Ramifications

Hedging theorems

Mathematical Aspects of the Theory of Financial Markets with Transaction Costs

Yuri Kabanov

Laboratoire de Mathématiques, Université de Franche-Comté

February 2008

Yuri Kabanov

Financial markets with transaction costs.

< ロ > < 同 > < 回 > < 回 > < 回 > <

• Finite Ω : Harrison–Pliska theorem (1981).

- Arbitrary Ω : Dalang–Morton–Willinger theorem (1990).
- Further contributions : Schachermayer, Kabanov–Kramkov, Rogers, Jacod–Shiryaev, Kabanov–Stricker...
- Incomplete information : Kabanov–Stricker (2006)
- Infinite time horizon : Schachermayer (1994)

- Finite Ω : Harrison–Pliska theorem (1981).
- Arbitrary Ω : Dalang–Morton–Willinger theorem (1990).
- Further contributions : Schachermayer, Kabanov–Kramkov, Rogers, Jacod–Shiryaev, Kabanov–Stricker...
- Incomplete information : Kabanov-Stricker (2006)
- Infinite time horizon : Schachermayer (1994)

- Finite Ω : Harrison–Pliska theorem (1981).
- Arbitrary Ω : Dalang–Morton–Willinger theorem (1990).
- Further contributions : Schachermayer, Kabanov–Kramkov, Rogers, Jacod–Shiryaev, Kabanov–Stricker...
- Incomplete information : Kabanov–Stricker (2006)
- Infinite time horizon : Schachermayer (1994)

- Finite Ω : Harrison–Pliska theorem (1981).
- Arbitrary Ω : Dalang–Morton–Willinger theorem (1990).
- Further contributions : Schachermayer, Kabanov–Kramkov, Rogers, Jacod–Shiryaev, Kabanov–Stricker...
- Incomplete information : Kabanov-Stricker (2006)
- Infinite time horizon : Schachermayer (1994)

(4) (日本)

- Finite Ω : Harrison–Pliska theorem (1981).
- Arbitrary Ω : Dalang–Morton–Willinger theorem (1990).
- Further contributions : Schachermayer, Kabanov–Kramkov, Rogers, Jacod–Shiryaev, Kabanov–Stricker...
- Incomplete information : Kabanov-Stricker (2006)
- Infinite time horizon : Schachermayer (1994)

- 4 回 ト 4 ヨ ト 4 ヨ ト

Classical theory

Classical model

- Harrison-Pliska theorem
- Dalang–Morton–Willinger theorem : FTAP

2 Ramifications

- Restricted information
- Infinite horizon

3 Hedging theorems

< 日 > < 同 > < 三 > < 三 >

Outline

1 Classical model

- Harrison-Pliska theorem
- Dalang–Morton–Willinger theorem : FTAP

2 Ramifications

- Restricted information
- Infinite horizon

3 Hedging theorems

イロト イヨト イヨト

Classical model	
000000000000000000000000000000000000000	

Ramifications 00

Model

- A probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with a filtration $\mathbb{F} = (\mathcal{F}_t)_{t=0,1,\dots,T}$ ("history").
- A price process S = (S¹_t, ..., S^d_t), d-dimensional, adapted : S_t is F_t-measurable.
- $S_t^1 = 1$ for all t: the first traded asset is the *numéraire*, say, "bank account". Thus, $\Delta S_t^1 = S_t^1 S_{t-1}^1 = 0$.
- The value process of a self-financing portfolio with zero initial capital : $V = H \cdot S$ where

$$H \cdot S_t = \sum_{u \le t} H_u \Delta S_u = \sum_{u \le t} \left[H_u^1 \Delta S_u^1 + \sum_{i \ge 2} H_u^i \Delta S_u^i \right]$$

Classical model •000000000000	Ramifications 00	Hedging theorems
Madal		

Model

- A probability space (Ω, F, P) with a filtration
 F = (F_t)_{t=0,1,...,T} ("history").
- A price process S = (S¹_t, ..., S^d_t), d-dimensional, adapted : S_t is F_t-measurable.
- $S_t^1 = 1$ for all t: the first traded asset is the *numéraire*, say, "bank account". Thus, $\Delta S_t^1 = S_t^1 S_{t-1}^1 = 0$.
- The value process of a self-financing portfolio with zero initial capital : $V = H \cdot S$ where

$$H \cdot S_t = \sum_{u \le t} H_u \Delta S_u = \sum_{u \le t} \left[H_u^1 \Delta S_u^1 + \sum_{i \ge 2} H_u^i \Delta S_u^i \right]$$

Classical model •000000000000	Ramifications 00	Hedging theorems
Model		

A probability space (Ω, F, ℙ) with a filtration

 𝔅 = (𝔅_t)_{t=0,1,...,𝔅} ("history").

- A price process S = (S¹_t, ..., S^d_t), d-dimensional, adapted : S_t is F_t-measurable.
- $S_t^1 = 1$ for all t: the first traded asset is the *numéraire*, say, "bank account". Thus, $\Delta S_t^1 = S_t^1 S_{t-1}^1 = 0$.
- The value process of a self-financing portfolio with zero initial capital : $V = H \cdot S$ where

$$H \cdot S_t = \sum_{u \le t} H_u \Delta S_u = \sum_{u \le t} \left[H_u^1 \Delta S_u^1 + \sum_{i \ge 2} H_u^i \Delta S_u^i \right]$$

Classical model •••••••	Ramifications 00	Hedging theorems

Model

- A probability space (Ω, F, P) with a filtration
 F = (F_t)_{t=0,1,...,T} ("history").
- A price process S = (S¹_t, ..., S^d_t), d-dimensional, adapted : S_t is F_t-measurable.
- $S_t^1 = 1$ for all t: the first traded asset is the *numéraire*, say, "bank account". Thus, $\Delta S_t^1 = S_t^1 S_{t-1}^1 = 0$.
- The value process of a self-financing portfolio with zero initial capital : $V = H \cdot S$ where

$$H \cdot S_t = \sum_{u \le t} H_u \Delta S_u = \sum_{u \le t} \left[H_u^1 \Delta S_u^1 + \sum_{i \ge 2} H_u^i \Delta S_u^i \right]$$

Classical model	Ramifications	Hedging the
000000000000	00	

• A strategy H is an arbitrage opportunity if $H \cdot S_T \ge 0$ and

• The model has the *no-arbitrage* property if such H do not

exist. • Equivalently, the NA-property means that

$$R_T \cap L^0_+ = \{0\}$$

where $R_T := \{H \cdot S_T : H \text{ is predictable}\}\$ is the set of "results" and L^0_+ is the set of non-negative random variables.

 Let A_T := R_T − L⁰₊ be the set of "results with free disposal" (A_T can be interpreted also as the set of *hedgeable claims*). It is easily seen that the NA-property holds if and only if A_T ∩ L⁰₊ = {0}.

NA property

 $P(H \cdot S_T > 0) > 0.$

・ロト ・ 同ト ・ ヨト ・ ヨト

Classical model	Ramifications 00	Hedging theorems

Yuri Kabanov

NA property

• The model has the *no-arbitrage* property if such *H* do not exist.

• A strategy H is an arbitrage opportunity if $H \cdot S_T \ge 0$ and

Equivalently, the NA-property means that

 $P(H \cdot S_T > 0) > 0.$

$$R_T \cap L^0_+ = \{0\}$$

where $R_T := \{H \cdot S_T : H \text{ is predictable}\}\$ is the set of "results" and L^0_+ is the set of non-negative random variables.

 Let A_T := R_T − L⁰₊ be the set of "results with free disposal" (A_T can be interpreted also as the set of *hedgeable claims*). It is easily seen that the NA-property holds if and only if A_T ∩ L⁰₊ = {0}.

Classical model De000000000000	Ramifications 00	Hedging theorems

NA property

- A strategy *H* is an *arbitrage opportunity* if $H \cdot S_T \ge 0$ and $P(H \cdot S_T > 0) > 0$.
- The model has the *no-arbitrage* property if such *H* do not exist.
- Equivalently, the NA-property means that

$$R_T \cap L^0_+ = \{0\}$$

where $R_T := \{H \cdot S_T : H \text{ is predictable}\}\$ is the set of "results" and L^0_+ is the set of non-negative random variables.

 Let A_T := R_T − L⁰₊ be the set of "results with free disposal" (A_T can be interpreted also as the set of *hedgeable claims*). It is easily seen that the NA-property holds if and only if A_T ∩ L⁰₊ = {0}.

Classical model	Ramifications 00	Hedging theorems

NA property

- A strategy *H* is an *arbitrage opportunity* if $H \cdot S_T \ge 0$ and $P(H \cdot S_T > 0) > 0$.
- The model has the *no-arbitrage* property if such *H* do not exist.
- Equivalently, the NA-property means that

$$R_T \cap L^0_+ = \{0\}$$

where $R_T := \{H \cdot S_T : H \text{ is predictable}\}\$ is the set of "results" and L^0_+ is the set of non-negative random variables.

 Let A_T := R_T − L⁰₊ be the set of "results with free disposal" (A_T can be interpreted also as the set of *hedgeable claims*). It is easily seen that the NA-property holds if and only if A_T ∩ L⁰₊ = {0}.

・ロト ・ 通 ト ・ ヨ ト ・ ヨ ト … ヨ

Ramifications

Hedging theorems

Harrison–Pliska theorem

Theorem (Harrison–Pliska (1981))

Suppose that Ω is finite. Then the NA property holds if and only if there is a probability measure $\tilde{P} \sim P$ such that S is a \tilde{P} martingale.

