Mathematical Aspects of the Theory of Financial Markets with Transaction Costs

Yuri Kabanov

Laboratoire de Mathématiques, Université de Franche-Comté

February 2008
No arbitrage criteria for frictionless markets (discrete-time)

- Further contributions : Schachermayer, Kabanov–Kramkov, Rogers, Jacod–Shiryaev, Kabanov–Stricker...
- Incomplete information : Kabanov–Stricker (2006)
- Infinite time horizon : Schachermayer (1994)
No arbitrage criteria for frictionless markets (discrete-time)

- Further contributions : Schachermayer, Kabanov–Kramkov, Rogers, Jacod–Shiryaev, Kabanov–Stricker...
- Incomplete information : Kabanov–Stricker (2006)
- Infinite time horizon : Schachermayer (1994)
No arbitrage criteria for frictionless markets (discrete-time)

- Further contributions : Schachermayer, Kabanov–Kramkov, Rogers, Jacod–Shiryaev, Kabanov–Stricker...
 - Incomplete information : Kabanov–Stricker (2006)
 - Infinite time horizon : Schachermayer (1994)
No arbitrage criteria for frictionless markets (discrete-time)

- Further contributions: Schachermayer, Kabanov–Kramkov, Rogers, Jacod–Shiryaev, Kabanov–Stricker...
- Incomplete information: Kabanov–Stricker (2006)
- Infinite time horizon: Schachermayer (1994)
No arbitrage criteria for frictionless markets (discrete-time)

- Further contributions : Schachermayer, Kabanov–Kramkov, Rogers, Jacod–Shiryaev, Kabanov–Stricker...
- Incomplete information : Kabanov–Stricker (2006)
- Infinite time horizon : Schachermayer (1994)
Classical theory

1. Classical model
 - Harrison-Pliska theorem
 - Dalang–Morton–Willinger theorem: FTAP

2. Ramifications
 - Restricted information
 - Infinite horizon

3. Hedging theorems
Outline

1. Classical model
 - Harrison-Pliska theorem
 - Dalang–Morton–Willinger theorem: FTAP

2. Ramifications
 - Restricted information
 - Infinite horizon

3. Hedging theorems
Model

- A probability space \((\Omega, \mathcal{F}, \mathbb{P})\) with a filtration \(\mathbb{F} = (\mathcal{F}_t)_{t=0,1,...,T}\) ("history").
- A price process \(S = (S^1_t, ..., S^d_t)\), \(d\)-dimensional, adapted: \(S_t\) is \(\mathcal{F}_t\)-measurable.
- \(S^1_t = 1\) for all \(t\): the first traded asset is the numéraire, say, "bank account". Thus, \(\Delta S^1_t = S^1_t - S^1_{t-1} = 0\).
- The value process of a self-financing portfolio with zero initial capital: \(V = H \cdot S\) where

\[
H \cdot S_t = \sum_{u \leq t} H_u \Delta S_u = \sum_{u \leq t} \left[H^1_u \Delta S^1_u + \sum_{i \geq 2} H^i_u \Delta S^i_u \right]
\]

(notation due to P.-A. Meyer). The process \(H = (H_t)\) (a strategy) is predictable: \(H_t\) is \(\mathcal{F}_{t-1}\)-measurable, \(H^i_t, i \geq 2\), are holdings in stocks. Attention with the interpretation of \(H^1_t\)!
Model

- A probability space \((\Omega, \mathcal{F}, \mathbb{P})\) with a filtration \(\mathbb{F} = (\mathcal{F}_t)_{t=0,1,...,T}\) ("history").
- A price process \(S = (S_1^1, ..., S_d^d)\), \(d\)-dimensional, adapted: \(S_t\) is \(\mathcal{F}_t\)-measurable.
- \(S_1^1 = 1\) for all \(t\): the first traded asset is the numéraire, say, "bank account". Thus, \(\Delta S_1^1 = S_1^1 - S_1^1 = 0\).
- The value process of a self-financing portfolio with zero initial capital: \(V = H \cdot S\) where

\[
H \cdot S_t = \sum_{u \leq t} H_u \Delta S_u = \sum_{u \leq t} \left[H_1^1 \Delta S_1^1 + \sum_{i \geq 2} H_i^i \Delta S_i^i \right]
\]

(notation due to P.-A. Meyer). The process \(H = (H_t)\) (a strategy) is predictable: \(H_t\) is \(\mathcal{F}_{t-1}\)-measurable, \(H_i^i, i \geq 2\), are holdings in stocks. Attention with the interpretation of \(H_1^1\)!
Model

- A probability space \((\Omega, \mathcal{F}, \mathbb{P})\) with a filtration \(\mathbb{F} = (\mathcal{F}_t)_{t=0,1,...,T}\) (“history”).
- A price process \(S = (S_1^t, ..., S_d^t)\), \(d\)-dimensional, adapted: \(S_t\) is \(\mathcal{F}_t\)-measurable.
- \(S_1^t = 1\) for all \(t\): the first traded asset is the numéraire, say, “bank account”. Thus, \(\Delta S_1^t = S_1^t - S_1^{t-1} = 0\).
- The value process of a self-financing portfolio with zero initial capital: \(V = H \cdot S\) where

\[
H \cdot S_t = \sum_{u \leq t} H_u \Delta S_u = \sum_{u \leq t} \left[H_u^1 \Delta S_u^1 + \sum_{i \geq 2} H_u^i \Delta S_u^i \right]
\]

(notation due to P.-A. Meyer). The process \(H = (H_t)\) (a strategy) is predictable: \(H_t\) is \(\mathcal{F}_{t-1}\)-measurable, \(H_t^i, i \geq 2\), are holdings in stocks. **Attention with the interpretation of \(H_1^1\)!**
Model

- A probability space \((\Omega, \mathcal{F}, \mathbb{P})\) with a filtration \(\mathbb{F} = (\mathcal{F}_t)_{t=0,1,\ldots,T}\) (“history”).
- A price process \(S = (S^1_t, \ldots, S^d_t)\), \(d\)-dimensional, adapted: \(S_t\) is \(\mathcal{F}_t\)-measurable.
- \(S^1_t = 1\) for all \(t\): the first traded asset is the *numéraire*, say, “bank account”. Thus, \(\Delta S^1_t = S^1_t - S^1_{t-1} = 0\).
- The value process of a self-financing portfolio with zero initial capital: \(V = H \cdot S\) where

\[
H \cdot S_t = \sum_{u \leq t} H_u \Delta S_u = \sum_{u \leq t} \left[H^1_u \Delta S^1_u + \sum_{i \geq 2} H^i_u \Delta S^i_u \right]
\]

(notation due to P.-A. Meyer). The process \(H = (H_t)\) (a strategy) is predictable: \(H_t\) is \(\mathcal{F}_{t-1}\)-measurable, \(H^i_t, i \geq 2\), are holdings in stocks. **Attention with the interpretation of \(H^1_t\)!**
A strategy H is an *arbitrage opportunity* if $H \cdot S_T \geq 0$ and $P(H \cdot S_T > 0) > 0$.

The model has the *no-arbitrage* property if such H do not exist.

