂_t^{*}, F_t).

Hedging theorems

Relation with the Harrison–Pliska theorem

• Suppose that $\Lambda = 0$ and the first asset is the numéraire, i.e. $\Delta S_t^1 = 0$. Let $\bar{V}_t = \sum_{i \leq d} V_t^i$. It follows that

$$\Delta \bar{V}_t = \sum_{i=1}^d \widehat{V}_{t-1}^i \Delta S_t^i = H_t \Delta S_t,$$

where $H_t \in L^0(\mathbb{R}^d, \mathcal{F}_{t-1})$. There is a linear relations for the components \widehat{V}_{t-1}^i but it is of no importance : $\Delta S_t^1 = 0$. The set of \overline{V}_T is exactly R_T of the model of frictionless market and the classical *NA*-condition $R_T \cap L^0_+ = \{0\}$ is equivalent to the *NA*^w-condition.

• If $\Lambda = 0$, then the cone $\widehat{K}_t^* = \mathbb{R}_+ S_t$. The property $Z_t \in L^0(\widehat{K}_{t,2}^*, \mathcal{F}_t)$ means that $Z_t = \rho_t S_t$ for some $\rho_t \ge 0$. Thus, $Z \in \mathcal{M}_0^T(\widehat{K}^* \setminus \{0\})$ if and only if there is a martingale $\rho > 0$ such that ρS is a martingale; we may assume that $E\rho_t = 1$.

Arbitrage theory for financial markets with transaction costs OOOOOOOOOOOO

Hedging theorems

Relation with the Harrison–Pliska theorem

• Suppose that $\Lambda = 0$ and the first asset is the numéraire, i.e. $\Delta S_t^1 = 0$. Let $\bar{V}_t = \sum_{i \leq d} V_t^i$. It follows that

$$\Delta \bar{V}_t = \sum_{i=1}^d \widehat{V}_{t-1}^i \Delta S_t^i = H_t \Delta S_t,$$

where $H_t \in L^0(\mathbb{R}^d, \mathcal{F}_{t-1})$. There is a linear relations for the components \widehat{V}_{t-1}^i but it is of no importance : $\Delta S_t^1 = 0$. The set of \overline{V}_T is exactly R_T of the model of frictionless market and the classical *NA*-condition $R_T \cap L^0_+ = \{0\}$ is equivalent to the *NA*^w-condition.

• If $\Lambda = 0$, then the cone $\widehat{K}_t^* = \mathbb{R}_+ S_t$. The property $Z_t \in L^0(\widehat{K}_t^*, \mathcal{F}_t)$ means that $Z_t = \rho_t S_t$ for some $\rho_t \ge 0$. Thus, $Z \in \mathcal{M}_0^T(\widehat{K}^* \setminus \{0\})$ if and only if there is a martingale $\rho > 0$ such that ρS is a martingale; we may assume that $E\rho_t = 1$.

No-arbitrage problem : NA_T^s for finite Ω

• A strategy *B* is a *weak arbitrage opportunity* at time $t \leq T$ if $V_t^B \in K_t$ but $P(V_t^B \notin K_t^0) > 0$ where $K_t^0 := K_t \cap (-K_t)$. The absence of such strategies at time *t* is referred to as the *strict no arbitrage* property NA_t^s :

$$R_t \cap L^0(K_t, \mathcal{F}_t) \subseteq L^0(K_t^0, \mathcal{F}_t),$$

or, equivalently, in the realm of physical values :

 $\widehat{R}_t \cap L^0(\widehat{K}_t, \mathcal{F}_t) \subseteq L^0(\widehat{K}_t^0, \mathcal{F}_t).$

Theorem (Kabanov–Stricker, 1999)

For finite Ω the following conditions are equivalent : (a) $R_T \cap L^0(K_T, \mathcal{F}_T) \subseteq L^0(K_T^0, \mathcal{F}_T)$ (i.e. NA_T^s); (b) $A_T \cap L^0(K_T, \mathcal{F}_T) \subseteq L^0(K_T^0, \mathcal{F}_T)$; (c) there is $Z^{(T)} \in \mathcal{M}_0^T(\widehat{K}^* \setminus \{0\})$ with $Z_T^{(T)} \in L^1(\operatorname{ri} \widehat{K}_T^*, \mathcal{I})$

No-arbitrage problem : NA_T^s for finite Ω

• A strategy *B* is a *weak arbitrage opportunity* at time $t \leq T$ if $V_t^B \in K_t$ but $P(V_t^B \notin K_t^0) > 0$ where $K_t^0 := K_t \cap (-K_t)$. The absence of such strategies at time *t* is referred to as the *strict no arbitrage* property NA_t^s :

$$R_t \cap L^0(K_t, \mathcal{F}_t) \subseteq L^0(K_t^0, \mathcal{F}_t),$$

or, equivalently, in the realm of physical values :

 $\widehat{R}_t \cap L^0(\widehat{K}_t, \mathcal{F}_t) \subseteq L^0(\widehat{K}_t^0, \mathcal{F}_t).$

Theorem (Kabanov–Stricker, 1999)

For finite Ω the following conditions are equivalent : (a) $R_T \cap L^0(K_T, \mathcal{F}_T) \subseteq L^0(K_T^0, \mathcal{F}_T)$ (i.e. NA_T^s); (b) $A_T \cap L^0(K_T, \mathcal{F}_T) \subseteq L^0(K_T^0, \mathcal{F}_T)$; (c) there is $Z^{(T)} \in \mathcal{M}_0^T(\widehat{K}^* \setminus \{0\})$ with $Z_T^{(T)} \in L^1(\operatorname{ri} \widehat{K}_T^*, \mathcal{I})$