Theorem (Dalang–Morton–Willinger (1990), short version)

The NA property holds if and only if there is a probability measure $\tilde{P} \sim P$ such that S is a \tilde{P} martingale.

Looks like the same theorem with a relaxed assumption... But not !

Ramifications

Hedging theorems

Harrison–Pliska theorem

Theorem (Harrison–Pliska (1981))

Suppose that Ω is finite. Then the NA property holds if and only if there is a probability measure $\tilde{P} \sim P$ such that S is a \tilde{P} martingale.

Theorem (Dalang–Morton–Willinger (1990), short version)

The NA property holds if and only if there is a probability measure $\tilde{P} \sim P$ such that S is a \tilde{P} martingale.

Looks like the same theorem with a relaxed assumption... But not !

- 4 回 ト 4 ヨ ト 4 ヨ ト

Ramifications

Hedging theorems

Harrison–Pliska theorem

Theorem (Harrison–Pliska (1981))

Suppose that Ω is finite. Then the NA property holds if and only if there is a probability measure $\tilde{P} \sim P$ such that S is a \tilde{P} martingale.

Theorem (Dalang–Morton–Willinger (1990), short version)

The NA property holds if and only if there is a probability measure $\tilde{P} \sim P$ such that S is a \tilde{P} martingale.

Looks like the same theorem with a relaxed assumption... But not !

- 4 回 ト 4 ヨ ト 4 ヨ ト

Harrison-Pliska theorem : proof

Theorem (Harrison–Pliska)

 Ω is finite. Then $A_T \cap L^0_+ = \{0\} \Leftrightarrow \exists \ \tilde{P} \sim P \text{ such that } S \in \mathcal{M}(\tilde{P}).$

- ⊳ Proof :
 - If $S \in \mathcal{M}(\tilde{P})$, then $\tilde{E}H \cdot S_T = 0$. If $H \cdot S_T \ge 0$, then $H \cdot S_T = 0$ \tilde{P} -a.s., hence, P-a.s. That is $R_T \cap L^0_+ = \{0\}$.
 - Let Ω = {ω₁,...,ω_N}, P({ω_i}) > 0. The space L⁰ with ⟨ξ, η⟩ = Eξη is Euclidean, A_T is a polyhedral cone, hence, closed. If A_T ∩ L⁰₊ = {0}, we can separate A_T and I_{{ω_i} by a hyperplane, i.e. there is η_i such that

$$\sup_{\xi\in A_{\mathcal{T}}} E\eta_i\xi < E\eta_iI_{\{\omega_i\}}.$$

Since $-L^0_+ \subseteq A_T$, it follows that $\eta_i \ge 0$, sup ... = 0, and $\eta_i(\omega_i) > 0$. Thus, $\eta := \sum \eta_i > 0$ and $\eta/E\eta$ is the density $d\tilde{P}/dP$ of a measure such that $\tilde{E}\xi \le 0$ for all $\xi \in R_T$.

Harrison-Pliska theorem : proof

Theorem (Harrison–Pliska)

 Ω is finite. Then $A_T \cap L^0_+ = \{0\} \Leftrightarrow \exists \ \tilde{P} \sim P \text{ such that } S \in \mathcal{M}(\tilde{P}).$

- ⊳ Proof :
 - If S ∈ M(P̃), then ẼH · S_T = 0. If H · S_T ≥ 0, then H · S_T = 0 P̃-a.s., hence, P-a.s. That is R_T ∩ L⁰₊ = {0}.
 Let Ω = {ω₁,...,ω_N}, P({ω_i}) > 0. The space L⁰ with ⟨ξ, η⟩ = Eξη is Euclidean, A_T is a polyhedral cone, hence, closed. If A_T ∩ L⁰₊ = {0}, we can separate A_T and I_{{ω_i}} by a hyperplane, i.e. there is η_i such that

$$\sup_{\xi\in A_{T}} E\eta_{i}\xi < E\eta_{i}I_{\{\omega_{i}\}}.$$

Since $-L^0_+ \subseteq A_T$, it follows that $\eta_i \ge 0$, sup ... = 0, and $\eta_i(\omega_i) > 0$. Thus, $\eta := \sum \eta_i > 0$ and $\eta/E\eta$ is the density $d\tilde{P}/dP$ of a measure such that $\tilde{E}\xi \le 0$ for all $\xi \in R_T$.

Ramifications

Hedging theorems

Harrison–Pliska theorem and convex analysis Facts from convex analysis

- K is a *cone* if it is convex and $\lambda K = K$ for all $\lambda > 0$.
- A cone K defines the partial ordering : $x \ge_K y$ if $x y \in K$.
- A closed cone K is called *proper* if $K^0 := K \cap (-K) = \{0\}$.
- $\operatorname{cone} C$ is the set of all conic combinations of elements of C.
- Let K be a cone in \mathbb{R}^n . Its *dual positive cone* $K^* := \{z \in \mathbb{R}^n : zx \ge 0 \ \forall x \in K\}$ is closed.
- int K is the interior of K.
 ri K is the relative interior i.e. the interior in K K.
- A closed cone K ⊆ ℝⁿ is proper if and only if there is a compact convex set C such that 0 ∉ C and K = cone C. One can take C = conv (K ∩ {x ∈ ℝⁿ : |x| = 1}).
- A closed cone K is proper if and only if $int K^* \neq \emptyset$.
- ri $K^* = \{ w : wx > 0 \ \forall x \in K, \ x \neq K^0 \}.$

Ramifications

Hedging theorems

Harrison–Pliska theorem and convex analysis Facts from convex analysis

- K is a *cone* if it is convex and $\lambda K = K$ for all $\lambda > 0$.
- A cone K defines the partial ordering : $x \ge_K y$ if $x y \in K$.
- A closed cone K is called *proper* if $K^0 := K \cap (-K) = \{0\}$.
- $\operatorname{cone} C$ is the set of all conic combinations of elements of C.
- Let K be a cone in \mathbb{R}^n . Its *dual positive cone* $K^* := \{z \in \mathbb{R}^n : zx \ge 0 \ \forall x \in K\}$ is closed.
- int K is the interior of K.
 ri K is the relative interior i.e. the interior in K K.
- A closed cone K ⊆ ℝⁿ is proper if and only if there is a compact convex set C such that 0 ∉ C and K = cone C. One can take C = conv (K ∩ {x ∈ ℝⁿ : |x| = 1}).
- A closed cone K is proper if and only if $int K^* \neq \emptyset$.
- ri $K^* = \{ w : wx > 0 \ \forall x \in K, \ x \neq K^0 \}.$

Ramifications

Hedging theorems

Harrison–Pliska theorem and convex analysis Facts from convex analysis

- K is a *cone* if it is convex and $\lambda K = K$ for all $\lambda > 0$.
- A cone K defines the partial ordering : $x \ge_K y$ if $x y \in K$.
- A closed cone K is called *proper* if $K^0 := K \cap (-K) = \{0\}$.
- cone *C* is the set of all conic combinations of elements of *C*.
- Let K be a cone in \mathbb{R}^n . Its *dual positive cone* $K^* := \{z \in \mathbb{R}^n : zx \ge 0 \ \forall x \in K\}$ is closed.
- int K is the interior of K.
 ri K is the relative interior i.e. the interior in K K.
- A closed cone K ⊆ ℝⁿ is proper if and only if there is a compact convex set C such that 0 ∉ C and K = cone C. One can take C = conv (K ∩ {x ∈ ℝⁿ : |x| = 1}).
- A closed cone K is proper if and only if $int K^* \neq \emptyset$.
- ri $K^* = \{ w : wx > 0 \ \forall x \in K, \ x \neq K^0 \}.$

Ramifications

Hedging theorems

Harrison–Pliska theorem and convex analysis Facts from convex analysis

- K is a *cone* if it is convex and $\lambda K = K$ for all $\lambda > 0$.
- A cone K defines the partial ordering : $x \ge_K y$ if $x y \in K$.
- A closed cone K is called *proper* if $K^0 := K \cap (-K) = \{0\}$.
- cone *C* is the set of all conic combinations of elements of *C*.
- Let K be a cone in \mathbb{R}^n . Its *dual positive cone* $K^* := \{z \in \mathbb{R}^n : zx \ge 0 \ \forall x \in K\}$ is closed.
- int K is the interior of K.
 ri K is the relative interior i.e. the interior in K K.
- A closed cone K ⊆ ℝⁿ is proper if and only if there is a compact convex set C such that 0 ∉ C and K = cone C. One can take C = conv (K ∩ {x ∈ ℝⁿ : |x| = 1}).
- A closed cone K is proper if and only if $int K^* \neq \emptyset$.
- ri $K^* = \{ w : wx > 0 \ \forall x \in K, \ x \neq K^0 \}.$
 - If K is proper then int $K^* = \{w : wx > 0 \ \forall x \in K, x \neq 0\}.$

Ramifications

Hedging theorems

Harrison–Pliska theorem and convex analysis Facts from convex analysis

- K is a *cone* if it is convex and $\lambda K = K$ for all $\lambda > 0$.
- A cone K defines the partial ordering : $x \ge_K y$ if $x y \in K$.
- A closed cone K is called *proper* if $K^0 := K \cap (-K) = \{0\}$.
- cone *C* is the set of all conic combinations of elements of *C*.
- Let K be a cone in \mathbb{R}^n . Its *dual positive cone* $K^* := \{z \in \mathbb{R}^n : zx \ge 0 \ \forall x \in K\}$ is closed.
- int K is the interior of K.
 ri K is the relative interior i.e. the interior in K K.
- A closed cone K ⊆ ℝⁿ is proper if and only if there is a compact convex set C such that 0 ∉ C and K = cone C. One can take C = conv (K ∩ {x ∈ ℝⁿ : |x| = 1}).
- A closed cone K is proper if and only if $int K^* \neq \emptyset$.
- ri $K^* = \{ w : wx > 0 \ \forall x \in K, \ x \neq K^0 \}.$
 - If K is proper then int $K^* = \{w : wx > 0 \ \forall x \in K, x \neq 0\}.$