Equivalently, the NA-property means that

$$ R_T \cap L_0^+ = \{0\} $$

where $R_T := \{H \cdot S_T : H \text{ is predictable}\}$ is the set of “results” and L_0^+ is the set of non-negative random variables.

Let $A_T := R_T - L_0^+$ be the set of “results with free disposal” (A_T can be interpreted also as the set of *hedgeable claims*). It is easily seen that the NA-property holds if and only if $A_T \cap L_0^+ = \{0\}$.
NA property

- A strategy H is an *arbitrage opportunity* if $H \cdot S_T \geq 0$ and $P(H \cdot S_T > 0) > 0$.
- The model has the *no-arbitrage* property if such H do not exist.
- Equivalently, the NA-property means that
 \[R_T \cap L^0_+ = \{0\} \]

where $R_T := \{H \cdot S_T : H \text{ is predictable}\}$ is the set of “results” and L^0_+ is the set of non-negative random variables.

- Let $A_T := R_T - L^0_+$ be the set of “results with free disposal” (A_T can be interpreted also as the set of *hedgeable claims*). It is easily seen that the NA-property holds if and only if $A_T \cap L^0_+ = \{0\}$.

Yuri Kabanov
Financial markets with transaction costs.
NA property

- A strategy H is an *arbitrage opportunity* if $H \cdot S_T \geq 0$ and $P(H \cdot S_T > 0) > 0$.

- The model has the *no-arbitrage* property if such H do not exist.

- Equivalently, the NA-property means that

$$R_T \cap L_0^+ = \{0\}$$

where $R_T := \{H \cdot S_T : H \text{ is predictable}\}$ is the set of “results” and L_0^+ is the set of non-negative random variables.

- Let $A_T := R_T - L_0^+$ be the set of “results with free disposal” (A_T can be interpreted also as the set of *hedgeable claims*). It is easily seen that the NA-property holds if and only if $A_T \cap L_0^+ = \{0\}$.
A strategy H is an *arbitrage opportunity* if $H \cdot S_T \geq 0$ and $P(H \cdot S_T > 0) > 0$.

The model has the *no-arbitrage* property if such H do not exist.

Equivalently, the NA-property means that

$$R_T \cap L_0^+ = \{0\}$$

where $R_T := \{H \cdot S_T : H \text{ is predictable}\}$ is the set of “results” and L_0^+ is the set of non-negative random variables.

Let $A_T := R_T - L_0^+$ be the set of “results with free disposal” (A_T can be interpreted also as the set of *hedgeable claims*). It is easily seen that the NA-property holds if and only if $A_T \cap L_0^+ = \{0\}$.
Harrison–Pliska theorem
Formulation

Theorem (Harrison–Pliska (1981))
Suppose that Ω is finite. Then the NA property holds if and only if there is a probability measure $\tilde{P} \sim P$ such that S is a \tilde{P} martingale.

Theorem (Dalang–Morton–Willinger (1990), short version)
The NA property holds if and only if there is a probability measure $\tilde{P} \sim P$ such that S is a \tilde{P} martingale.

Looks like the same theorem with a relaxed assumption... But not!
Harrison–Pliska theorem

Formulation

Theorem (Harrison–Pliska (1981))

Suppose that Ω is finite. Then the NA property holds if and only if there is a probability measure $\tilde{\mathbb{P}} \sim \mathbb{P}$ such that S is a $\tilde{\mathbb{P}}$ martingale.

Theorem (Dalang–Morton–Willinger (1990), short version)

The NA property holds if and only if there is a probability measure $\tilde{\mathbb{P}} \sim \mathbb{P}$ such that S is a $\tilde{\mathbb{P}}$ martingale.

Looks like the same theorem with a relaxed assumption... But not!
Harrison–Pliska theorem

Formulation

Theorem (Harrison–Pliska (1981))

Suppose that Ω is finite. Then the NA property holds if and only if there is a probability measure $\tilde{P} \sim P$ such that S is a \tilde{P} martingale.

Theorem (Dalang–Morton–Willinger (1990), short version)

The NA property holds if and only if there is a probability measure $\tilde{P} \sim P$ such that S is a \tilde{P} martingale.

Looks like the same theorem with a relaxed assumption... But not!
Harrison–Pliska theorem : proof

Theorem (Harrison–Pliska)

Ω is finite. Then \(A_T \cap L_0^+ = \{0\} \iff \exists \tilde{P} \sim P \) such that \(S \in \mathcal{M}(\tilde{P}) \).

Proof :

- If \(S \in \mathcal{M}(\tilde{P}) \), then \(\tilde{E}H \cdot S_T = 0 \). If \(H \cdot S_T \geq 0 \), then \(H \cdot S_T = 0 \) \(\tilde{P} \)-a.s., hence, \(P \)-a.s. That is \(R_T \cap L_0^+ = \{0\} \).

- Let \(\Omega = \{\omega_1, ..., \omega_N\} \), \(P(\{\omega_i\}) > 0 \). The space \(L_0^+ \) with \(\langle \xi, \eta \rangle = E\xi\eta \) is Euclidean, \(A_T \) is a polyhedral cone, hence, closed. If \(A_T \cap L_0^+ = \{0\} \), we can separate \(A_T \) and \(I_{\{\omega_i\}} \) by a hyperplane, i.e. there is \(\eta_i \) such that

\[
\sup_{\xi \in A_T} E\eta_i \xi < E\eta_i I_{\{\omega_i\}}.
\]

Since \(-L_0^+ \subseteq A_T \), it follows that \(\eta_i \geq 0 \), \(\sup \ldots = 0 \), and \(\eta_i(\omega_i) > 0 \). Thus, \(\eta := \sum \eta_i > 0 \) and \(\eta/E\eta \) is the density \(d\tilde{P}/dP \) of a measure such that \(\tilde{E}\xi \leq 0 \) for all \(\xi \in R_T \).
Harrison–Pliska theorem: proof

Theorem (Harrison–Pliska)

\(\Omega \) is finite. Then \(A_T \cap L_0^+ = \{0\} \Leftrightarrow \exists \tilde{P} \sim P \text{ such that } S \in \mathcal{M}(\tilde{P}). \)

\[\text{Proof:} \]

- If \(S \in \mathcal{M}(\tilde{P}) \), then \(\tilde{E}H \cdot S_T = 0 \). If \(H \cdot S_T \geq 0 \), then \(H \cdot S_T = 0 \) \(\tilde{P} \)-a.s., hence, \(P \)-a.s. That is \(R_T \cap L_0^+ = \{0\} \).
- Let \(\Omega = \{\omega_1, \ldots, \omega_N\} \), \(P(\{\omega_i\}) > 0 \). The space \(L_0^+ \) with \(\langle \xi, \eta \rangle = E\xi\eta \) is Euclidean, \(A_T \) is a polyhedral cone, hence, closed. If \(A_T \cap L_0^+ = \{0\} \), we can separate \(A_T \) and \(I_{\{\omega_i\}} \) by a hyperplane, i.e. there is \(\eta_i \) such that

\[
\sup_{\xi \in A_T} E\eta_i \xi < E\eta_i I_{\{\omega_i\}}.
\]