No-arbitrage problem : NA_T^s for finite Ω

• A strategy *B* is a *weak arbitrage opportunity* at time $t \leq T$ if $V_t^B \in K_t$ but $P(V_t^B \notin K_t^0) > 0$ where $K_t^0 := K_t \cap (-K_t)$. The absence of such strategies at time *t* is referred to as the *strict no arbitrage* property NA_t^s :

$$R_t \cap L^0(K_t, \mathcal{F}_t) \subseteq L^0(K_t^0, \mathcal{F}_t),$$

or, equivalently, in the realm of physical values :

$$\widehat{R}_t \cap L^0(\widehat{K}_t, \mathcal{F}_t) \subseteq L^0(\widehat{K}_t^0, \mathcal{F}_t).$$

Theorem (Kabanov–Stricker, 1999)

For finite Ω the following conditions are equivalent : (a) $R_T \cap L^0(K_T, \mathcal{F}_T) \subseteq L^0(K_T^0, \mathcal{F}_T)$ (i.e. NA_T^s); (b) $A_T \cap L^0(K_T, \mathcal{F}_T) \subseteq L^0(K_T^0, \mathcal{F}_T)$; (c) there is $Z^{(T)} \in \mathcal{M}_0^T(\widehat{K}^* \setminus \{0\})$ with $Z_T^{(T)} \in L^1(\operatorname{ri} \widehat{K}_T^*, \mathcal{F}_T)$.

Hedging theorems

No-arbitrage problem : NA^s for finite Ω

- The proof is based on a generalization of the Stiemke lemma.
- Note that NA^s_T does not imply NA^s_t for t < T. In other words, a weak arbitrage opportunities may disappear next day.
- We use the notation NA^s when NA^s_t holds for every t ≤ T and formulate the following corollary :

Theorem (Kabanov–Stricker, 1999)

For finite Ω the following conditions are equivalent : (a) $R_t \cap L^0(\mathcal{K}_t, \mathcal{F}_t) \subseteq L^0(\mathcal{K}_t^0, \mathcal{F}_t)$ for all t (i.e. NA^s holds); (b) $A_t \cap L^0(\mathcal{K}_t, \mathcal{F}_t) \subseteq L^0(\mathcal{K}_t^0, \mathcal{F}_t)$ for all t; (c) for each $t \leq T$ there exists a process $Z^{(t)} \in \mathcal{M}_0^t(\widehat{\mathcal{K}}^* \setminus \{0\})$ with $Z_t^{(t)} \in L^1(\operatorname{ri} \widehat{\mathcal{K}}_t^*, \mathcal{F}_t)$.

No-arbitrage problem : NA^s for finite Ω

- The proof is based on a generalization of the Stiemke lemma.
- Note that NA^s_T does not imply NA^s_t for t < T. In other words, a weak arbitrage opportunities may disappear next day.
- We use the notation NA^s when NA^s_t holds for every t ≤ T and formulate the following corollary :

Theorem (Kabanov–Stricker, 1999)

For finite Ω the following conditions are equivalent : (a) $R_t \cap L^0(K_t, \mathcal{F}_t) \subseteq L^0(K_t^0, \mathcal{F}_t)$ for all t (i.e. NA^s holds); (b) $A_t \cap L^0(K_t, \mathcal{F}_t) \subseteq L^0(K_t^0, \mathcal{F}_t)$ for all t; (c) for each $t \leq T$ there exists a process $Z^{(t)} \in \mathcal{M}_0^t(\widehat{K}^* \setminus \{0\})$ with $Z_t^{(t)} \in L^1(\operatorname{ri} \widehat{K}_t^*, \mathcal{F}_t)$.

Hedging theorems

No-arbitrage problem : NA^s for finite Ω

- The proof is based on a generalization of the Stiemke lemma.
- Note that NA^s_T does not imply NA^s_t for t < T. In other words, a weak arbitrage opportunities may disappear next day.
- We use the notation NA^s when NA^s_t holds for every t ≤ T and formulate the following corollary :

Theorem (Kabanov–Stricker, 1999)

For finite Ω the following conditions are equivalent : (a) $R_t \cap L^0(\mathcal{K}_t, \mathcal{F}_t) \subseteq L^0(\mathcal{K}_t^0, \mathcal{F}_t)$ for all t (i.e. NA^s holds); (b) $A_t \cap L^0(\mathcal{K}_t, \mathcal{F}_t) \subseteq L^0(\mathcal{K}_t^0, \mathcal{F}_t)$ for all t; (c) for each $t \leq T$ there exists a process $Z^{(t)} \in \mathcal{M}_0^t(\widehat{\mathcal{K}}^* \setminus \{0\})$ with $Z_t^{(t)} \in L^1(\operatorname{ri} \widehat{\mathcal{K}}_t^*, \mathcal{F}_t)$.

No-arbitrage problem : NA^s for finite Ω

- The proof is based on a generalization of the Stiemke lemma.
- Note that NA^s_T does not imply NA^s_t for t < T. In other words, a weak arbitrage opportunities may disappear next day.
- We use the notation NA^s when NA^s_t holds for every t ≤ T and formulate the following corollary :

Theorem (Kabanov–Stricker, 1999)

For finite Ω the following conditions are equivalent : (a) $R_t \cap L^0(K_t, \mathcal{F}_t) \subseteq L^0(K_t^0, \mathcal{F}_t)$ for all t (i.e. NA^s holds); (b) $A_t \cap L^0(K_t, \mathcal{F}_t) \subseteq L^0(K_t^0, \mathcal{F}_t)$ for all t; (c) for each $t \leq T$ there exists a process $Z^{(t)} \in \mathcal{M}_0^t(\widehat{K}^* \setminus \{0\})$ with $Z_t^{(t)} \in L^1(\operatorname{ri} \widehat{K}_t^*, \mathcal{F}_t)$.

No-arbitrage problem in an abstract setting

• By the experience with models of frictionless markets one may guess that the above no-arbitrage criteria hold true also for arbitrary Ω .

But not!

Mathematically, the problem of no-arbitrage for market with transaction costs is very intriguing.