Ramifications

Hedging theorems

Harrison–Pliska theorem and convex analysis Facts from convex analysis

- K is a *cone* if it is convex and $\lambda K = K$ for all $\lambda > 0$.
- A cone K defines the partial ordering : $x \ge_K y$ if $x y \in K$.
- A closed cone K is called *proper* if $K^0 := K \cap (-K) = \{0\}$.
- cone *C* is the set of all conic combinations of elements of *C*.
- Let K be a cone in \mathbb{R}^n . Its *dual positive cone* $K^* := \{z \in \mathbb{R}^n : zx \ge 0 \ \forall x \in K\}$ is closed.
- int K is the interior of K.
 ri K is the relative interior i.e. the interior in K K.
- A closed cone K ⊆ ℝⁿ is proper if and only if there is a compact convex set C such that 0 ∉ C and K = cone C. One can take C = conv (K ∩ {x ∈ ℝⁿ : |x| = 1}).
- A closed cone K is proper if and only if $int K^* \neq \emptyset$.
- ri $K^* = \{ w : wx > 0 \ \forall x \in K, \ x \neq K^0 \}.$

Ramifications

Hedging theorems

Harrison–Pliska theorem and convex analysis Facts from convex analysis

- K is a *cone* if it is convex and $\lambda K = K$ for all $\lambda > 0$.
- A cone K defines the partial ordering : $x \ge_K y$ if $x y \in K$.
- A closed cone K is called *proper* if $K^0 := K \cap (-K) = \{0\}$.
- cone *C* is the set of all conic combinations of elements of *C*.
- Let K be a cone in \mathbb{R}^n . Its *dual positive cone* $K^* := \{z \in \mathbb{R}^n : zx \ge 0 \ \forall x \in K\}$ is closed.
- int K is the interior of K. ri K is the relative interior i.e. the interior in K - K.
- A closed cone K ⊆ ℝⁿ is proper if and only if there is a compact convex set C such that 0 ∉ C and K = cone C. One can take C = conv (K ∩ {x ∈ ℝⁿ : |x| = 1}).
- A closed cone K is proper if and only if $\operatorname{int} K^* \neq \emptyset$.
- ri $K^* = \{ w : wx > 0 \ \forall x \in K, \ x \neq K^0 \}.$
 - If K is proper then int $K^* = \{w : wx > 0 \ \forall x \in K, x \neq 0\}.$

Ramifications

Hedging theorems

Harrison–Pliska theorem and convex analysis Facts from convex analysis

- K is a *cone* if it is convex and $\lambda K = K$ for all $\lambda > 0$.
- A cone K defines the partial ordering : $x \ge_K y$ if $x y \in K$.
- A closed cone K is called *proper* if $K^0 := K \cap (-K) = \{0\}$.
- cone *C* is the set of all conic combinations of elements of *C*.
- Let K be a cone in \mathbb{R}^n . Its *dual positive cone* $K^* := \{z \in \mathbb{R}^n : zx \ge 0 \ \forall x \in K\}$ is closed.
- int K is the interior of K. ri K is the relative interior i.e. the interior in K - K.
- A closed cone K ⊆ ℝⁿ is proper if and only if there is a compact convex set C such that 0 ∉ C and K = cone C. One can take C = conv (K ∩ {x ∈ ℝⁿ : |x| = 1}).
- A closed cone K is proper if and only if $int K^* \neq \emptyset$.
- ri $K^* = \{ w : wx > 0 \ \forall x \in K, \ x \neq K^0 \}.$

Ramifications

Hedging theorems

Harrison–Pliska theorem and convex analysis Facts from convex analysis

- K is a *cone* if it is convex and $\lambda K = K$ for all $\lambda > 0$.
- A cone K defines the partial ordering : $x \ge_K y$ if $x y \in K$.
- A closed cone K is called *proper* if $K^0 := K \cap (-K) = \{0\}$.
- cone *C* is the set of all conic combinations of elements of *C*.
- Let K be a cone in \mathbb{R}^n . Its *dual positive cone* $K^* := \{z \in \mathbb{R}^n : zx \ge 0 \ \forall x \in K\}$ is closed.
- int K is the interior of K. ri K is the relative interior i.e. the interior in K - K.
- A closed cone K ⊆ ℝⁿ is proper if and only if there is a compact convex set C such that 0 ∉ C and K = cone C. One can take C = conv (K ∩ {x ∈ ℝⁿ : |x| = 1}).
- A closed cone K is proper if and only if $int K^* \neq \emptyset$.
- ri $K^* = \{w : wx > 0 \ \forall x \in K, x \neq K^0\}$. If K is proper then int $K^* = \{w : wx > 0 \ \forall x \in K, x \neq 0\}$.

Ramifications

Hedging theorems

Harrison–Pliska theorem and convex analysis Polyhedral cones

A cone K is *polyhedral* if it is the intersection of a finite number of half-spaces {x : p_ix ≥ 0}, p_i ∈ ℝⁿ, i = 1, ..., N.

Theorem (Farkas–Minkowski–Weyl)

A cone is polyhedral if and only if it is finitely generated.

- Intuitively obvious, but not easy to prove. Useful!
- If K_1 , K_2 are polyhedral cones, then $K_1 + K_2$ is also polyhedral.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Ramifications

Hedging theorems

Harrison–Pliska theorem and convex analysis Polyhedral cones

A cone K is *polyhedral* if it is the intersection of a finite number of half-spaces {x : p_ix ≥ 0}, p_i ∈ ℝⁿ, i = 1,..., N.

Theorem (Farkas–Minkowski–Weyl)

A cone is polyhedral if and only if it is finitely generated.

- Intuitively obvious, but not easy to prove. Useful!
- If K_1 , K_2 are polyhedral cones, then $K_1 + K_2$ is also polyhedral.

- ロ ト - (理 ト - (ヨ ト - (ヨ ト -)

Ramifications

Hedging theorems

Harrison–Pliska theorem and convex analysis Polyhedral cones

A cone K is *polyhedral* if it is the intersection of a finite number of half-spaces {x : p_ix ≥ 0}, p_i ∈ ℝⁿ, i = 1,..., N.

Theorem (Farkas–Minkowski–Weyl)

A cone is polyhedral if and only if it is finitely generated.

- Intuitively obvious, but not easy to prove. Useful!
- If K_1 , K_2 are polyhedral cones, then $K_1 + K_2$ is also polyhedral.

- ロ ト - (同 ト - - 三 ト - - 三 ト

Harrison–Pliska theorem and convex analysis Stiemke lemma

Lemma (Stiemke, modern version)

Let K and R be closed cones in \mathbb{R}^n and K be proper. Then

$$R \cap K = \{0\} \quad \Leftrightarrow \quad (-R^*) \cap \operatorname{int} K^* \neq \emptyset.$$

⊳ Proof :

(\Leftarrow) The existence of *w* such that $wx \le 0$ for all $x \in R$ and wy > 0 for all *y* in $K \setminus \{0\}$ implies that $R \cap (K \setminus \{0\}) = \emptyset$. (\Rightarrow) Let *C* be a convex compact set such that $0 \notin C$ and K = cone C. By the separation theorem (one set is closed and another is compact) there is a non-zero $z \in \mathbb{R}^n$ such that

$$\sup_{x\in R} zx < \inf_{y\in C} zy.$$

Since *R* is a cone, the sup ... = 0, hence $z \in -R^*$ and, also, zy > 0 for all $y \in C$, so for all $z \in K$, $z \neq 0$, and $z \in int K$.

Ramifications

Hedging theorems

Harrison–Pliska theorem and convex analysis Stiemke lemma implies the HP-theorem

Lemma (Stiemke, modern version (repeated))

Let K and R be closed cones in \mathbb{R}^n and K be proper. Then

 $R \cap K = \{0\} \quad \Leftrightarrow \quad (-R^*) \cap \operatorname{int} K^* \neq \emptyset.$

Take $R = R_T$ and $K = L^0_+$. Then $K^* = L^0_+$. An element η of $(-R^*) \cap \operatorname{int} K^*$ is a strictly positive random variable and $\eta/E\eta$ is a density of "separating" probability measure : $\tilde{E}\xi \leq 0$ for all $\xi \in R_T$, hence, $\tilde{E}\xi = 0$ for all $\xi \in R_T$. The novelty in the HP-theorem is just the remark that a separating measure is a martingale one.

Lemma (Stiemke, <u>1915</u>)

Let $K = \mathbb{R}^n_+$ and $R = \{y \in \mathbb{R}^n : y = Bx, x \in \mathbb{R}^d\}$ where B is a linear mapping. Then :

either there is $x \in \mathbb{R}^d$ such that $Bx \ge_K 0$ and $Bx \neq 0$ or there is

 $y \in \mathbb{R}^n$ with strictly positive components such that $B^*y = 0$.

Yuri Kabanov

Financial markets with transaction costs.