Since \(-L_0^+ \subseteq A_T \), it follows that \(\eta_i \geq 0 \), \(\sup \ldots = 0 \), and \(\eta_i(\omega_i) > 0 \). Thus, \(\eta := \sum \eta_i > 0 \) and \(\eta/E\eta \) is the density \(d\tilde{P}/dP \) of a measure such that \(\tilde{E}\xi \leq 0 \) for all \(\xi \in R_T \).
Harrison–Pliska theorem and convex analysis
Facts from convex analysis

- **K is a cone** if it is convex and $\lambda K = K$ for all $\lambda > 0$.
- A cone K defines the partial ordering: $x \geq_K y$ if $x - y \in K$.
- A closed cone K is called **proper** if $K^0 := K \cap (-K) = \{0\}$.
- Cone C is the set of all conic combinations of elements of C.
- Let K be a cone in \mathbb{R}^n. Its **dual positive cone** $K^* := \{z \in \mathbb{R}^n : zx \geq 0 \ \forall x \in K\}$ is closed.
- $\text{int} \ K$ is the interior of K.
- $\text{ri} \ K$ is the relative interior i.e. the interior in $K - K$.
- A **closed cone $K \subseteq \mathbb{R}^n$ is proper** if and only if there is a compact convex set C such that $0 \notin C$ and $K = \text{cone} \ C$.
 - One can take $C = \text{conv} (K \cap \{x \in \mathbb{R}^n : |x| = 1\})$.
- A **closed cone K is proper** if and only if $\text{int} \ K^* \neq \emptyset$.
- $\text{ri} \ K^* = \{w : wx > 0 \ \forall x \in K, \ x \neq K^0\}$.
 - If K is proper then $\text{int} \ K^* = \{w : wx > 0 \ \forall x \in K, \ x \neq 0\}$.
Facts from convex analysis

- **K is a cone** if it is convex and $\lambda K = K$ for all $\lambda > 0$.
- A cone K defines the partial ordering $: x \geq_K y$ if $x - y \in K$.
- A closed cone K is called **proper** if $K^0 := K \cap (-K) = \{0\}$.
- Cone C is the set of all conic combinations of elements of C.
- Let K be a cone in \mathbb{R}^n. Its **dual positive cone** $K^* := \{z \in \mathbb{R}^n : zx \geq 0 \ \forall x \in K\}$ is closed.
- $\text{int } K$ is the interior of K.
- $\text{ri } K$ is the relative interior i.e. the interior in $K - K$.
- A closed cone $K \subseteq \mathbb{R}^n$ is proper if and only if there is a compact convex set C such that $0 \notin C$ and $K = \text{cone } C$.
 One can take $C = \text{conv} (K \cap \{x \in \mathbb{R}^n : |x| = 1\})$.
- A closed cone K is proper if and only if $\text{int } K^* \neq \emptyset$.
- $\text{ri } K^* = \{w : wx > 0 \ \forall x \in K, \ x \neq K^0\}$.
 If K is proper then $\text{int } K^* = \{w : wx > 0 \ \forall x \in K, \ x \neq 0\}$.
Harrison–Pliska theorem and convex analysis

Facts from convex analysis

- K is a cone if it is convex and $\lambda K = K$ for all $\lambda > 0$.
- A cone K defines the partial ordering: $x \geq_K y$ if $x - y \in K$.
- A closed cone K is called proper if $K^0 := K \cap (-K) = \{0\}$.
- Cone C is the set of all conic combinations of elements of C.
- Let K be a cone in \mathbb{R}^n. Its dual positive cone $K^* := \{z \in \mathbb{R}^n : zx \geq 0 \ \forall x \in K\}$ is closed.
- $\text{int } K$ is the interior of K.
- $\text{ri } K$ is the relative interior i.e. the interior in $K - K$.
- A closed cone $K \subseteq \mathbb{R}^n$ is proper if and only if there is a compact convex set C such that $0 \notin C$ and $K = \text{cone } C$.
 One can take $C = \text{conv} (K \cap \{x \in \mathbb{R}^n : |x| = 1\})$.
- A closed cone K is proper if and only if $\text{int } K^* \neq \emptyset$.
- $\text{ri } K^* = \{w : wx > 0 \ \forall x \in K, \ x \neq K^0\}$.
 If K is proper then $\text{int } K^* = \{w : wx > 0 \ \forall x \in K, \ x \neq 0\}$.
Harrison–Pliska theorem and convex analysis
Facts from convex analysis

- K is a *cone* if it is convex and $\lambda K = K$ for all $\lambda > 0$.
- A cone K defines the partial ordering: $x \geq_K y$ if $x - y \in K$.
- A closed cone K is called *proper* if $K^0 := K \cap (-K) = \{0\}$.
- A cone C is the set of all conic combinations of elements of C.

Let K be a cone in \mathbb{R}^n. Its *dual positive cone* $K^* := \{z \in \mathbb{R}^n : zx \geq 0 \ \forall x \in K\}$ is closed.

- $\text{int } K$ is the interior of K.
- $\text{ri } K$ is the relative interior i.e. the interior in $K - K$.

A closed cone $K \subseteq \mathbb{R}^n$ is proper if and only if there is a compact convex set C such that $0 \notin C$ and $K = \text{cone } C$.

One can take $C = \text{conv} (K \cap \{x \in \mathbb{R}^n : |x| = 1\})$.

- A closed cone K is proper if and only if $\text{int } K^* \neq \emptyset$.
- $\text{ri } K^* = \{w : wx > 0 \ \forall x \in K, \ x \neq K^0\}$.

If K is proper then $\text{int } K^* = \{w : wx > 0 \ \forall x \in K, \ x \neq 0\}$.
Harrison–Pliska theorem and convex analysis

Facts from convex analysis

- K is a *cone* if it is convex and $\lambda K = K$ for all $\lambda > 0$.
- A cone K defines the partial ordering: $x \geq_K y$ if $x - y \in K$.
- A closed cone K is called *proper* if $K^0 := K \cap (-K) = \{0\}$.
- C is the set of all conic combinations of elements of C.
- Let K be a cone in \mathbb{R}^n. Its *dual positive cone* $K^* := \{z \in \mathbb{R}^n : zx \geq 0 \ \forall x \in K\}$ is closed.
- $\text{int} \ K$ is the interior of K.
 - $\text{ri} \ K$ is the relative interior i.e. the interior in $K - K$.
- A closed cone $K \subseteq \mathbb{R}^n$ is proper if and only if there is a compact convex set C such that $0 \notin C$ and $K = \text{cone} \ C$.
 One can take $C = \text{conv} \ (K \cap \{x \in \mathbb{R}^n : |x| = 1\})$.
- A closed cone K is proper if and only if $\text{int} \ K^* \neq \emptyset$.
- $\text{ri} \ K^* = \{w : wx > 0 \ \forall x \in K, \ x \neq K^0\}$.
 If K is proper then $\text{int} \ K^* = \{w : wx > 0 \ \forall x \in K, \ x \neq 0\}$.
Harrison–Pliska theorem and convex analysis