 As we observed, the portfolio dynamics is given by a controlled linear difference equation with conic constrains on the controls. So, it is quite natural to treat the no-arbitrage criteria in the general framework of such equations. The Cauchy formula provides an explicit representation for the solution, corresponding, in financial context, to the dynamics given in the physical units domain. These considerations leads a fairly simple abstract setting.

イロト イポト イヨト イヨト

No-arbitrage problem in an abstract setting

• By the experience with models of frictionless markets one may guess that the above no-arbitrage criteria hold true also for arbitrary Ω .

But not!

Mathematically, the problem of no-arbitrage for market with transaction costs is very intriguing.

 As we observed, the portfolio dynamics is given by a controlled linear difference equation with conic constrains on the controls. So, it is quite natural to treat the no-arbitrage criteria in the general framework of such equations. The Cauchy formula provides an explicit representation for the solution, corresponding, in financial context, to the dynamics given in the physical units domain. These considerations leads a fairly simple abstract setting.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

No-arbitrage problem in an abstract setting

- We are given a sequence of set-valued mappings $G = (G_t)$ called *C*-valued process specified by a countable sequence of adapted \mathbb{R}^d -valued processes $X^n = (X_t^n)$ such that for every tand ω only a finite but non-zero number of $X_t^n(\omega)$ is different from zero and $G_t(\omega) := \operatorname{cone} \{X_t^n(\omega), n \in \mathbb{N}\}$, i.e. $G_t(\omega)$ is polyhedral. [Think that there is only a finite number of generators.]
- Let G and G be closed cones. We say that G is dominated by G̃ if G \ G⁰ ⊆ ri G̃ where G⁰ := G ∩ (-G). We extend this notion to C-valued processes. It can be formulated in terms of the dual cones : G \ G⁰ ⊆ ri G̃ ⇔ G̃* \ G̃*⁰ ⊆ ri G*. If G has an interior (as in the case of financial models where G_t = K_t ⊇ ℝ^d),

 $G \setminus G^0 \subseteq \operatorname{int} \tilde{G} \quad \Leftrightarrow \quad \tilde{G}^* \setminus \{0\} \subseteq \operatorname{ri} G^*.$

・ロト ・ 同ト ・ ヨト ・ ヨト

Arbitrage theory for financial markets with transaction costs

No-arbitrage problem in an abstract setting

- We are given a sequence of set-valued mappings G = (G_t) called C-valued process specified by a countable sequence of adapted ℝ^d-valued processes Xⁿ = (Xⁿ_t) such that for every t and ω only a finite but non-zero number of Xⁿ_t(ω) is different from zero and G_t(ω) := cone {Xⁿ_t(ω), n ∈ ℕ}, i.e. G_t(ω) is polyhedral. [Think that there is only a finite number of generators.]
- Let G and G be closed cones. We say that G is dominated by G̃ if G \ G⁰ ⊆ ri G̃ where G⁰ := G ∩ (-G). We extend this notion to C-valued processes. It can be formulated in terms of the dual cones : G \ G⁰ ⊆ ri G̃ ⇔ G̃* \ G̃*⁰ ⊆ ri G^{*}. If G has an interior (as in the case of financial models where G_t = K_t ⊇ ℝ^d),
 G \ G⁰ ⊂ int G̃ ⇔ G̃* \ {0} ⊂ ri G*.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Hedging theorems

No-arbitrage problem in an abstract setting

• Let G be a C-valued process, $A_0^t(G) := A_t(G) := -\sum_{s=0}^t L^0(G_s, \mathcal{F}_s).$

• We say that G satisfies :

- weak no-arbitrage property NA^w if

 $A_t(G) \cap L^0(G_t, \mathcal{F}_t) \subseteq L^0(\partial G_t, \mathcal{F}_t) \quad \forall t \leq T;$

- strict no-arbitrage property NA^s if

 $A_t(G) \cap L^0(G_t, \mathcal{F}_t) \subseteq L^0(G_t^0, \mathcal{F}_t) \qquad \forall t \leq T;$

- robust no-arbitrage property NA^r if G is dominated by \tilde{G} satisfying NA^w .

It is an easy exercise to check that if G dominates the constant process ℝ^d₊ then NA^w holds if and only if A_T(G) ∩ L⁰(ℝ^d₊) = {0}.

3

Hedging theorems

No-arbitrage problem in an abstract setting

- Let G be a C-valued process, $A_0^t(G) := A_t(G) := -\sum_{s=0}^t L^0(G_s, \mathcal{F}_s).$
- We say that G satisfies :
 - weak no-arbitrage property NA^w if

 $A_t(G) \cap L^0(G_t, \mathcal{F}_t) \subseteq L^0(\partial G_t, \mathcal{F}_t) \qquad \forall t \leq T;$

- strict no-arbitrage property NA^s if

 $A_t(G) \cap L^0(G_t, \mathcal{F}_t) \subseteq L^0(G_t^0, \mathcal{F}_t) \qquad \forall t \leq T;$

- robust no-arbitrage property NA^r if G is dominated by \tilde{G} satisfying NA^w .

It is an easy exercise to check that if G dominates the constant process ℝ^d₊ then NA^w holds if and only if A_T(G) ∩ L⁰(ℝ^d₊) = {0}.

3

< 口 > < 同 > < 回 > < 回 > < 回 > <

Hedging theorems

No-arbitrage problem in an abstract setting

- Let G be a C-valued process, $A_0^t(G) := A_t(G) := -\sum_{s=0}^t L^0(G_s, \mathcal{F}_s).$
- We say that G satisfies :
 - weak no-arbitrage property NA^w if

 $A_t(G) \cap L^0(G_t, \mathcal{F}_t) \subseteq L^0(\partial G_t, \mathcal{F}_t) \qquad \forall t \leq T;$

- strict no-arbitrage property NA^s if

 $A_t(G) \cap L^0(G_t, \mathcal{F}_t) \subseteq L^0(G_t^0, \mathcal{F}_t) \qquad \forall t \leq T;$

- robust no-arbitrage property NA^r if G is dominated by \tilde{G} satisfying NA^w .
- It is an easy exercise to check that if G dominates the constant process ℝ^d₊ then NA^w holds if and only if A_T(G) ∩ L⁰(ℝ^d₊) = {0}.