12 / 26

Ramifications

Hedging theorems

Harrison–Pliska theorem and convex analysis Stiemke lemma implies the HP-theorem

Lemma (Stiemke, modern version (repeated))

Let K and R be closed cones in \mathbb{R}^n and K be proper. Then

$$R \cap K = \{0\} \quad \Leftrightarrow \quad (-R^*) \cap \operatorname{int} K^* \neq \emptyset.$$

Take $R = R_T$ and $K = L^0_+$. Then $K^* = L^0_+$. An element η of $(-R^*) \cap \operatorname{int} K^*$ is a strictly positive random variable and $\eta/E\eta$ is a density of "separating" probability measure : $\tilde{E}\xi \leq 0$ for all $\xi \in R_T$, hence, $\tilde{E}\xi = 0$ for all $\xi \in R_T$. The novelty in the HP-theorem is just the remark that a separating measure is a martingale one.

Lemma (Stiemke, <u>1915</u>)

Let $K = \mathbb{R}^n_+$ and $R = \{y \in \mathbb{R}^n : y = Bx, x \in \mathbb{R}^d\}$ where B is a linear mapping. Then :

either there is $x \in \mathbb{R}^d$ such that $Bx \ge_K 0$ and $Bx \neq 0$ or there is

 $y \in \mathbb{R}^n$ with strictly positive components such that $B^*y = 0$.

Yuri Kabanov

Financial markets with transaction costs.

Ramifications

Hedging theorems

Harrison–Pliska theorem and convex analysis Stiemke lemma implies the HP-theorem

Lemma (Stiemke, modern version (repeated))

Let K and R be closed cones in \mathbb{R}^n and K be proper. Then

$$R \cap K = \{0\} \quad \Leftrightarrow \quad (-R^*) \cap \operatorname{int} K^* \neq \emptyset.$$

Take $R = R_T$ and $K = L^0_+$. Then $K^* = L^0_+$. An element η of $(-R^*) \cap \operatorname{int} K^*$ is a strictly positive random variable and $\eta/E\eta$ is a density of "separating" probability measure : $\tilde{E}\xi \leq 0$ for all $\xi \in R_T$, hence, $\tilde{E}\xi = 0$ for all $\xi \in R_T$. The novelty in the HP-theorem is just the remark that a separating measure is a martingale one.

Lemma (Stiemke, 1915)

Let $K = \mathbb{R}^n_+$ and $R = \{y \in \mathbb{R}^n : y = Bx, x \in \mathbb{R}^d\}$ where B is a linear mapping. Then : either there is $x \in \mathbb{R}^d$ such that $Bx \ge_K 0$ and $Bx \ne 0$ or there is $y \in \mathbb{R}^n$ with strictly positive components such that $B^*y = 0$. Yuri Kabanov

12 / 26

NA criteria for arbitrary $\boldsymbol{\Omega}$

Theorem (Dalang–Morton–Willinger, 1990, extended version)

The following conditions are equivalent : (a) $A_T \cap L^0_+ = \{0\}$ (NA condition); (b) $A_T \cap L^0_+ = \{0\}$ and $A_T = \overline{A}_T$ (closure in L^0); (c) $\overline{A}_T \cap L^0_+ = \{0\}$; (d) there is a process $\rho \in \mathcal{M}$, $\rho > 0$, such that $\rho S \in \mathcal{M}$; (e) there is a bounded process $\rho \in \mathcal{M}$, $\rho > 0$, such that $\rho S \in \mathcal{M}$; (f) there is a process $\rho \in \mathcal{M}$, $\rho > 0$, such that $\rho S \in \mathcal{M}_{loc}$; (g) $\{\eta \Delta S_t : \eta \in L^0(\mathcal{F}_{t-1})\} \cap L^0_+ = \{0\}$ for all $t \leq T$ (NA for 1-step models).

 $S \in \mathcal{M}(\tilde{P})$ if and only if $\rho S \in \mathcal{M}(P)$ where $\rho_t = E(\rho_T | \mathcal{F}_t)$. (d') there is $\tilde{P} \sim P$ such that $S \in \mathcal{M}(\tilde{P})$; (e') there is $\tilde{P} \sim P$ with $d\tilde{P}/dP \in L^{\infty}$ such that $S \in \mathcal{M}(\tilde{P})$; (f') there is $\tilde{P} \sim P$ such that $S \in \mathcal{M}_{loc}(\tilde{P})$.

NA criteria for arbitrary $\boldsymbol{\Omega}$

Theorem (Dalang–Morton–Willinger, 1990, extended version)

The following conditions are equivalent : (a) $A_T \cap L^0_+ = \{0\}$ (NA condition); (b) $A_T \cap L^0_+ = \{0\}$ and $A_T = \overline{A}_T$ (closure in L^0); (c) $\overline{A}_T \cap L^0_+ = \{0\}$; (d) there is a process $\rho \in \mathcal{M}$, $\rho > 0$, such that $\rho S \in \mathcal{M}$; (e) there is a bounded process $\rho \in \mathcal{M}$, $\rho > 0$, such that $\rho S \in \mathcal{M}$; (f) there is a process $\rho \in \mathcal{M}$, $\rho > 0$, such that $\rho S \in \mathcal{M}_{loc}$; (g) $\{\eta \Delta S_t : \eta \in L^0(\mathcal{F}_{t-1})\} \cap L^0_+ = \{0\}$ for all $t \leq T$ (NA for 1-step models).

 $S \in \mathcal{M}(\tilde{P})$ if and only if $\rho S \in \mathcal{M}(P)$ where $\rho_t = E(\rho_T | \mathcal{F}_t)$. (d') there is $\tilde{P} \sim P$ such that $S \in \mathcal{M}(\tilde{P})$; (e') there is $\tilde{P} \sim P$ with $d\tilde{P}/dP \in L^{\infty}$ such that $S \in \mathcal{M}(\tilde{P})$; (f') there is $\tilde{P} \sim P$ such that $S \in \mathcal{M}_{loc}(\tilde{P})$.

NA criteria for arbitrary $\boldsymbol{\Omega}$

Theorem (Dalang–Morton–Willinger, 1990, extended version)

The following conditions are equivalent : (a) $A_T \cap L^0_+ = \{0\}$ (NA condition); (b) $A_T \cap L^0_+ = \{0\}$ and $A_T = \overline{A}_T$ (closure in L^0); (c) $\overline{A}_T \cap L^0_+ = \{0\}$; (d) there is a process $\rho \in \mathcal{M}$, $\rho > 0$, such that $\rho S \in \mathcal{M}$; (e) there is a bounded process $\rho \in \mathcal{M}$, $\rho > 0$, such that $\rho S \in \mathcal{M}$; (f) there is a process $\rho \in \mathcal{M}$, $\rho > 0$, such that $\rho S \in \mathcal{M}_{loc}$; (g) $\{\eta \Delta S_t : \eta \in L^0(\mathcal{F}_{t-1})\} \cap L^0_+ = \{0\}$ for all $t \leq T$ (NA for 1-step models).

 $S \in \mathcal{M}(\tilde{P}) \text{ if and only if } \rho S \in \mathcal{M}(P) \text{ where } \rho_t = E(\rho_T | \mathcal{F}_t).$ (d') there is $\tilde{P} \sim P$ such that $S \in \mathcal{M}(\tilde{P})$; (e') there is $\tilde{P} \sim P$ with $d\tilde{P}/dP \in L^{\infty}$ such that $S \in \mathcal{M}(\tilde{P})$; (f') there is $\tilde{P} \sim P$ such that $S \in \mathcal{M}_{loc}(\tilde{P}).$

Ramifications

Hedging theorems

Auxiliary results Two simple lemmas

Lemma (Engelbert, von Weizsäcker)

Let $\eta^n \in L^0(\mathbb{R}^d)$ be such that $\underline{\eta} := \liminf |\eta^n| < \infty$. Then there is a strictly increasing sequence of integer-valued random variables (τ_k) such that the sequence of η^{τ_k} converges a.s.

Idea of the proof : in the scalar case we take $\tau_k := \inf\{n > \tau_{k-1} : |\eta^n - \liminf \eta^n| \le k^{-1}\}, \tau_0 = 0$

Lemma (Grigoriev, 2004)

Let $\mathcal{G} = \{\Gamma_{\alpha}\}$ be a family of measurable sets such any measurable non-null set Γ has the non-null intersection with an element of \mathcal{G} . Then there is an at most countable subfamily of sets $\{\Gamma_{\alpha_i}\}$ which union is of full measure.

We may assume wlg that \mathcal{G} is stable under countable unions. Then an element with maximal probability exists and is of full measure.

Ramifications

Hedging theorems

Auxiliary results Two simple lemmas

Lemma (Engelbert, von Weizsäcker)

Let $\eta^n \in L^0(\mathbb{R}^d)$ be such that $\underline{\eta} := \liminf |\eta^n| < \infty$. Then there is a strictly increasing sequence of integer-valued random variables (τ_k) such that the sequence of η^{τ_k} converges a.s.

Idea of the proof : in the scalar case we take $\tau_k := \inf\{n > \tau_{k-1} : |\eta^n - \liminf \eta^n| \le k^{-1}\}, \tau_0 = 0.$

Lemma (Grigoriev, 2004)

Let $\mathcal{G} = \{\Gamma_{\alpha}\}\$ be a family of measurable sets such any measurable non-null set Γ has the non-null intersection with an element of \mathcal{G} . Then there is an at most countable subfamily of sets $\{\Gamma_{\alpha_i}\}\$ which union is of full measure.

We may assume wig that \mathcal{G} is stable under countable unions. Then an element with maximal probability exists and is of full measure.