Facts from convex analysis

- K is a cone if it is convex and $\lambda K = K$ for all $\lambda > 0$.
- A cone K defines the partial ordering $x \geq_K y$ if $x - y \in K$.
- A closed cone K is called proper if $K^0 := K \cap (-K) = \{0\}$.
- cone C is the set of all conic combinations of elements of C.
- Let K be a cone in \mathbb{R}^n. Its dual positive cone $K^* := \{z \in \mathbb{R}^n : zx \geq 0 \ \forall x \in K\}$ is closed.
- $\text{int} K$ is the interior of K.
 $\text{ri} K$ is the relative interior i.e. the interior in $K - K$.
- A closed cone $K \subseteq \mathbb{R}^n$ is proper if and only if there is a compact convex set C such that $0 \notin C$ and $K = \text{cone} C$.
 One can take $C = \text{conv} (K \cap \{x \in \mathbb{R}^n : |x| = 1\})$.
- A closed cone K is proper if and only if $\text{int} K^* \neq \emptyset$.
- $\text{ri} K^* = \{w : wx > 0 \ \forall x \in K, \ x \neq K^0\}$.
 If K is proper then $\text{int} K^* = \{w : wx > 0 \ \forall x \in K, \ x \neq 0\}$.
Harrison–Pliska theorem and convex analysis

Facts from convex analysis

- K is a **cone** if it is convex and $\lambda K = K$ for all $\lambda > 0$.
- A cone K defines the partial ordering $x \geq_K y$ if $x - y \in K$.
- A closed cone K is called **proper** if $K^0 := K \cap (-K) = \{0\}$.
- Cone C is the set of all conic combinations of elements of C.
- Let K be a cone in \mathbb{R}^n. Its **dual positive cone**

 $K^* := \{z \in \mathbb{R}^n : zx \geq 0 \ \forall x \in K\}$ is closed.
- $\text{int } K$ is the interior of K.

 $\text{ri } K$ is the relative interior i.e. the interior in $K - K$.
- A closed cone $K \subseteq \mathbb{R}^n$ is proper if and only if there is a compact convex set C such that $0 \notin C$ and $K = \text{cone } C$.

 One can take $C = \text{conv} (K \cap \{x \in \mathbb{R}^n : |x| = 1\})$.
- A closed cone K is proper if and only if $\text{int } K^* \neq \emptyset$.
- $\text{ri } K^* = \{w : wx > 0 \ \forall x \in K, \ x \neq K^0\}$.

 If K is proper then $\text{int } K^* = \{w : wx > 0 \ \forall x \in K, \ x \neq 0\}$.
Harrison–Pliska theorem and convex analysis

Facts from convex analysis

- K is a *cone* if it is convex and $\lambda K = K$ for all $\lambda > 0$.
- A cone K defines the partial ordering: $x \geq_K y$ if $x - y \in K$.
- A closed cone K is called *proper* if $K^0 := K \cap (-K) = \{0\}$.
- A cone C is the set of all conic combinations of elements of C.
- Let K be a cone in \mathbb{R}^n. Its *dual positive cone* $K^* := \{z \in \mathbb{R}^n : zx \geq 0 \ \forall x \in K\}$ is closed.
- $\text{int} K$ is the interior of K.
- $\text{ri} K$ is the relative interior i.e. the interior in $K - K$.
- A closed cone $K \subseteq \mathbb{R}^n$ is proper if and only if there is a compact convex set C such that $0 \notin C$ and $K = \text{cone} C$.
 One can take $C = \text{conv} (K \cap \{x \in \mathbb{R}^n : |x| = 1\})$.
- A closed cone K is proper if and only if $\text{int} K^* \neq \emptyset$.
 - $\text{ri} K^* = \{w : wx > 0 \ \forall x \in K, \ x \neq K^0\}$.
 - If K is proper then $\text{int} K^* = \{w : wx > 0 \ \forall x \in K, \ x \neq 0\}$.

Yuri Kabanov

Financial markets with transaction costs.
Harrison–Pliska theorem and convex analysis
Facts from convex analysis

- \(K \) is a **cone** if it is convex and \(\lambda K = K \) for all \(\lambda > 0 \).
- A cone \(K \) defines the partial ordering : \(x \geq_K y \) if \(x - y \in K \).
- A closed cone \(K \) is called **proper** if \(K^0 := K \cap (-K) = \{0\} \).
- \(C \) is the set of all conic combinations of elements of \(C \).
- Let \(K \) be a cone in \(\mathbb{R}^n \). Its **dual positive cone**
 \(K^* := \{z \in \mathbb{R}^n : zx \geq 0 \ \forall x \in K\} \) is closed.
- \(\text{int} \ K \) is the interior of \(K \).
 \(\text{ri} \ K \) is the relative interior i.e. the interior in \(K - K \).
- A closed cone \(K \subseteq \mathbb{R}^n \) is proper if and only if there is a compact convex set \(C \) such that \(0 \notin C \) and \(K = \text{cone} \ C \).
 One can take \(C = \text{conv} (K \cap \{x \in \mathbb{R}^n : |x| = 1\}) \).
- A closed cone \(K \) is proper if and only if \(\text{int} \ K^* \neq \emptyset \).
 \(\text{ri} \ K^* = \{w : wx > 0 \ \forall x \in K, \ x \neq K^0\} \).
 If \(K \) is proper then \(\text{int} \ K^* = \{w : wx > 0 \ \forall x \in K, \ x \neq 0\} \).
A cone K is *polyhedral* if it is the intersection of a finite number of half-spaces $\{x : p_i x \geq 0\}, p_i \in \mathbb{R}^n, i = 1, \ldots, N$.

Theorem (Farkas–Minkowski–Weyl)

A cone is polyhedral if and only if it is finitely generated.

- Intuitively obvious, but not easy to prove. Useful!
- If K_1, K_2 are polyhedral cones, then $K_1 + K_2$ is also polyhedral.
A cone K is \emph{polyhedral} if it is the intersection of a finite number of half-spaces $\{x : p_i x \geq 0\}$, $p_i \in \mathbb{R}^n$, $i = 1, \ldots, N$.

Theorem (Farkas–Minkowski–Weyl)

A cone is polyhedral if and only if it is finitely generated.

- Intuitively obvious, but not easy to prove. Useful!
- If K_1, K_2 are polyhedral cones, then $K_1 + K_2$ is also polyhedral.
A cone K is \textit{polyhedral} if it is the intersection of a finite number of half-spaces $\{x : p_i x \geq 0\}$, $p_i \in \mathbb{R}^n$, $i = 1, \ldots, N$.

\begin{center}
\textbf{Theorem (Farkas–Minkowski–Weyl)}
\end{center}

\textit{A cone is polyhedral if and only if it is finitely generated.}

- Intuitively obvious, but not easy to prove. Useful!
- If K_1, K_2 are polyhedral cones, then $K_1 + K_2$ is also polyhedral.
Harrison–Pliska theorem and convex analysis

Stiemke lemma

Lemma (Stiemke, modern version)

Let K and R be closed cones in \mathbb{R}^n and K be proper. Then

$$R \cap K = \{0\} \iff (-R^*) \cap \text{int } K^* \neq \emptyset.$$

▷ Proof:

(\Leftarrow) The existence of w such that $wx \leq 0$ for all $x \in R$ and $wy > 0$ for all y in $K \setminus \{0\}$ implies that $R \cap (K \setminus \{0\}) = \emptyset$.