3

Arbitrage theory for financial markets with transaction costs $\circ\circ\circ\circ\circ\circ\circ\circ\circ\circ\circ\circ\circ\circ\circ\circ$

Hedging theorems

No-arbitrage problem in an abstract setting

Theorem (Schachermayer, 2004, KRS, 2003)

Assume that G dominates \mathbb{R}^d_+ . Then

$$NA^r \quad \Leftrightarrow \quad \mathcal{M}_0^T(\mathrm{ri}\ G^*) \neq \emptyset.$$

Theorem (Penner, 2003)

Assume that
$$L^0(G^0_s,\mathcal{F}_{s-1})\subseteq L^0(G^0_{s-1},\mathcal{F}_{s-1})$$
 $\forall\,s\leq T$. Then

$$NA^s \quad \Leftrightarrow \quad \mathcal{M}_0^T(\mathrm{ri}\ G^*) \neq \emptyset.$$

The hypothesis of the 2nd theorem holds trivially when $G^0 = \{0\}$ (the efficient friction condition in financial context). More interesting, it is fulfilled for the the market model for which the subspace $K_t^0 = K_t \cap (-K_t)$ is constant over time (e.g., the transaction costs are constant) and NA^s holds. In such a case NA^r and NA^s coincide.

Yuri Kabanov

Hedging theorems

No-arbitrage problem in an abstract setting

Theorem (Schachermayer, 2004, KRS, 2003)

Assume that G dominates \mathbb{R}^d_+ . Then

$$NA^r \quad \Leftrightarrow \quad \mathcal{M}_0^T(\mathrm{ri}\ G^*) \neq \emptyset.$$

Theorem (Penner, 2003)

Assume that
$$L^0(G^0_s,\mathcal{F}_{s-1})\subseteq L^0(G^0_{s-1},\mathcal{F}_{s-1})$$
 $orall s\leq T$. Then

$$NA^s \quad \Leftrightarrow \quad \mathcal{M}_0^T(\mathrm{ri}\ G^*) \neq \emptyset.$$

The hypothesis of the 2nd theorem holds trivially when $G^0 = \{0\}$ (the efficient friction condition in financial context). More interesting, it is fulfilled for the the market model for which the subspace $K_t^0 = K_t \cap (-K_t)$ is constant over time (e.g., the transaction costs are constant) and NA^s holds. In such a case NA^r and NA^s coincide.

Yuri Kabanov
Arbitrage theory for financial markets with transaction costs $\circ\circ\circ\circ\circ\circ\circ\circ\circ\circ\circ\circ\circ\circ\circ\circ$

Hedging theorems

No-arbitrage problem in an abstract setting

Theorem (Schachermayer, 2004, KRS, 2003)

Assume that G dominates \mathbb{R}^d_+ . Then

$$NA^r \quad \Leftrightarrow \quad \mathcal{M}_0^T(\mathrm{ri}\ G^*) \neq \emptyset.$$

Theorem (Penner, 2003)

Assume that
$$L^0(G^0_s,\mathcal{F}_{s-1})\subseteq L^0(G^0_{s-1},\mathcal{F}_{s-1})$$
 $orall s\leq T$. Then

$$NA^s \quad \Leftrightarrow \quad \mathcal{M}_0^T(\mathrm{ri}\ G^*) \neq \emptyset.$$

The hypothesis of the 2nd theorem holds trivially when $G^0 = \{0\}$ (the efficient friction condition in financial context). More interesting, it is fulfilled for the the market model for which the subspace $K_t^0 = K_t \cap (-K_t)$ is constant over time (e.g., the transaction costs are constant) and NA^s holds. In such a case NA^r and NA^s coincide.

Arbitrage theory for financial markets with transaction costs $\circ\circ\circ\circ\circ\circ\circ\circ\circ\circ\circ\circ\circ\circ\circ\circ$

Hedging theorems

No-arbitrage problem in an abstract setting Grigoriev theotem

Theorem

Let d = 2. Then the following conditions are equivalent : (A) $A_0^T \cap L^0(\mathbf{R}^d_+) = \{0\}$; (C) $\overline{A}_0^T \cap L^0(\mathbf{R}^d_+) = \{0\}$; (D) $\mathcal{M}_0^T(G^* \setminus \{0\}) \neq \emptyset$.

Example A two-asset one-period model satisfying NA^w for which A_0^1 is not closed. Let $\Omega = \mathbb{N}$, $\mathcal{F} = 2^{\Omega}$, $P(k) = 2^{-k}$, $\mathcal{F}_0 = \{\emptyset, \Omega\}$, $\mathcal{F}_1 = \mathcal{F}$. Take $G_0 = \operatorname{cone} \{2e_2 - e_1, e_1 - e_2\}$ and $G_1 = \operatorname{cone} \{2e_1 - e_2, e_2 - e_1\}$. The vector $e_1 + e_2$ belongs to both G_0^* and G_1^* and, hence, the constant process $Z = e_1 + e_2$ is an element of $\mathcal{M}_0^1(G^* \setminus \{0\})$. The random variable ξ with $\xi(k) = k(e_2 - e_1)$ does not belong to the set A_0^1 but lays in the closure of the latter.

Arbitrage theory for financial markets with transaction costs $\circ\circ\circ\circ\circ\circ\circ\circ\circ\circ\circ\circ\circ\circ\circ\circ$

Hedging theorems

No-arbitrage problem in an abstract setting Grigoriev theotem

Theorem

Let d = 2. Then the following conditions are equivalent : (A) $A_0^T \cap L^0(\mathbf{R}^d_+) = \{0\}$; (C) $\bar{A}_0^T \cap L^0(\mathbf{R}^d_+) = \{0\}$; (D) $\mathcal{M}_0^T(G^* \setminus \{0\}) \neq \emptyset$.