Ramifications

Hedging theorems

Auxiliary results Two simple lemmas

Lemma (Engelbert, von Weizsäcker)

Let $\eta^n \in L^0(\mathbb{R}^d)$ be such that $\underline{\eta} := \liminf |\eta^n| < \infty$. Then there is a strictly increasing sequence of integer-valued random variables (τ_k) such that the sequence of η^{τ_k} converges a.s.

Idea of the proof : in the scalar case we take $\tau_k := \inf\{n > \tau_{k-1} : |\eta^n - \liminf \eta^n| \le k^{-1}\}, \tau_0 = 0.$

Lemma (Grigoriev, 2004)

Let $\mathcal{G} = \{\Gamma_{\alpha}\}$ be a family of measurable sets such any measurable non-null set Γ has the non-null intersection with an element of \mathcal{G} . Then there is an at most countable subfamily of sets $\{\Gamma_{\alpha_i}\}$ which union is of full measure.

We may assume wlg that \mathcal{G} is stable under countable unions. Then an element with maximal probability exists and is of full measure.

Ramifications

Hedging theorems

Auxiliary results Two simple lemmas

Lemma (Engelbert, von Weizsäcker)

Let $\eta^n \in L^0(\mathbb{R}^d)$ be such that $\underline{\eta} := \liminf |\eta^n| < \infty$. Then there is a strictly increasing sequence of integer-valued random variables (τ_k) such that the sequence of η^{τ_k} converges a.s.

Idea of the proof : in the scalar case we take $\tau_k := \inf\{n > \tau_{k-1} : |\eta^n - \liminf \eta^n| \le k^{-1}\}, \tau_0 = 0.$

Lemma (Grigoriev, 2004)

Let $\mathcal{G} = \{\Gamma_{\alpha}\}$ be a family of measurable sets such any measurable non-null set Γ has the non-null intersection with an element of \mathcal{G} . Then there is an at most countable subfamily of sets $\{\Gamma_{\alpha_i}\}$ which union is of full measure.

We may assume wlg that \mathcal{G} is stable under countable unions. Then an element with maximal probability exists and is of full measure.

Ramifications

Auxiliary results Kreps-Yan theorem

Theorem (Kreps, Yan, 1980)

Let C be a closed convex cone in L^1 such that $-L^1_+ \subseteq C$ and $C \cap L^1_+ = \{0\}$. Then there is $\tilde{P} \sim P$ with $d\tilde{P}/dP \in L^\infty$ such that $\tilde{E}\xi \leq 0$ for all $\xi \in C$.

Proof. By the Hahn–Banach theorem any non-zero $\alpha \in L^1_+$ can be separated from C: there is $\eta_\alpha \in L^\infty$, $||\eta_\alpha||_\infty = 1$, such that

$$\sup_{\xi\in\mathcal{C}}E\eta_{\alpha}\xi < E\eta_{\alpha}\alpha.$$

Then $\eta_{\alpha} \geq 0$, sup ... = 0, and $E\eta_{\alpha}\alpha > 0$. The latter inequality ensures that the family of sets $\Gamma_{\alpha} := \{\eta_{\alpha} > 0\}$ satisfies the assumption of the lemma $(E\eta_{I_{\Gamma}}I_{\Gamma} > 0 \text{ if } I_{\Gamma} \neq 0)$. Thus, for a certain sequence of indices $\eta := \sum 2^{-i}\eta_{\alpha_{i}} > 0$ a.s. and we take $\tilde{P} := \eta P$.

Ramifications

Auxiliary results Kreps-Yan theorem

Theorem (Kreps, Yan, 1980)

Let C be a closed convex cone in L^1 such that $-L^1_+ \subseteq C$ and $C \cap L^1_+ = \{0\}$. Then there is $\tilde{P} \sim P$ with $d\tilde{P}/dP \in L^{\infty}$ such that $\tilde{E}\xi \leq 0$ for all $\xi \in C$.

Proof. By the Hahn–Banach theorem any non-zero $\alpha \in L^1_+$ can be separated from C: there is $\eta_\alpha \in L^\infty$, $||\eta_\alpha||_\infty = 1$, such that

$$\sup_{\xi\in\mathcal{C}} E\eta_{\alpha}\xi < E\eta_{\alpha}\alpha.$$

Then $\eta_{\alpha} \geq 0$, sup ... = 0, and $E\eta_{\alpha}\alpha > 0$. The latter inequality ensures that the family of sets $\Gamma_{\alpha} := \{\eta_{\alpha} > 0\}$ satisfies the assumption of the lemma $(E\eta_{I_{\Gamma}}I_{\Gamma} > 0 \text{ if } I_{\Gamma} \neq 0)$. Thus, for a certain sequence of indices $\eta := \sum 2^{-i}\eta_{\alpha_{i}} > 0$ a.s. and we take $\tilde{P} := \eta P$.

(c) $\bar{A}_T \cap L^0_+ = \{0\}$; (e') there is $\tilde{P} \sim P$ with $d\tilde{P}/dP \in L^{\infty}$ such that $S \in \mathcal{M}(\tilde{P})$.

(c) \Rightarrow (e') Let $X := \sum_{t \leq T} |S_t|$, $Z' := e^{-X} / Ee^{-X}$, P' := Z'P, $A_T^1 := A_T \cap L^1(P')$. Then $\bar{A}_T^1 \cap L^0_+ = \{0\}$. By the Kreps-Yan theorem there is bounded Z'' such that $E'Z''\xi \leq 0$ for all $\xi \in A_T^1$, in particular, for $\xi = \pm I_{\Gamma}(S_{t+1} - S_t)$ where $\Gamma \in \mathcal{F}_t$. But this means that $\tilde{P} = Z'Z''P$ is a martingale measure.

(a) $A_T \cap L^0_+ = \{0\}$; (f') there is $\tilde{P} \sim P$ such that $S \in \mathcal{M}_{loc}(\tilde{P})$.

 $(f') \Rightarrow (a)$ Let $\xi \in A_T \cap L^0_+$, i.e. $0 \le \xi \le H \cdot S_T$. Since the conditional expectation with respect to the local martingale measure $\tilde{E}(H_t \Delta S_t | \mathcal{F}_{t-1}) = 0$, we obtain by consecutive conditioning that $\tilde{E}H \cdot S_T = 0$. Thus, $\xi = 0$.

(c)
$$\overline{A}_T \cap L^0_+ = \{0\}$$
;
(e') there is $\widetilde{P} \sim P$ with $d\widetilde{P}/dP \in L^\infty$ such that $S \in \mathcal{M}(\widetilde{P})$.

(c) \Rightarrow (e') Let $X := \sum_{t \leq T} |S_t|$, $Z' := e^{-X}/Ee^{-X}$, P' := Z'P, $A_T^1 := A_T \cap L^1(P')$. Then $\bar{A}_T^1 \cap L^0_+ = \{0\}$. By the Kreps-Yan theorem there is bounded Z'' such that $E'Z''\xi \leq 0$ for all $\xi \in A_T^1$, in particular, for $\xi = \pm I_{\Gamma}(S_{t+1} - S_t)$ where $\Gamma \in \mathcal{F}_t$. But this means that $\tilde{P} = Z'Z''P$ is a martingale measure.

(a) $A_T \cap L^0_+ = \{0\}$; (f') there is $\tilde{P} \sim P$ such that $S \in \mathcal{M}_{loc}(\tilde{P})$.

 $(f') \Rightarrow$ (a) Let $\xi \in A_T \cap L^0_+$, i.e. $0 \le \xi \le H \cdot S_T$. Since the conditional expectation with respect to the local martingale measure $\tilde{E}(H_t \Delta S_t | \mathcal{F}_{t-1}) = 0$, we obtain by consecutive conditioning that $\tilde{E}H \cdot S_T = 0$. Thus, $\xi = 0$.

(c)
$$\overline{A}_T \cap L^0_+ = \{0\}$$
;
(e') there is $\widetilde{P} \sim P$ with $d\widetilde{P}/dP \in L^\infty$ such that $S \in \mathcal{M}(\widetilde{P})$.

(c) \Rightarrow (e') Let $X := \sum_{t \leq T} |S_t|$, $Z' := e^{-X}/Ee^{-X}$, P' := Z'P, $A_T^1 := A_T \cap L^1(P')$. Then $\bar{A}_T^1 \cap L^0_+ = \{0\}$. By the Kreps-Yan theorem there is bounded Z'' such that $E'Z''\xi \leq 0$ for all $\xi \in A_T^1$, in particular, for $\xi = \pm I_{\Gamma}(S_{t+1} - S_t)$ where $\Gamma \in \mathcal{F}_t$. But this means that $\tilde{P} = Z'Z''P$ is a martingale measure.

(a)
$$A_T \cap L^0_+ = \{0\}$$
;
(f') there is $\tilde{P} \sim P$ such that $S \in \mathcal{M}_{loc}(\tilde{P})$.

 $(f') \Rightarrow (a)$ Let $\xi \in A_T \cap L^0_+$, i.e. $0 \le \xi \le H \cdot S_T$. Since the conditional expectation with respect to the local martingale measure $\tilde{E}(H_t \Delta S_t | \mathcal{F}_{t-1}) = 0$, we obtain by consecutive conditioning that $\tilde{E}H \cdot S_T = 0$. Thus, $\xi = 0$.

(c)
$$\overline{A}_T \cap L^0_+ = \{0\}$$
;
(e') there is $\widetilde{P} \sim P$ with $d\widetilde{P}/dP \in L^\infty$ such that $S \in \mathcal{M}(\widetilde{P})$.