(\Rightarrow) Let C be a convex compact set such that $0 \notin C$ and $K = \text{cone } C$. By the separation theorem (one set is closed and another is compact) there is a non-zero $z \in \mathbb{R}^n$ such that

$$\sup_{x \in R} zx < \inf_{y \in C} zy.$$

Since R is a cone, the sup $\ldots = 0$, hence $z \in -R^*$ and, also, $zy > 0$ for all $y \in C$, so for all $z \in K$, $z \neq 0$, and $z \in \text{int } K$.
Harrison–Pliska theorem and convex analysis
Stiemke lemma implies the HP-theorem

Lemma (Stiemke, modern version (repeated))

Let K and R be closed cones in \mathbb{R}^n and K be proper. Then

$$R \cap K = \{0\} \iff (-R^*) \cap \text{int } K^* \neq \emptyset.$$

Take $R = R_T$ and $K = L_0^\infty$. Then $K^* = L_0^\infty$. An element η of $(-R^*) \cap \text{int } K^*$ is a strictly positive random variable and $\eta/E\eta$ is a density of “separating” probability measure: $\tilde{E}\xi \leq 0$ for all $\xi \in R_T$, hence, $\tilde{E}\xi = 0$ for all $\xi \in R_T$. The novelty in the HP-theorem is just the remark that a separating measure is a martingale one.

Lemma (Stiemke, 1915)

Let $K = \mathbb{R}_+^n$ and $R = \{y \in \mathbb{R}^n : y = Bx, x \in \mathbb{R}^d\}$ where B is a linear mapping. Then:

- either there is $x \in \mathbb{R}^d$ such that $Bx \geq_K 0$ and $Bx \neq 0$ or there is $y \in \mathbb{R}^n$ with strictly positive components such that $B^*y = 0$.

Yuri Kabanov
Financial markets with transaction costs.
Harrison–Pliska theorem and convex analysis

Stiemke lemma implies the HP-theorem

Lemma (Stiemke, modern version (repeated))

Let K and R be closed cones in \mathbb{R}^n and K be proper. Then

$$R \cap K = \{0\} \iff (-R^*) \cap \text{int } K^* \neq \emptyset.$$

Take $R = R_T$ and $K = L_0^+$. Then $K^* = L_0^+$. An element η of $(-R^*) \cap \text{int } K^*$ is a strictly positive random variable and $\eta/E\eta$ is a density of “separating” probability measure: $\tilde{E}\xi \leq 0$ for all $\xi \in R_T$, hence, $\tilde{E}\xi = 0$ for all $\xi \in R_T$. The novelty in the HP-theorem is just the remark that a separating measure is a martingale one.

Lemma (Stiemke, 1915)

Let $K = \mathbb{R}^n_+$ and $R = \{y \in \mathbb{R}^n : y = Bx, x \in \mathbb{R}^d\}$ where B is a linear mapping. Then:

either there is $x \in \mathbb{R}^d$ such that $Bx \succeq_K 0$ and $Bx \neq 0$ or there is $y \in \mathbb{R}^n$ with strictly positive components such that $B^*y = 0$.
Harrison–Pliska theorem and convex analysis
Stiemke lemma implies the HP-theorem

Lemma (Stiemke, modern version (repeated))

Let K and R be closed cones in \mathbb{R}^n and K be proper. Then

$$R \cap K = \{0\} \iff (-R^*) \cap \text{int } K^* \neq \emptyset.$$

Take $R = R_T$ and $K = L_0^+$. Then $K^* = L_0^+$. An element η of $(-R^*) \cap \text{int } K^*$ is a strictly positive random variable and $\eta/E\eta$ is a density of “separating” probability measure: $\tilde{E}\xi \leq 0$ for all $\xi \in R_T$, hence, $\tilde{E}\xi = 0$ for all $\xi \in R_T$. The novelty in the HP-theorem is just the remark that a separating measure is a martingale one.

Lemma (Stiemke, 1915)

Let $K = \mathbb{R}_+^n$ and $R = \{y \in \mathbb{R}^n : y = Bx, \ x \in \mathbb{R}^d\}$ where B is a linear mapping. Then:

either there is $x \in \mathbb{R}^d$ such that $Bx \geq_K 0$ and $Bx \neq 0$ or there is $y \in \mathbb{R}^n$ with strictly positive components such that $B^*y = 0$.
The following conditions are equivalent:

(a) $A_T \cap L^0_+ = \{0\}$ (NA condition);
(b) $A_T \cap L^0_+ = \{0\}$ and $A_T = \overline{A}_T$ (closure in L^0);
(c) $\overline{A}_T \cap L^0_+ = \{0\}$;
(d) there is a process $\rho \in \mathcal{M}$, $\rho > 0$, such that $\rho S \in \mathcal{M}$;
(e) there is a bounded process $\rho \in \mathcal{M}$, $\rho > 0$, such that $\rho S \in \mathcal{M}$;
(f) there is a process $\rho \in \mathcal{M}$, $\rho > 0$, such that $\rho S \in \mathcal{M}_{loc}$;
(g) $\{\eta \Delta S_t : \eta \in L^0(\mathcal{F}_{t-1})\} \cap L^0_+ = \{0\}$ for all $t \leq T$ (NA for 1-step models).

$S \in \mathcal{M}(\tilde{P})$ if and only if $\rho S \in \mathcal{M}(P)$ where $\rho_t = E(\rho_T|\mathcal{F}_t)$.

(d’) there is $\tilde{P} \sim P$ such that $S \in \mathcal{M}(\tilde{P})$;
(e’) there is $\tilde{P} \sim P$ with $d\tilde{P}/dP \in L^\infty$ such that $S \in \mathcal{M}(\tilde{P})$;
(f’) there is $\tilde{P} \sim P$ such that $S \in \mathcal{M}_{loc}(\tilde{P})$.
The following conditions are equivalent:

(a) $A_T \cap L^0_+ = \{0\}$ (NA condition);
(b) $A_T \cap L^0_+ = \{0\}$ and $A_T = \overline{A}_T$ (closure in L^0);
(c) $\overline{A}_T \cap L^0_+ = \{0\}$;
(d) there is a process $\rho \in \mathcal{M}$, $\rho > 0$, such that $\rho S \in \mathcal{M}$;
(e) there is a bounded process $\rho \in \mathcal{M}$, $\rho > 0$, such that $\rho S \in \mathcal{M}$;
(f) there is a process $\rho \in \mathcal{M}$, $\rho > 0$, such that $\rho S \in \mathcal{M}_{loc}$;
(g) $\{\eta \Delta S_t : \eta \in L^0(\mathcal{F}_{t-1})\} \cap L^0_+ = \{0\}$ for all $t \leq T$ (NA for 1-step models).

$S \in \mathcal{M}{}(\tilde{P})$ if and only if $\rho S \in \mathcal{M}(P)$ where $\rho_t = E(\rho_T|\mathcal{F}_t)$.