Example A two-asset one-period model satisfying NA^w for which A_0^1 is not closed. Let $\Omega = \mathbb{N}$, $\mathcal{F} = 2^{\Omega}$, $P(k) = 2^{-k}$, $\mathcal{F}_0 = \{\emptyset, \Omega\}$, $\mathcal{F}_1 = \mathcal{F}$. Take $G_0 = \operatorname{cone} \{2e_2 - e_1, e_1 - e_2\}$ and $G_1 = \operatorname{cone} \{2e_1 - e_2, e_2 - e_1\}$. The vector $e_1 + e_2$ belongs to both G_0^* and G_1^* and, hence, the constant process $Z = e_1 + e_2$ is an element of $\mathcal{M}_0^1(G^* \setminus \{0\})$. The random variable ξ with $\xi(k) = k(e_2 - e_1)$ does not belong to the set A_0^1 but lays in the closure of the latter.

Hedging theorems

No-arbitrage problem in an abstract setting Example : NA^{w} holds but $\mathcal{M}_{0}^{1}(G^{*} \setminus \{0\}) = \emptyset$

A three-dimensional one-period model. Take $G_0^* = \mathbb{R}_+ \eta$, $G_1^* = \operatorname{cone} \{\eta_1, \eta_2\}$ where $\eta = (3, 1, 1)$ and $\eta_1 = (4, 1, 1)$ are deterministic vectors in \mathbb{R}^3_+ while η_2 is a random one with $\eta_2(k) = (2, 1, 1 + 1/k).$ Clearly, $\mathcal{M}_0^1(G^* \setminus \{0\}) = \emptyset$: one cannot find random variables $\alpha, \beta \geq 0$ to meet the conditions $E\alpha = E\beta = 1/2$ and $E\beta\gamma = 0$, where $\gamma(k) = 1/k$, needed to ensure that $EZ_1 = Z_0$. Let $\xi_0 \in -G_0$ and $\xi_1 \in -L^0(G_1, \mathcal{F})$ be such that $\xi = \xi_0 + \xi_1$ takes values in \mathbb{R}^3_{\perp} . The latter condition implies that $\eta_1 \xi \geq 0$. Since $\eta_1\xi_1 \leq 0$, we have $\eta_1\xi_0 \geq 0$. Also $\eta_2(k)\xi_0 \geq 0$ whatever is k. But

$$\eta_1 \xi_0 + \lim_k \eta_2(k) \xi_0 = 2\eta \xi_0 \le 0$$

and, therefore, both terms in the lhs are zero. So, $\eta_1\xi_0 = 0$. As a result, $\eta_1\xi = \eta_1\xi_2 \leq 0$. With ξ taking values in \mathbb{R}^3_+ this is possible only when $\xi = 0$ and NA^w holds.

Hedging theorems

No-arbitrage problem in an abstract setting One more example

- Thus, a straightforward generalization of the Grigoriev theorem for an arbitrary *C*-valued process fails to be true already in dimension three. However, the above counterexample does not exclude that it holds in a narrower class of financial models.
- There is a rather complicated example of four-asset two-period model satisfying NA^s for which M²₀(G^{*} \ {0}) = Ø.

イロト イヨト イヨト ・ ヨト

Hedging theorems

No-arbitrage problem in an abstract setting One more example

- Thus, a straightforward generalization of the Grigoriev theorem for an arbitrary *C*-valued process fails to be true already in dimension three. However, the above counterexample does not exclude that it holds in a narrower class of financial models.
- There is a rather complicated example of four-asset two-period model satisfying NA^s for which M²₀(G^{*} \ {0}) = Ø.

Hedging theorems

Outline

Models with transaction costs

- Basic model
- Variants

2 Arbitrage theory for financial markets with transaction costs

- \bullet No-arbitrage criteria for finite Ω
- \bullet No-arbitrage criteria for arbitrary Ω

3 Hedging theorems

< □ > < □ > < □ > < □ > < □ > < □ >

Hedging theorems

Hedging theorem for European options $_{\text{Finite }\Omega}$

• The formal description of the convex set of *hedging* endowments (in values or in physical units since we use a convention that at all $S_0^i = 1$) is as follows :

$$\Gamma := \{ v \in \mathbb{R}^d : \exists B \in \mathcal{B} \text{ such that } v + V^B_T \succeq_T C \}$$

• It is easy to see that $\Gamma = \{ v \in \mathbb{R}^d : \widehat{C} \in v + \widehat{A}_0^T \}.$

• We introduce also the closed convex set

$$D := \left\{ v \in \mathbb{R}^d : \sup_{Z} E(Z_T \widehat{C} - Z_0 v) \le 0 \right\}$$

where Z runs the set $\mathcal{M}_0^T(\widehat{K}^*\setminus\{0\})$ assumed to be non-empty.

Theorem (K.–Stricker, 2001)

Let Ω be finite and $\mathcal{M}_0^T(\widehat{K}^* \setminus \{0\}) \neq \emptyset$. Then $\Gamma = D$.

Hedging theorems

Hedging theorem for European options $_{\text{Finite }\Omega}$

• The formal description of the convex set of *hedging* endowments (in values or in physical units since we use a convention that at all $S_0^i = 1$) is as follows :

 $\Gamma := \{ v \in \mathbb{R}^d : \exists B \in \mathcal{B} \text{ such that } v + V_T^B \succeq_T C \}$

• It is easy to see that $\Gamma = \{ v \in \mathbb{R}^d : \widehat{C} \in v + \widehat{A}_0^T \}.$

• We introduce also the closed convex set

$$D := \left\{ v \in \mathbb{R}^d : \sup_{Z} E(Z_T \widehat{C} - Z_0 v) \le 0 \right\}$$

where Z runs the set $\mathcal{M}_0^T(\widehat{K}^*\setminus\{0\})$ assumed to be non-empty.