(c) \Rightarrow (e') Let $X := \sum_{t \leq T} |S_t|$, $Z' := e^{-X}/Ee^{-X}$, P' := Z'P, $A_T^1 := A_T \cap L^1(P')$. Then $\bar{A}_T^1 \cap L^0_+ = \{0\}$. By the Kreps-Yan theorem there is bounded Z'' such that $E'Z''\xi \leq 0$ for all $\xi \in A_T^1$, in particular, for $\xi = \pm I_{\Gamma}(S_{t+1} - S_t)$ where $\Gamma \in \mathcal{F}_t$. But this means that $\tilde{P} = Z'Z''P$ is a martingale measure.

(a)
$$A_T \cap L^0_+ = \{0\}$$
;
(f') there is $\tilde{P} \sim P$ such that $S \in \mathcal{M}_{loc}(\tilde{P})$.

 $(f') \Rightarrow$ (a) Let $\xi \in A_T \cap L^0_+$, i.e. $0 \le \xi \le H \cdot S_T$. Since the conditional expectation with respect to the local martingale measure $\tilde{E}(H_t \Delta S_t | \mathcal{F}_{t-1}) = 0$, we obtain by consecutive conditioning that $\tilde{E}H \cdot S_T = 0$. Thus, $\xi = 0$.

$$A_T \cap L^0_+ = \{0\} \Rightarrow A_T = \overline{A}_T \text{ (closure in } L^0).$$

We consider only the case T = 1. Let $H_1^n \Delta S_1 - r^n \to \zeta$ where $H_1^n \in L^0(\mathbb{R}^b, \mathcal{F}_0)$, $r^n \in L^0_+$. The claim is : $\zeta = H_1 \Delta S_1 - r$ where $H_1 \in L^0(\mathbb{R}^b, \mathcal{F}_0)$, $r \in L^0_+$. We represent (H_1^n) as the infinite matrix

$$\mathbf{H}_{1} := \begin{bmatrix} H_{1}^{11} & H_{1}^{21} & \dots & \dots & H_{1}^{n1} & \dots \\ H_{1}^{12} & H_{1}^{22} & \dots & \dots & H_{1}^{n2} & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots \\ H_{1}^{1d} & H_{1}^{2d} & \dots & \dots & H_{1}^{nd} & \dots \end{bmatrix}$$

Suppose that the claim holds when \mathbf{H}_1 has, for each ω *m* zero lines. We show that it holds also when \mathbf{H}_1 has m-1 zero lines. Let $\Omega_i \in \mathcal{F}_0$ form a finite partition of Ω . An important (but obvious) observation : we may argue on each Ω_i , separately.

$$A_T \cap L^0_+ = \{0\} \Rightarrow A_T = \overline{A}_T \text{ (closure in } L^0).$$

We consider only the case T = 1.

Let $H_1^n \Delta S_1 - r^n \to \zeta$ where $H_1^n \in L^0(\mathbb{R}^b, \mathcal{F}_0)$, $r^n \in L^0_+$. The claim is : $\zeta = H_1 \Delta S_1 - r$ where $H_1 \in L^0(\mathbb{R}^b, \mathcal{F}_0)$, $r \in L^0_+$. We represent (H_1^n) as the infinite matrix

$$\mathbf{H}_{1} := \begin{bmatrix} H_{1}^{11} & H_{1}^{21} & \dots & \dots & H_{1}^{n1} & \dots \\ H_{1}^{12} & H_{1}^{22} & \dots & \dots & H_{1}^{n2} & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots \\ H_{1}^{1d} & H_{1}^{2d} & \dots & \dots & H_{1}^{nd} & \dots \end{bmatrix}$$

Suppose that the claim holds when \mathbf{H}_1 has, for each ω *m* zero lines. We show that it holds also when \mathbf{H}_1 has m-1 zero lines. Let $\Omega_i \in \mathcal{F}_0$ form a finite partition of Ω . An important (but obvious) observation : we may argue on each Ω_i , separately.

$$A_T \cap L^0_+ = \{0\} \Rightarrow A_T = \overline{A}_T \text{ (closure in } L^0).$$

We consider only the case T = 1. Let $H_1^n \Delta S_1 - r^n \to \zeta$ where $H_1^n \in L^0(\mathbb{R}^b, \mathcal{F}_0)$, $r^n \in L^0_+$. The claim is : $\zeta = H_1 \Delta S_1 - r$ where $H_1 \in L^0(\mathbb{R}^b, \mathcal{F}_0)$, $r \in L^0_+$. We represent (H_1^n) as the infinite matrix

$$\mathbf{H}_{1} := \begin{bmatrix} H_{1}^{11} & H_{1}^{21} & \dots & \dots & H_{1}^{n1} & \dots \\ H_{1}^{12} & H_{1}^{22} & \dots & \dots & H_{1}^{n2} & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots \\ H_{1}^{1d} & H_{1}^{2d} & \dots & \dots & H_{1}^{nd} & \dots \end{bmatrix}$$

Suppose that the claim holds when \mathbf{H}_1 has, for each ω *m* zero lines. We show that it holds also when \mathbf{H}_1 has m-1 zero lines. Let $\Omega_i \in \mathcal{F}_0$ form a finite partition of Ω . An important (but obvious) observation : we may argue on each Ω_i , separately.

$$A_T \cap L^0_+ = \{0\} \Rightarrow A_T = \overline{A}_T \text{ (closure in } L^0).$$

We consider only the case T = 1. Let $H_1^n \Delta S_1 - r^n \to \zeta$ where $H_1^n \in L^0(\mathbb{R}^b, \mathcal{F}_0)$, $r^n \in L^0_+$. The claim is : $\zeta = H_1 \Delta S_1 - r$ where $H_1 \in L^0(\mathbb{R}^b, \mathcal{F}_0)$, $r \in L^0_+$. We represent (H_1^n) as the infinite matrix

$$\mathbf{H}_{1} := \begin{bmatrix} H_{1}^{11} & H_{1}^{21} & \dots & \dots & H_{1}^{n1} & \dots \\ H_{1}^{12} & H_{1}^{22} & \dots & \dots & H_{1}^{n2} & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots \\ H_{1}^{1d} & H_{1}^{2d} & \dots & \dots & H_{1}^{nd} & \dots \end{bmatrix}$$

Suppose that the claim holds when \mathbf{H}_1 has, for each ω *m* zero lines. We show that it holds also when \mathbf{H}_1 has m-1 zero lines. Let $\Omega_i \in \mathcal{F}_0$ form a finite partition of Ω . An important (but obvious) observation : we may argue on each Ω_i , separately.

$$A_T \cap L^0_+ = \{0\} \Rightarrow A_T = \overline{A}_T \text{ (closure in } L^0).$$

We consider only the case T = 1. Let $H_1^n \Delta S_1 - r^n \to \zeta$ where $H_1^n \in L^0(\mathbb{R}^b, \mathcal{F}_0)$, $r^n \in L^0_+$. The claim is : $\zeta = H_1 \Delta S_1 - r$ where $H_1 \in L^0(\mathbb{R}^b, \mathcal{F}_0)$, $r \in L^0_+$. We represent (H_1^n) as the infinite matrix

$$\mathbf{H}_{1} := \begin{bmatrix} H_{1}^{11} & H_{1}^{21} & \dots & \dots & H_{1}^{n1} & \dots \\ H_{1}^{12} & H_{1}^{22} & \dots & \dots & H_{1}^{n2} & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots \\ H_{1}^{1d} & H_{1}^{2d} & \dots & \dots & H_{1}^{nd} & \dots \end{bmatrix}$$

Suppose that the claim holds when \mathbf{H}_1 has, for each ω *m* zero lines. We show that it holds also when \mathbf{H}_1 has m - 1 zero lines. Let $\Omega_i \in \mathcal{F}_0$ form a finite partition of Ω . An important (but obvious) observation : we may argue on each Ω_i separately.

$$A_T \cap L^0_+ = \{0\} \Rightarrow A_T = \overline{A}_T \text{ (closure in } L^0).$$

We consider only the case T = 1. Let $H_1^n \Delta S_1 - r^n \to \zeta$ where $H_1^n \in L^0(\mathbb{R}^b, \mathcal{F}_0)$, $r^n \in L^0_+$. The claim is : $\zeta = H_1 \Delta S_1 - r$ where $H_1 \in L^0(\mathbb{R}^b, \mathcal{F}_0)$, $r \in L^0_+$. We represent (H_1^n) as the infinite matrix

$$\mathbf{H}_{1} := \begin{bmatrix} H_{1}^{11} & H_{1}^{21} & \dots & \dots & H_{1}^{n1} & \dots \\ H_{1}^{12} & H_{1}^{22} & \dots & \dots & H_{1}^{n2} & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots \\ H_{1}^{1d} & H_{1}^{2d} & \dots & \dots & H_{1}^{nd} & \dots \end{bmatrix}$$

Suppose that the claim holds when \mathbf{H}_1 has, for each ω *m* zero lines. We show that it holds also when \mathbf{H}_1 has m-1 zero lines. Let $\Omega_i \in \mathcal{F}_0$ form a finite partition of Ω . An important (but obvious) observation : we may argue on each Ω_i separately.