(d') there is $\tilde{P} \sim P$ such that $S \in \mathcal{M}{}(\tilde{P})$;
(e') there is $\tilde{P} \sim P$ with $d\tilde{P}/dP \in L^\infty$ such that $S \in \mathcal{M}{}(\tilde{P})$;
(f') there is $\tilde{P} \sim P$ such that $S \in \mathcal{M}_{loc}(\tilde{P})$.
NA criteria for arbitrary Ω

Theorem (Dalang–Morton–Willinger, 1990, extended version)

The following conditions are equivalent:

(a) $A_T \cap L_0^+ = \{0\}$ (NA condition);
(b) $A_T \cap L_0^+ = \{0\}$ and $A_T = \bar{A}_T$ (closure in L^0);
(c) $\bar{A}_T \cap L_0^+ = \{0\}$;
(d) there is a process $\rho \in \mathcal{M}$, $\rho > 0$, such that $\rho S \in \mathcal{M}$;
(e) there is a bounded process $\rho \in \mathcal{M}$, $\rho > 0$, such that $\rho S \in \mathcal{M}$;
(f) there is a process $\rho \in \mathcal{M}$, $\rho > 0$, such that $\rho S \in \mathcal{M}_{loc}$;
(g) $\{\eta \Delta S_t : \eta \in L^0(\mathcal{F}_{t-1})\} \cap L_0^+ = \{0\}$ for all $t \leq T$ (NA for 1-step models).

$S \in \mathcal{M}(\tilde{P})$ if and only if $\rho S \in \mathcal{M}(P)$ where $\rho_t = E(\rho_T | \mathcal{F}_t)$.

(d′) there is $\tilde{P} \sim P$ such that $S \in \mathcal{M}(\tilde{P})$;
(e′) there is $\tilde{P} \sim P$ with $d\tilde{P}/dP \in L^\infty$ such that $S \in \mathcal{M}(\tilde{P})$;
(f′) there is $\tilde{P} \sim P$ such that $S \in \mathcal{M}_{loc}(\tilde{P})$.
Auxiliary results
Two simple lemmas

Lemma (Engelbert, von Weizsäcker)

Let $\eta^n \in L^0(\mathbb{R}^d)$ be such that $\underline{\eta} := \lim \inf |\eta^n| < \infty$. Then there is a strictly increasing sequence of integer-valued random variables (τ_k) such that the sequence of η^{τ_k} converges a.s.

Idea of the proof: in the scalar case we take $\tau_k := \inf\{n > \tau_{k-1} : |\eta^n - \lim \inf \eta^n| \leq k^{-1}\}$, $\tau_0 = 0$.

Lemma (Grigoriev, 2004)

Let $\mathcal{G} = \{\Gamma_\alpha\}$ be a family of measurable sets such any measurable non-null set Γ has the non-null intersection with an element of \mathcal{G}. Then there is an at most countable subfamily of sets $\{\Gamma_{\alpha_i}\}$ which union is of full measure.

We may assume wlg that \mathcal{G} is stable under countable unions. Then an element with maximal probability exists and is of full measure.
Auxiliary results

Two simple lemmas

Lemma (Engelbert, von Weizsäcker)

Let $\eta^n \in L^0(\mathbb{R}^d)$ be such that $\eta := \lim \inf |\eta^n| < \infty$. Then there is a strictly increasing sequence of integer-valued random variables (τ_k) such that the sequence of η^{τ_k} converges a.s.

Idea of the proof: in the scalar case we take

$\tau_k := \inf \{ n > \tau_{k-1} : |\eta^n - \lim \inf \eta^n| \leq k^{-1} \}$, $\tau_0 = 0$.

Lemma (Grigoriev, 2004)

Let $\mathcal{G} = \{ \Gamma_\alpha \}$ be a family of measurable sets such any measurable non-null set Γ has the non-null intersection with an element of \mathcal{G}. Then there is an at most countable subfamily of sets $\{ \Gamma_{\alpha_i} \}$ which union is of full measure.

We may assume wlg that \mathcal{G} is stable under countable unions. Then an element with maximal probability exists and is of full measure.
Auxiliary results

Two simple lemmas

Lemma (Engelbert, von Weizsäcker)

Let $\eta^n \in L^0(\mathbb{R}^d)$ be such that $\eta := \lim\inf |\eta^n| < \infty$. Then there is a strictly increasing sequence of integer-valued random variables (τ_k) such that the sequence of η^{τ_k} converges a.s.

Idea of the proof: in the scalar case we take

$$\tau_k := \inf\{n > \tau_{k-1} : |\eta^n - \lim\inf \eta^n| \leq k^{-1}\}, \tau_0 = 0.$$

Lemma (Grigoriev, 2004)

Let $\mathcal{G} = \{\Gamma_\alpha\}$ be a family of measurable sets such any measurable non-null set Γ has the non-null intersection with an element of \mathcal{G}. Then there is an at most countable subfamily of sets $\{\Gamma_{\alpha_i}\}$ which union is of full measure.

We may assume wlg that \mathcal{G} is stable under countable unions. Then an element with maximal probability exists and is of full measure.
Auxiliary results

Two simple lemmas

Lemma (Engelbert, von Weizsäcker)

Let \(\eta^n \in L^0(\mathbb{R}^d) \) be such that \(\eta := \lim \inf |\eta^n| < \infty \). Then there is a strictly increasing sequence of integer-valued random variables \((\tau_k)\) such that the sequence of \(\eta^{\tau_k} \) converges a.s.

Idea of the proof: in the scalar case we take \(\tau_k := \inf \{ n > \tau_{k-1} : |\eta^n - \lim \inf \eta^n| \leq k^{-1} \} \), \(\tau_0 = 0 \).

Lemma (Grigoriev, 2004)

Let \(\mathcal{G} = \{ \Gamma_\alpha \} \) be a family of measurable sets such any measurable non-null set \(\Gamma \) has the non-null intersection with an element of \(\mathcal{G} \). Then there is an at most countable subfamily of sets \(\{ \Gamma_{\alpha_i} \} \) which union is of full measure.

We may assume wlg that \(\mathcal{G} \) is stable under countable unions. Then an element with maximal probability exists and is of full measure.
Auxiliary results
Kreps–Yan theorem

Theorem (Kreps, Yan, 1980)

Let C be a closed convex cone in L^1 such that $-L^1_+ \subseteq C$ and $C \cap L^1_+ = \{0\}$. Then there is $\tilde{P} \sim P$ with $d\tilde{P}/dP \in L^\infty$ such that $\tilde{E}\xi \leq 0$ for all $\xi \in C$.

Proof. By the Hahn–Banach theorem any non-zero $\alpha \in L^1_+$ can be separated from C: there is $\eta_\alpha \in L^\infty$, $\|\eta_\alpha\|_\infty = 1$, such that

$$\sup_{\xi \in C} E\eta_\alpha \xi < E\eta_\alpha \alpha.$$

Then $\eta_\alpha \geq 0$, $\sup \ldots = 0$, and $E\eta_\alpha \alpha > 0$. The latter inequality ensures that the family of sets $\Gamma_\alpha := \{\eta_\alpha > 0\}$ satisfies the assumption of the lemma ($E\eta_{I_{\Gamma}} l_{I_{\Gamma}} > 0$ if $l_{I_{\Gamma}} \neq 0$). Thus, for a certain sequence of indices $\eta := \sum 2^{-i} \eta_{\alpha_i} > 0$ a.s. and we take $\tilde{P} := \eta P$.