Theorem (K.–Stricker, 2001)

Let Ω be finite and $\mathcal{M}_0^T(\widehat{K}^* \setminus \{0\}) \neq \emptyset$. Then $\Gamma = D$.

Hedging theorems

Hedging theorem for European options $_{\text{Finite }\Omega}$

• The formal description of the convex set of *hedging* endowments (in values or in physical units since we use a convention that at all $S_0^i = 1$) is as follows :

 $\Gamma := \{ v \in \mathbb{R}^d : \exists B \in \mathcal{B} \text{ such that } v + V_T^B \succeq_T C \}$

- It is easy to see that $\Gamma = \{ v \in \mathbb{R}^d : \widehat{C} \in v + \widehat{A}_0^T \}.$
- We introduce also the closed convex set

$$D:=\left\{v\in\mathbb{R}^d: \sup_Z E(Z_T\widehat{C}-Z_0v)\leq 0
ight\}$$

where Z runs the set $\mathcal{M}_0^T(\widehat{K}^* \setminus \{0\})$ assumed to be non-empty.

Theorem (K.–Stricker, 2001

Let Ω be finite and $\mathcal{M}_0^{\mathcal{T}}(\widehat{K}^*\setminus\{0\})
eq \emptyset.$ Then ${\sf \Gamma}=D.$

Hedging theorems

Hedging theorem for European options $_{\text{Finite }\Omega}$

• The formal description of the convex set of *hedging* endowments (in values or in physical units since we use a convention that at all $S_0^i = 1$) is as follows :

$$\mathsf{\Gamma} := \{ \mathsf{v} \in \mathbb{R}^d : \exists B \in \mathcal{B} \text{ such that } \mathsf{v} + \mathsf{V}^B_{\mathsf{T}} \succeq_{\mathsf{T}} \mathsf{C} \}$$

- It is easy to see that $\Gamma = \{ v \in \mathbb{R}^d : \ \widehat{C} \in v + \widehat{A}_0^T \}.$
- We introduce also the closed convex set

$$D:=\left\{v\in\mathbb{R}^d: \sup_Z E(Z_T\widehat{C}-Z_0v)\leq 0
ight\}$$

where Z runs the set $\mathcal{M}_0^T(\widehat{K}^* \setminus \{0\})$ assumed to be non-empty.

Theorem (K.–Stricker, 2001)

Let Ω be finite and $\mathcal{M}_0^T(\widehat{K}^* \setminus \{0\}) \neq \emptyset$. Then $\Gamma = D$.

Hedging theorems

Hedging theorem for European options Finite Ω : proof

• Let
$$\xi = \sum_{t=0}^{T} \xi_t$$
 with $\xi_t \in -L^0(\widehat{\mathcal{K}}_t, \mathcal{F}_t)$. Then
 $EZ_T \widehat{C} \leq EZ_T \left(v + \sum_{t \leq T} \xi_t \right) = Z_0 v + \sum_{t \leq T} EZ_t \xi_t \leq Z_0 v.$

if $Z \in \mathcal{M}_0^T(\widehat{K}^* \setminus \{0\})$ and the "easy" inclusion $\Gamma \subseteq D$ holds. • Take now $v \notin \Gamma$. To show that $v \notin D$ it is sufficient to find $Z \in \mathcal{M}_0^T(\widehat{K}^*)$ with $Z_0 v < EZ_T \widehat{C}$. Since $\widehat{C} \notin v + \widehat{A}_0^T$, it can be separated :

 $\sup_{\xi \in \nu + \widehat{A}_0^T} E\eta \xi < E\eta \widehat{C}$

for some *d*-dimensional random variable η . Define a martingale $Z_t := E(\eta | \mathcal{F}_t)$. It follows that $EZ_t \xi_t \ge 0$ for all $\xi_t \in L^0(\widehat{K}_t, \mathcal{F}_t)$ implying that $Z \in \mathcal{M}_0^T(\widehat{K}^*)$. Taking $\xi = v$ and using the martingale property, we get the desired inequality $EZ_0 v < E\eta \widehat{C}$.

Hedging theorems

Hedging theorem for European options Finite Ω : proof

• Let
$$\xi = \sum_{t=0}^{T} \xi_t$$
 with $\xi_t \in -L^0(\widehat{\mathcal{K}}_t, \mathcal{F}_t)$. Then
 $EZ_T \widehat{C} \leq EZ_T \left(v + \sum_{t \leq T} \xi_t \right) = Z_0 v + \sum_{t \leq T} EZ_t \xi_t \leq Z_0 v.$

if $Z \in \mathcal{M}_0^T(\widehat{K}^* \setminus \{0\})$ and the "easy" inclusion $\Gamma \subseteq D$ holds. • Take now $v \notin \Gamma$. To show that $v \notin D$ it is sufficient to find $Z \in \mathcal{M}_0^T(\widehat{K}^*)$ with $Z_0 v < EZ_T \widehat{C}$. Since $\widehat{C} \notin v + \widehat{A}_0^T$, it can be separated :

$$\sup_{\xi \in \nu + \widehat{A}_0^T} E\eta \xi < E\eta \widehat{C}$$

for some *d*-dimensional random variable η . Define a martingale $Z_t := E(\eta | \mathcal{F}_t)$. It follows that $EZ_t\xi_t \ge 0$ for all $\xi_t \in L^0(\widehat{K}_t, \mathcal{F}_t)$ implying that $Z \in \mathcal{M}_0^T(\widehat{K}^*)$. Taking $\xi = v$ and using the martingale property, we get the desired inequality $EZ_0v < E\eta\widehat{C}$.