DMW-theorem : proof of the "difficult" implication

Let $\underline{H}_1 := \liminf |H_1^n|$. On $\Omega_1 := \{\underline{H}_1 < \infty\}$ by the lemma on subsequences, we find a strictly increasing sequence of \mathcal{F}_0 -measurable r.v. τ_k such that $H_1^{\tau_k}$ converges to some H_1 ; automatically, r^{τ_k} converges to some r > 0 and we conclude. $\overline{H}_{1}^{n}\Delta S_{1} = H_{1}^{n}\Delta S_{1}$ on Ω_{2} . The matrix \overline{H}_{1} has, for each $\omega \in \Omega_{2}$, at \mathbf{H}_1 and a new one has appeared, namely, the *i*th one on Ω_2^i . We < 日 > < 同 > < 三 > < 三 > <

DMW-theorem : proof of the "difficult" implication

Let $\underline{H}_1 := \liminf |H_1^n|$. On $\Omega_1 := \{\underline{H}_1 < \infty\}$ by the lemma on subsequences, we find a strictly increasing sequence of \mathcal{F}_0 -measurable r.v. τ_k such that $H_1^{\tau_k}$ converges to some H_1 ; automatically, r^{τ_k} converges to some r > 0 and we conclude. On $\Omega_2 := \{\underline{H}_1 = \infty\}$ we put $G_1^n := H_1^n / |H_1^n|$ and $h_1^n := r_1^n / |H_1^n|$. Then $G_1^n \Delta S_1 - h_1^n \to 0$ a.s. By the lemma we find \mathcal{F}_0 -measurable τ_k such that $G_1^{\tau_k}(\omega)$ converges to some \tilde{G}_1 . It follows that $\tilde{G}_1 \Delta S_1 = \tilde{h}_1 \ge 0$. Because of the NA-property, $\tilde{G}_1 \Delta S_1 = 0$. As $\tilde{G}_1(\omega) \neq 0$, there exists a partition of Ω_2 into d disjoint subsets $\Omega_2^i \in \mathcal{F}_0$ such that $\tilde{G}_1^i \neq 0$ on Ω_2^i . Define $\overline{H}_1^n := H_1^n - \beta^n \widetilde{G}_1$ where $\beta^n := H_1^{ni} / \widetilde{G}_1^i$ on Ω_2^i . Then $\bar{H}_1^n \Delta S_1 = H_1^n \Delta S_1$ on Ω_2 . The matrix $\bar{\mathbf{H}}_1$ has, for each $\omega \in \Omega_2$, at least *m* zero lines : our operations did not affect the zero lines of \mathbf{H}_1 and a new one has appeared, namely, the *i*th one on Ω_2^i . We conclude by the induction hypothesis. < 日 > < 同 > < 三 > < 三 > <

Outline

Classical model

- Harrison-Pliska theorem
- Dalang–Morton–Willinger theorem : FTAP

2 Ramifications

- Restricted information
- Infinite horizon

3 Hedging theorems

э

< □ > < □ > < □ > < □ > < □ > < □ >

Ramifications • 0 Hedging theorems

NA-criteria under restricted information

We are given a filtration $\mathbf{G} = (\mathcal{G}_t)_{t \leq T}$ with $\mathcal{G}_t \subseteq \mathcal{F}_t$. The strategies are predictable with respect to \mathbf{G} , i.e. $H_{t-1} \in L^0(\mathcal{G}_t)$, a situation when the portfolios are revised on the basis of restricted information, e.g., due to a delay. We define the sets R_T , A_T and give a definition of the arbitrage which, in these symbols, looks exactly as (*a*) before and we can list the corresponding necessary and sufficient conditions. Notation : $X_t^o := E(X_t | \mathcal{G}_t)$.

Theorem (Kabanov–Stricker, 2006)

The following properties are equivalent : (a) $A_T \cap L^0_+ = \{0\}$ (NA condition); (b) $A_T \cap L^0_+ = \{0\}$ and $A_T = \overline{A}_T$; (c) $\overline{A}_T \cap L^0_+ = \{0\}$; (d) there is a process $\rho \in \mathcal{M}, \ \rho > 0$, with $(\rho S)^\circ \in \mathcal{M}(\mathbf{G})$; (e) there is a bounded process $\rho \in \mathcal{M}, \ \rho > 0$, with $(\rho S)^\circ \in \mathcal{M}(\mathbf{G})$.

ヘロト 人間 ト イヨト イヨト

Ramifications • 0 Hedging theorems

NA-criteria under restricted information

We are given a filtration $\mathbf{G} = (\mathcal{G}_t)_{t \leq T}$ with $\mathcal{G}_t \subseteq \mathcal{F}_t$. The strategies are predictable with respect to \mathbf{G} , i.e. $H_{t-1} \in L^0(\mathcal{G}_t)$, a situation when the portfolios are revised on the basis of restricted information, e.g., due to a delay. We define the sets R_T , A_T and give a definition of the arbitrage which, in these symbols, looks exactly as (a) before and we can list the corresponding necessary and sufficient conditions. Notation : $X_t^o := E(X_t | \mathcal{G}_t)$.

Theorem (Kabanov–Stricker, 2006)

The following properties are equivalent : (a) $A_T \cap L^0_+ = \{0\}$ (NA condition); (b) $A_T \cap L^0_+ = \{0\}$ and $A_T = \overline{A}_T$; (c) $\overline{A}_T \cap L^0_+ = \{0\}$; (d) there is a process $\rho \in \mathcal{M}, \ \rho > 0$, with $(\rho S)^o \in \mathcal{M}(\mathbf{G})$; (e) there is a bounded process $\rho \in \mathcal{M}, \ \rho > 0$, with $(\rho S)^o \in \mathcal{M}(\mathbf{G})$.

< ロ > < 同 > < 三 > < 三 >

No-Free-Lunch criteria for infinite horizon (Schachermayer)

•
$$R_{\infty} := \cup_{T \in \mathbb{N}} R_T$$
, $A_{\infty} := R_{\infty} - L^0_+$.

- *NA-property* : $R_{\infty} \cap L^{0}_{+} = \{0\}$ (or $A_{\infty} \cap L^{0}_{+} = \{0\}$).
- NFL-property : C
 ^w_∞ ∩ L[∞]₊ = {0} where C
 ^w_∞ is the closure of C_∞ := A_∞ ∩ L[∞] in the topology σ(L[∞], L¹).

Theorem

NFL holds if and only if there is $P' \sim P$ such that $S \in \mathcal{M}_{loc}(P')$.

Theorem

Any L¹-neighborhood of a separating measure contains a measure *P'* under which *S* is a local martingale.

Theorem

No-Free-Lunch criteria for infinite horizon (Schachermayer)

•
$$R_{\infty} := \cup_{T \in \mathbb{N}} R_T$$
, $A_{\infty} := R_{\infty} - L^0_+$.

- *NA*-property : $R_{\infty} \cap L^{0}_{+} = \{0\}$ (or $A_{\infty} \cap L^{0}_{+} = \{0\}$).
- NFL-property : C
 ^w_∞ ∩ L[∞]₊ = {0} where C
 ^w_∞ is the closure of C_∞ := A_∞ ∩ L[∞] in the topology σ(L[∞], L¹).

Theorem

NFL holds if and only if there is $P' \sim P$ such that $S \in \mathcal{M}_{loc}(P')$.

Theorem

Any L¹-neighborhood of a separating measure contains a measure *P'* under which *S* is a local martingale.

Theorem

No-Free-Lunch criteria for infinite horizon (Schachermayer)

•
$$R_{\infty} := \cup_{T \in \mathbb{N}} R_T$$
, $A_{\infty} := R_{\infty} - L^0_+$.

- *NA*-property : $R_{\infty} \cap L^{0}_{+} = \{0\}$ (or $A_{\infty} \cap L^{0}_{+} = \{0\}$).
- NFL-property : C
 ^w_∞ ∩ L[∞]₊ = {0} where C
 ^w_∞ is the closure of C_∞ := A_∞ ∩ L[∞] in the topology σ(L[∞], L¹).

Theorem

NFL holds if and only if there is $P' \sim P$ such that $S \in \mathcal{M}_{loc}(P')$.

Theorem

Any L^1 -neighborhood of a separating measure contains a measure P' under which S is a local martingale.

Theorem

No-Free-Lunch criteria for infinite horizon (Schachermayer)

•
$$R_{\infty} := \cup_{T \in \mathbb{N}} R_T$$
, $A_{\infty} := R_{\infty} - L^0_+$.

- *NA*-property : $R_{\infty} \cap L^{0}_{+} = \{0\}$ (or $A_{\infty} \cap L^{0}_{+} = \{0\}$).
- NFL-property : C
 ^w_∞ ∩ L[∞]₊ = {0} where C
 ^w_∞ is the closure of C_∞ := A_∞ ∩ L[∞] in the topology σ(L[∞], L¹).

Theorem

NFL holds if and only if there is $P' \sim P$ such that $S \in \mathcal{M}_{loc}(P')$.

Theorem

Any L^1 -neighborhood of a separating measure contains a measure P' under which S is a local martingale.

Theorem

Outline

Classical model

- Harrison-Pliska theorem
- Dalang–Morton–Willinger theorem : FTAP

2 Ramifications

- Restricted information
- Infinite horizon

3 Hedging theorems

э

< □ > < □ > < □ > < □ > < □ > < □ >

Hedging of European options

• Let $\xi \in L^0(\mathcal{F}_T)$. Define the set of *hedging endowments*

 $\Gamma := \Gamma(\xi) := \{ x : \exists H \in \mathcal{P} \text{ such that } x + H \cdot S_T \ge \xi \},\$

- i.e., Γ is the set of capitals starting from which we can super-replicate the pay-off of *European option* with maturity T by the terminal value of a self-financing portfolio.
- Let Q^a , Q^e denote the sets of absolute continuous and equivalent martingale measures and let Z^a , Z^e denote the corresponding sets of density processes.