Yuri Kabanov
Financial markets with transaction costs.
Theorem (Kreps, Yan, 1980)

Let C be a closed convex cone in L^1 such that $-L^1_+ \subseteq C$ and $C \cap L^1_+ = \{0\}$. Then there is $\tilde{P} \sim P$ with $d\tilde{P}/dP \in L^\infty$ such that $\tilde{E}\xi \leq 0$ for all $\xi \in C$.

Proof. By the Hahn–Banach theorem any non-zero $\alpha \in L^1_+$ can be separated from C : there is $\eta_\alpha \in L^\infty$, $||\eta_\alpha||_\infty = 1$, such that

$$\sup_{\xi \in C} E\eta_\alpha \xi < E\eta_\alpha \alpha.$$

Then $\eta_\alpha \geq 0$, $\sup \ldots = 0$, and $E\eta_\alpha \alpha > 0$. The latter inequality ensures that the family of sets $\Gamma_\alpha := \{\eta_\alpha > 0\}$ satisfies the assumption of the lemma ($E\eta_{I\Gamma} I\Gamma > 0$ if $I\Gamma \neq 0$). Thus, for a certain sequence of indices $\eta := \sum 2^{-i}\eta_\alpha_i > 0$ a.s. and we take $\tilde{P} := \eta P$.

Yuri Kabanov
Financial markets with transaction costs.
DMW-theorem: proofs of “non-trivial” implications

DMW-theorem

(c) \(\bar{A}_T \cap L_0^+ = \{0\} \);
(e') there is \(\tilde{P} \sim P \) with \(d\tilde{P}/dP \in L^\infty \) such that \(S \in \mathcal{M}(\tilde{P}) \).

(c) \(\Rightarrow \) (e') Let \(X := \sum_{t\leq T} |S_t|, Z' := e^{-X}/Ee^{-X}, P' := Z'P, A_1^\uparrow := A_T \cap L^1(P') \). Then \(\bar{A}_1^\uparrow \cap L_0^+ = \{0\} \). By the Kreps-Yan theorem there is bounded \(Z'' \) such that \(E'Z''\xi \leq 0 \) for all \(\xi \in A_1^\uparrow \), in particular, for \(\xi = \pm I_\Gamma(S_{t+1} - S_t) \) where \(\Gamma \in \mathcal{F}_t \). But this means that \(\tilde{P} = Z'Z''P \) is a martingale measure.

(a) \(A_T \cap L_0^+ = \{0\} \);
(f') there is \(\tilde{P} \sim P \) such that \(S \in \mathcal{M}_{loc}(\tilde{P}) \).

(f') \(\Rightarrow \) (a) Let \(\xi \in A_T \cap L_0^+ \), i.e. \(0 \leq \xi \leq H \cdot S_T \). Since the conditional expectation with respect to the local martingale measure \(\tilde{E}(H_t\Delta S_t|\mathcal{F}_{t-1}) = 0 \), we obtain by consecutive conditioning that \(\tilde{E}H \cdot S_T = 0 \). Thus, \(\xi = 0 \).
DMW-theorem: proofs of “non-trivial” implications

(c) $\bar{A}_T \cap L_+^0 = \{0\}$;
(e') there is $\tilde{P} \sim P$ with $d\tilde{P}/dP \in L^\infty$ such that $S \in \mathcal{M}(\tilde{P})$.

(c) \Rightarrow (e') Let $X := \sum_{t \leq T} |S_t|$, $Z' := e^{-X}/Ee^{-X}$, $P' := Z'P$, $A^1_T := A_T \cap L^1(P')$. Then $\bar{A}^1_T \cap L_+^0 = \{0\}$. By the Kreps-Yan theorem there is bounded Z'' such that $E'Z''\xi \leq 0$ for all $\xi \in A^1_T$, in particular, for $\xi = \pm I_{\Gamma}(S_{t+1} - S_t)$ where $\Gamma \in \mathcal{F}_t$. But this means that $\tilde{P} = Z'Z''P$ is a martingale measure.

(a) $A_T \cap L_+^0 = \{0\}$;
(f') there is $\tilde{P} \sim P$ such that $S \in \mathcal{M}_{loc}(\tilde{P})$.

(f') \Rightarrow (a) Let $\xi \in A_T \cap L_+^0$, i.e. $0 \leq \xi \leq H \cdot S_T$. Since the conditional expectation with respect to the local martingale measure $\tilde{E}(H_t\Delta S_t|\mathcal{F}_{t-1}) = 0$, we obtain by consecutive conditioning that $\tilde{E}H \cdot S_T = 0$. Thus, $\xi = 0$.
DMW-theorem : proofs of “non-trivial” implications

(c) \(\tilde{A}_T \cap L^0_+ = \{0\} \);

(e') there is \(\tilde{P} \sim P \) with \(d\tilde{P}/dP \in L^\infty \) such that \(S \in \mathcal{M}(\tilde{P}) \).

(c) \Rightarrow (e') Let \(X := \sum_{t \leq T} |S_t| \), \(Z' := e^{-X}/Ee^{-X} \), \(P' := Z'P \), \(A^1_T := A_T \cap L^1(P') \). Then \(\tilde{A}^1_T \cap L^0_+ = \{0\} \). By the Kreps-Yan theorem there is bounded \(Z'' \) such that \(E'Z''\xi \leq 0 \) for all \(\xi \in A^1_T \), in particular, for \(\xi = \pm I_\Gamma(S_{t+1} - S_t) \) where \(\Gamma \in \mathcal{F}_t \). But this means that \(\tilde{P} = Z'Z''P \) is a martingale measure.

(a) \(A_T \cap L^0_+ = \{0\} \);

(f') there is \(\tilde{P} \sim P \) such that \(S \in \mathcal{M}_{loc}(\tilde{P}) \).

(f') \Rightarrow (a) Let \(\xi \in A_T \cap L^0_+ \), i.e. \(0 \leq \xi \leq H \cdot S_T \). Since the conditional expectation with respect to the local martingale measure \(\tilde{E}(H_t \Delta S_t | \mathcal{F}_{t-1}) = 0 \), we obtain by consecutive conditioning that \(\tilde{E}H \cdot S_T = 0 \). Thus, \(\xi = 0 \).
DMW-theorem: proofs of “non-trivial” implications

(c) \(\bar{A}_T \cap L^0_+ = \{0\} \);
(e') there is \(\tilde{P} \sim P \) with \(d\tilde{P}/dP \in L^\infty \) such that \(S \in \mathcal{M}(\tilde{P}) \).

(c) \implies (e') Let \(X := \sum_{t \leq T} |S_t| \), \(Z := e^{-X}/Ee^{-X} \), \(P' := Z'P \), \(A^1_T := A_T \cap L^1(P') \). Then \(\bar{A}^1_T \cap L^0_+ = \{0\} \). By the Kreps-Yan theorem there is bounded \(Z'' \) such that \(E'Z''\xi \leq 0 \) for all \(\xi \in A^1_T \), in particular, for \(\xi = \pm I_\Gamma(S_{t+1} - S_t) \) where \(\Gamma \in \mathcal{F}_t \). But this means that \(\tilde{P} = Z'Z''P \) is a martingale measure.