Hedging theorems

Hedging theorem for European options Abstract setting, arbitrary $\boldsymbol{\Omega}$

$$\Gamma = \{ v \in \mathbb{R}^d : \zeta \in v + A_0^T \}.$$

• Let \mathcal{Z} be the set of martingales from $\mathcal{M}_0^T(\operatorname{ri} G^*)$ such that $E(Z_T\zeta)^- < \infty$. Put

$$D:=\left\{v\in\mathbb{R}^d:\sup_{Z\in\mathcal{Z}}E(Z_T\zeta-Z_0v)\leq 0
ight\}.$$

Theorem (K.–Rasonyi–Stricker, 2002)

Suppose that $\mathcal{M}_0^{\mathsf{T}}(\mathrm{ri}\,G^*) \neq \emptyset$. Then $\Gamma = D$.

Hedging theorems

Hedging theorem for European options Abstract setting, arbitrary $\boldsymbol{\Omega}$

$$\Gamma = \{ v \in \mathbb{R}^d : \zeta \in v + A_0^T \}.$$

• Let Z be the set of martingales from $\mathcal{M}_0^T(\operatorname{ri} G^*)$ such that $E(Z_T\zeta)^- < \infty$. Put

$$D:=\left\{v\in\mathbb{R}^d:\ \sup_{Z\in\mathcal{Z}}E(Z_T\zeta-Z_0v)\leq 0
ight\}.$$

Theorem (K.–Rasonyi–Stricker, 2002)

Suppose that $\mathcal{M}_0^{\mathsf{T}}(\mathrm{ri}\,G^*) \neq \emptyset$. Then $\Gamma = D$.

Yuri Kabanov

Hedging theorems

Hedging theorem for European options Abstract setting, arbitrary $\boldsymbol{\Omega}$

 We fix a *d*-dimensional random variable ζ (which correspond in financial context to C
, the contingent claim expressed in physical units). Define the set

$$\Gamma = \{ v \in \mathbb{R}^d : \zeta \in v + A_0^T \}.$$

• Let \mathcal{Z} be the set of martingales from $\mathcal{M}_0^T(\operatorname{ri} G^*)$ such that $E(Z_T\zeta)^- < \infty$. Put

$$D:=\left\{ v\in \mathbb{R}^d: \sup_{Z\in \mathcal{Z}} E(Z_T\zeta-Z_0v)\leq 0
ight\}.$$

Theorem (K.–Rasonyi–Stricker, 2002)

Suppose that
$$\mathcal{M}_0^T(\mathrm{ri}\,G^*) \neq \emptyset$$
. Then $\Gamma = D$.

Models with transaction costs

Hedging theorems

Hedging theorem for American options $_{\text{Finite }\Omega}$

- Abstract setting : the model is given by C-valued process $G = (G_t), t \ge T$, dominating \mathbb{R}^d_+ .
- The pay-off process $Y = (Y_t)$ is now \mathbb{R}^d -valued.
- we denote by \mathcal{X}^0 the set of $X = (X_t)$ with $X_{-1} = 0$ and $\Delta X_t \in -L^0(G_t, \mathcal{F}_t)$ for t = 0, 1, ..., T and put

 $\Gamma := \{ v \in \mathbb{R}^d : \exists X \in \mathcal{X}^0 \text{ such that } v + X_t - Y_t \in G_t \ \forall t \}.$

- We introduce the set A^T₀(.) of hedgeable American claims consisting of all processes Y which can be dominated by a portfolio process with zero initial capital.
- By analogy with the results available for frictionless market and the hedging theorems for European-type options under transaction costs one may guess that

$\Gamma = \{ v \in \mathbb{R}^d : E(Z_{\tau}Y_{\tau} - Z_0v) \leq 0 \ \forall Z \in \mathcal{M}(G^*), \ \tau \in \mathcal{T} \}.$

Surprisingly, it is not true.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Models with transaction costs

Hedging theorems

Hedging theorem for American options $_{\text{Finite }\Omega}$

- Abstract setting : the model is given by C-valued process $G = (G_t), t \ge T$, dominating \mathbb{R}^d_+ .
- The pay-off process $Y = (Y_t)$ is now \mathbb{R}^d -valued.
- we denote by \mathcal{X}^0 the set of $X = (X_t)$ with $X_{-1} = 0$ and $\Delta X_t \in -L^0(G_t, \mathcal{F}_t)$ for t = 0, 1, ..., T and put

 $\Gamma := \{ v \in \mathbb{R}^d : \exists X \in \mathcal{X}^0 \text{ such that } v + X_t - Y_t \in G_t \ \forall t \}.$

- We introduce the set A^T₀(.) of hedgeable American claims consisting of all processes Y which can be dominated by a portfolio process with zero initial capital.
- By analogy with the results available for frictionless market and the hedging theorems for European-type options under transaction costs one may guess that

$\Gamma = \{ v \in \mathbb{R}^d : E(Z_{\tau}Y_{\tau} - Z_0v) \leq 0 \ \forall Z \in \mathcal{M}(G^*), \ \tau \in \mathcal{T} \}.$

Surprisingly, it is not true.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Models with transaction costs

Hedging theorems

Hedging theorem for American options $_{\text{Finite }\Omega}$

- Abstract setting : the model is given by C-valued process $G = (G_t), t \ge T$, dominating \mathbb{R}^d_+ .
- The pay-off process $Y = (Y_t)$ is now \mathbb{R}^d -valued.
- we denote by \mathcal{X}^0 the set of $X = (X_t)$ with $X_{-1} = 0$ and $\Delta X_t \in -L^0(\mathcal{G}_t, \mathcal{F}_t)$ for t = 0, 1, ..., T and put

 $\Gamma := \{ v \in \mathbb{R}^d : \exists X \in \mathcal{X}^0 \text{ such that } v + X_t - Y_t \in G_t \; \forall \, t \}.$

- We introduce the set A^T₀(.) of hedgeable American claims consisting of all processes Y which can be dominated by a portfolio process with zero initial capital.
- By analogy with the results available for frictionless market and the hedging theorems for European-type options under transaction costs one may guess that