Theorem

Suppose that NA holds, i.e. $Q^e \neq \emptyset$. Suppose that $\xi \ge 0$ and $E_Q \xi < \infty$ for every $Q \in Q^e$. Then $\Gamma = D$ where

 $D := [\bar{x}, \infty] = \{ x : x \ge E \rho_T \xi \text{ for all } \rho \in \mathcal{Z}^e \}.$

Hedging of European options

• Let $\xi \in L^0(\mathcal{F}_T)$. Define the set of *hedging endowments*

 $\Gamma := \Gamma(\xi) := \{ x : \exists H \in \mathcal{P} \text{ such that } x + H \cdot S_T \ge \xi \},\$

- i.e., Γ is the set of capitals starting from which we can super-replicate the pay-off of *European option* with maturity T by the terminal value of a self-financing portfolio.
- Let Q^a , Q^e denote the sets of absolute continuous and equivalent martingale measures and let Z^a , Z^e denote the corresponding sets of density processes.

Theorem

Suppose that NA holds, i.e. $Q^e \neq \emptyset$. Suppose that $\xi \ge 0$ and $E_Q \xi < \infty$ for every $Q \in Q^e$. Then $\Gamma = D$ where

 $D := [\bar{x}, \infty[= \{ x : x \ge E \rho_T \xi \text{ for all } \rho \in \mathcal{Z}^e \}.$

Hedging of European options

• Let $\xi \in L^0(\mathcal{F}_T)$. Define the set of *hedging endowments*

 $\Gamma := \Gamma(\xi) := \{ x : \exists H \in \mathcal{P} \text{ such that } x + H \cdot S_T \ge \xi \},\$

- i.e., Γ is the set of capitals starting from which we can super-replicate the pay-off of *European option* with maturity T by the terminal value of a self-financing portfolio.
- Let Q^a , Q^e denote the sets of absolute continuous and equivalent martingale measures and let Z^a , Z^e denote the corresponding sets of density processes.

Theorem

Suppose that NA holds, i.e. $Q^e \neq \emptyset$. Suppose that $\xi \ge 0$ and $E_Q \xi < \infty$ for every $Q \in Q^e$. Then $\Gamma = D$ where

$$D := [\bar{x}, \infty[= \{x : x \ge E\rho_T \xi \text{ for all } \rho \in \mathcal{Z}^e\}.$$

Optional decomposition

Theorem (Kramkov, 1996, Föllmer–Kabanov, 1998)

Suppose that $Q^e \neq \emptyset$. Let $X \ge 0$ be a process which is a supermartingale with respect $Q \in Q^e$. Then there are a strategy H and an increasing process A such that $X = X_0 + H \cdot S - A$.

Proposition (El Karoui)

Suppose that $Q^e \neq \emptyset$. Let $\xi \in L^0_+$ be such that $\sup_{Q \in Q^e} E_Q \xi < \infty$. Then the process $X_t = \operatorname{ess\,sup}_{Q \in Q^e} E_Q(\xi | \mathcal{F}_t)$ is a supermartingale with respect to every $Q \in Q^e$.

Proof of the hedging theorem. The inclusion $\Gamma \subseteq [\bar{x}, \infty]$ is obvious : if $x + H \cdot S_T \ge \xi$ then $x \ge E_Q \xi$ for every $Q \in Q^e$. To show the opposite one we suppose that $\sup_{Q \in Q} E_Q \xi < \infty$ (otherwise both sets are empty). Applying the ODT we get that $X = \bar{x} + H \cdot S - A$. Since $\bar{x} + H \cdot S_T \ge X_T = \xi$, the result follows.

Optional decomposition

Theorem (Kramkov, 1996, Föllmer–Kabanov, 1998)

Suppose that $Q^e \neq \emptyset$. Let $X \ge 0$ be a process which is a supermartingale with respect $Q \in Q^e$. Then there are a strategy H and an increasing process A such that $X = X_0 + H \cdot S - A$.

Proposition (El Karoui)

Suppose that $Q^e \neq \emptyset$. Let $\xi \in L^0_+$ be such that $\sup_{Q \in Q^e} E_Q \xi < \infty$. Then the process $X_t = \operatorname{ess} \sup_{Q \in Q^e} E_Q(\xi | \mathcal{F}_t)$ is a supermartingale with respect to every $Q \in Q^e$.

Proof of the hedging theorem. The inclusion $\Gamma \subseteq [\bar{x}, \infty]$ is obvious : if $x + H \cdot S_T \ge \xi$ then $x \ge E_Q \xi$ for every $Q \in Q^e$. To show the opposite one we suppose that $\sup_{Q \in Q} E_Q \xi < \infty$ (otherwise both sets are empty). Applying the ODT we get that $X = \bar{x} + H \cdot S - A$. Since $\bar{x} + H \cdot S_T \ge X_T = \xi$, the result follows.

Optional decomposition

Theorem (Kramkov, 1996, Föllmer–Kabanov, 1998)

Suppose that $Q^e \neq \emptyset$. Let $X \ge 0$ be a process which is a supermartingale with respect $Q \in Q^e$. Then there are a strategy H and an increasing process A such that $X = X_0 + H \cdot S - A$.

Proposition (El Karoui)

Suppose that $Q^e \neq \emptyset$. Let $\xi \in L^0_+$ be such that $\sup_{Q \in Q^e} E_Q \xi < \infty$. Then the process $X_t = \operatorname{ess} \sup_{Q \in Q^e} E_Q(\xi | \mathcal{F}_t)$ is a supermartingale with respect to every $Q \in Q^e$.

Proof of the hedging theorem. The inclusion $\Gamma \subseteq [\bar{x}, \infty]$ is obvious : if $x + H \cdot S_T \ge \xi$ then $x \ge E_Q \xi$ for every $Q \in Q^e$. To show the opposite one we suppose that $\sup_{Q \in Q} E_Q \xi < \infty$ (otherwise both sets are empty). Applying the ODT we get that $X = \bar{x} + H \cdot S - A$. Since $\bar{x} + H \cdot S_T \ge X_T = \xi$, the result follows.

Hedging of American options

- For the American-type option the exercise date τ is a stopping time ($\leq T$) and the pay-off is Y_{τ} , the value at τ of an adapted process Y. The description of the pay-off process $Y = (Y_t)$ is a clause of the contract (as well as the final maturity date T).
- Define the set of initial capitals starting from which we can run a self-financing portfolio which values dominate the pay-off :

 $\Gamma := \Gamma(Y) := \{ x : \exists H \in \mathcal{P} \text{ such that } x + H \cdot S \ge Y \}.$

Theorem

Suppose that $Q^e \neq \emptyset$. Let $Y \ge 0$ be an adapted process such that $E_Q Y_t < \infty$ for every $Q \in Q^e$ and $t \le T$. Then

 $\Gamma = \{ x : x \ge E \rho_{\tau} Y_{\tau} \text{ for all } \rho \in \mathcal{Z}^{e} \text{ and all stopping times } \tau \le T \}.$

Hedging of American options

- For the American-type option the exercise date τ is a stopping time (≤ T) and the pay-off is Y_τ, the value at τ of an adapted process Y. The description of the pay-off process Y = (Y_t) is a clause of the contract (as well as the final maturity date T).
- Define the set of initial capitals starting from which we can run a self-financing portfolio which values dominate the pay-off :

$$\Gamma := \Gamma(Y) := \{ x : \exists H \in \mathcal{P} \text{ such that } x + H \cdot S \ge Y \}.$$

Theorem

Suppose that $Q^e \neq \emptyset$. Let $Y \ge 0$ be an adapted process such that $E_Q Y_t < \infty$ for every $Q \in Q^e$ and $t \le T$. Then

 $\Gamma = \{ x : x \ge E \rho_{\tau} Y_{\tau} \text{ for all } \rho \in \mathcal{Z}^{e} \text{ and all stopping times } \tau \le T \}.$

Hedging of American options

- For the American-type option the exercise date τ is a stopping time (≤ T) and the pay-off is Y_τ, the value at τ of an adapted process Y. The description of the pay-off process Y = (Y_t) is a clause of the contract (as well as the final maturity date T).
- Define the set of initial capitals starting from which we can run a self-financing portfolio which values dominate the pay-off :

$$\Gamma := \Gamma(Y) := \{x : \exists H \in \mathcal{P} \text{ such that } x + H \cdot S \ge Y\}.$$

Theorem

Suppose that $Q^e \neq \emptyset$. Let $Y \ge 0$ be an adapted process such that $E_Q Y_t < \infty$ for every $Q \in Q^e$ and $t \le T$. Then

 $\Gamma = \{ x : x \ge E \rho_{\tau} Y_{\tau} \text{ for all } \rho \in \mathcal{Z}^{e} \text{ and all stopping times } \tau \le T \}.$

Hedging of American options : the proof

It is based on the optional decomposition theorem applied to the following result where T_t denotes the set of stopping times $\tau \ge t$.

Proposition (El Karoui)

Suppose that $Q^e \neq \emptyset$. Let $\xi \in L^0_+$ be such that $\sup_{Q \in Q^e} E_Q \xi < \infty$. Then the process $X_t = \operatorname{ess} \sup_{Q \in Q^e, \tau \in \mathcal{T}_t} E_Q(Y_\tau | \mathcal{F}_t)$ is a supermartingale with respect to every $Q \in Q^e$.

ヘロト 人間ト ヘヨト ヘヨト