$\Gamma = \{ v \in \mathbb{R}^d : E(Z_{\tau}Y_{\tau} - Z_0v) \leq 0 \ \forall Z \in \mathcal{M}(G^*), \ \tau \in \mathcal{T} \}.$

Surprisingly, it is not true.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Models with transaction costs

Hedging theorems

Hedging theorem for American options $_{\text{Finite }\Omega}$

- Abstract setting : the model is given by C-valued process $G = (G_t), t \ge T$, dominating \mathbb{R}^d_+ .
- The pay-off process $Y = (Y_t)$ is now \mathbb{R}^d -valued.
- we denote by \mathcal{X}^0 the set of $X = (X_t)$ with $X_{-1} = 0$ and $\Delta X_t \in -L^0(G_t, \mathcal{F}_t)$ for t = 0, 1, ..., T and put

 $\Gamma := \{ v \in \mathbb{R}^d : \exists X \in \mathcal{X}^0 \text{ such that } v + X_t - Y_t \in G_t \; \forall \, t \}.$

- We introduce the set A^T₀(.) of hedgeable American claims consisting of all processes Y which can be dominated by a portfolio process with zero initial capital.
- By analogy with the results available for frictionless market and the hedging theorems for European-type options under transaction costs one may guess that

 $\Gamma = \{ v \in \mathbb{R}^d : E(Z_{\tau}Y_{\tau} - Z_0v) \leq 0 \ \forall Z \in \mathcal{M}(G^*), \ \tau \in \mathcal{T} \}.$

Surprisingly, it is not true.

<ロト < 四ト < 回ト < 回ト < 回ト = 三日

Models with transaction costs

Hedging theorems

Hedging theorem for American options $_{\text{Finite }\Omega}$

- Abstract setting : the model is given by C-valued process $G = (G_t), t \ge T$, dominating \mathbb{R}^d_+ .
- The pay-off process $Y = (Y_t)$ is now \mathbb{R}^d -valued.
- we denote by \mathcal{X}^0 the set of $X = (X_t)$ with $X_{-1} = 0$ and $\Delta X_t \in -L^0(G_t, \mathcal{F}_t)$ for t = 0, 1, ..., T and put

 $\Gamma := \{ v \in \mathbb{R}^d : \exists X \in \mathcal{X}^0 \text{ such that } v + X_t - Y_t \in G_t \; \forall \, t \}.$

- We introduce the set A^T₀(.) of hedgeable American claims consisting of all processes Y which can be dominated by a portfolio process with zero initial capital.
- By analogy with the results available for frictionless market and the hedging theorems for European-type options under transaction costs one may guess that

$$\Gamma = \{ v \in \mathbb{R}^d : E(Z_{\tau}Y_{\tau} - Z_0v) \leq 0 \ \forall Z \in \mathcal{M}(G^*), \ \tau \in \mathcal{T} \}.$$

Surprisingly, it is not true.

Hedging theorems

Hedging theorem for American options Finite Ω : a theorem

• To formulate the correct result we introduce the notation

$$\bar{Z}_t := \sum_{r=t}^T E(Z_r | \mathcal{F}_t).$$

• Define the set of adapted bounded processes

$$\mathcal{Z}(G^*,P) := \{Z: \ Z_t, \overline{Z}_t \in L^{\infty}(G^*_t, \mathcal{F}_t), \ t = 0, 1, ..., T\}.$$

• Clearly, all bounded martingales from $\mathcal{M}(G^*, P)$ belongs to $\mathcal{Z}(G^*, P)$.

Theorem (Bouchard–Temam, 2005)

Suppose that Ω is finite. Then

$$\Gamma = \Big\{ v \in \mathbb{R}^d : E \sum_{t} Z_t Y_{-} \overline{Z}_0 v \leq 0 \quad \forall Z \in \mathcal{Z}(G^*, P) \Big\}.$$

Financial markets with transaction costs.

Hedging theorems

Hedging theorem for American options Finite Ω : a theorem

• To formulate the correct result we introduce the notation

$$\bar{Z}_t := \sum_{r=t}^T E(Z_r | \mathcal{F}_t).$$

• Define the set of adapted bounded processes

$$\mathcal{Z}(G^*,P) := \{Z: \ Z_t, ar{Z}_t \in L^\infty(G^*_t, \mathcal{F}_t), \ t = 0, 1, ..., T\}.$$

• Clearly, all bounded martingales from $\mathcal{M}(G^*, P)$ belongs to $\mathcal{Z}(G^*, P)$.

Theorem (Bouchard–Temam, 2005)

Suppose that Ω is finite. Then

$$\Gamma = \Big\{ v \in \mathbb{R}^d : E \sum_{t} Z_t Y_{-} \overline{Z}_0 v \leq 0 \quad \forall Z \in \mathcal{Z}(G^*, P) \Big\}.$$

Financial markets with transaction costs.

.

Hedging theorems

Hedging theorem for American options Finite Ω : a theorem

• To formulate the correct result we introduce the notation

$$\bar{Z}_t := \sum_{r=t}^T E(Z_r | \mathcal{F}_t).$$

• Define the set of adapted bounded processes

$$\mathcal{Z}(G^*,P) := \{Z: \ Z_t, \overline{Z}_t \in L^\infty(G^*_t, \mathcal{F}_t), \ t = 0, 1, ..., T\}.$$

• Clearly, all bounded martingales from $\mathcal{M}(G^*, P)$ belongs to $\mathcal{Z}(G^*, P)$.

Theorem (Bouchard–Temam, 2005)

Suppose that Ω is finite. Then

$$\Gamma = \Big\{ v \in \mathbb{R}^d : E \sum_t Z_t Y_- \overline{Z}_0 v \leq 0 \quad \forall Z \in \mathcal{Z}(G^*, P) \Big\}.$$

Yuri Kabanov

Financial markets with transaction costs.