(a) \(A_T \cap L^0_+ = \{0\} \);
(f') there is \(\tilde{P} \sim P \) such that \(S \in \mathcal{M}_{loc}(\tilde{P}) \).

(f') \implies (a) Let \(\xi \in A_T \cap L^0_+ \), i.e. \(0 \leq \xi \leq H \cdot S_T \). Since the conditional expectation with respect to the local martingale measure \(\tilde{E}(H_t\Delta S_t|\mathcal{F}_{t-1}) = 0 \), we obtain by consecutive conditioning that \(\tilde{E}H \cdot S_T = 0 \). Thus, \(\xi = 0 \).
DMW-theorem : proof of the “difficult” implication

\[A_T \cap L^0_+ = \{0\} \Rightarrow A_T = \overline{A_T} \text{ (closure in } L^0). \]

We consider only the case \(T = 1 \).

Let \(H^n_1 \Delta S_1 - r^n \rightarrow \zeta \) where \(H^n_1 \in L^0(\mathbb{R}^b, \mathcal{F}_0) \), \(r^n \in L^0_+ \).

The claim is : \(\zeta = H_1 \Delta S_1 - r \) where \(H_1 \in L^0(\mathbb{R}^b, \mathcal{F}_0) \), \(r \in L^0_+ \).

We represent \((H^n_1)\) as the infinite matrix

\[
H_1 := \begin{bmatrix}
H_{11}^{11} & H_{11}^{21} & \ldots & \ldots & H_{11}^{n1} & \ldots \\
H_{12}^{11} & H_{12}^{21} & \ldots & \ldots & H_{12}^{n1} & \ldots \\
\vdots & \vdots & \ddots & \ddots & \vdots & \ddots \\
H_{1d}^{11} & H_{1d}^{21} & \ldots & \ldots & H_{1d}^{n1} & \ldots \\
\end{bmatrix}.
\]

Suppose that the claim holds when \(H_1 \) has, for each \(\omega m \) zero lines. We show that it holds also when \(H_1 \) has \(m - 1 \) zero lines.

Let \(\Omega_i \in \mathcal{F}_0 \) form a finite partition of \(\Omega \). An important (but obvious) observation : we may argue on each \(\Omega_i \) separately.
DMW-theorem: proof of the “difficult” implication

\(A_T \cap L_0^0 = \{0\} \Rightarrow A_T = \bar{A}_T \) (closure in \(L_0^0 \)).

We consider only the case \(T = 1 \).

Let \(H_1^n \Delta S_1 - r^n \rightarrow \zeta \) where \(H_1^n \in L_0^0(\mathbb{R}^b, \mathcal{F}_0) \), \(r^n \in L_0^+ \).

The claim is: \(\zeta = H_1 \Delta S_1 - r \) where \(H_1 \in L_0^0(\mathbb{R}^b, \mathcal{F}_0) \), \(r \in L_0^+ \).

We represent \((H_1^n)\) as the infinite matrix

\[
H_1 := \begin{bmatrix}
H_{11} & H_{12} & \cdots & \cdots & H_{1n} \\
H_{11} & H_{12} & \cdots & \cdots & H_{1n} \\
\vdots & \vdots & \ddots & \cdots & \vdots \\
H_{11} & H_{12} & \cdots & \cdots & H_{1n}
\end{bmatrix}.
\]

Suppose that the claim holds when \(H_1 \) has, for each \(\omega \) \(m \) zero lines. We show that it holds also when \(H_1 \) has \(m - 1 \) zero lines.

Let \(\Omega_i \in \mathcal{F}_0 \) form a finite partition of \(\Omega \). An important (but obvious) observation: we may argue on each \(\Omega_i \) separately.
DMW-theorem : proof of the “difficult” implication

\[A_T \cap L_+^0 = \{0\} \Rightarrow A_T = \overline{A_T} \text{ (closure in } L^0). \]

We consider only the case \(T = 1 \).

Let \(H^n_1 \Delta S_1 - r^n \rightarrow \zeta \) where \(H^n_1 \in L^0(\mathbb{R}^b, \mathcal{F}_0), r^n \in L_+^0 \).

The claim is : \(\zeta = H_1 \Delta S_1 - r \) where \(H_1 \in L^0(\mathbb{R}^b, \mathcal{F}_0), r \in L_+^0 \).

We represent \((H^n_1) \) as the infinite matrix

\[
H_1 := \begin{bmatrix}
H_{11}^{11} & H_{12}^{21} & \cdots & \cdots & H_{11}^{n1} & \cdots \\
H_{11}^{12} & H_{12}^{22} & \cdots & \cdots & H_{11}^{n2} & \cdots \\
\vdots & \vdots & \ddots & \ddots & \vdots & \ddots \\
H_{1d}^{11} & H_{1d}^{21} & \cdots & \cdots & H_{1d}^{n1} & \cdots \\
\end{bmatrix}.
\]

Suppose that the claim holds when \(H_1 \) has, for each \(\omega \) \(m \) zero lines. We show that it holds also when \(H_1 \) has \(m - 1 \) zero lines.

Let \(\Omega_i \in \mathcal{F}_0 \) form a finite partition of \(\Omega \). An important (but obvious) observation : we may argue on each \(\Omega_i \) separately.
DMW-theorem : proof of the “difficult” implication

\[A_T \cap L^0_+ = \{0\} \Rightarrow A_T = \bar{A}_T \text{ (closure in } L^0). \]

We consider only the case \(T = 1 \).

Let \(H^n_1 \Delta S_1 - r^n \rightarrow \zeta \) where \(H^n_1 \in L^0(\mathbb{R}^b, \mathcal{F}_0) \), \(r^n \in L^0_+ \).

The claim is : \(\zeta = H_1 \Delta S_1 - r \) where \(H_1 \in L^0(\mathbb{R}^b, \mathcal{F}_0) \), \(r \in L^0_+ \).

We represent \((H^n_1)\) as the infinite matrix

\[
H_1 := \begin{bmatrix}
H^{11}_1 & H^{21}_1 & \cdots & \cdots & H^{n1}_1 & \cdots \\
H^{12}_1 & H^{22}_1 & \cdots & \cdots & H^{n2}_1 & \cdots \\
\vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\
H^{1d}_1 & H^{2d}_1 & \cdots & \cdots & H^{nd}_1 & \cdots \\
\end{bmatrix}.
\]

Suppose that the claim holds when \(H_1 \) has, for each \(\omega \) \(m \) zero lines. We show that it holds also when \(H_1 \) has \(m-1 \) zero lines.

Let \(\Omega_i \in \mathcal{F}_0 \) form a finite partition of \(\Omega \). An important (but obvious) observation : we may argue on each \(\Omega_i \) separately.
DMW-theorem: proof of the "difficult" implication

\[A_T \cap L_0^+ = \{0\} \Rightarrow A_T = \bar{A}_T \text{ (closure in } L^0). \]

We consider only the case \(T = 1 \).

Let \(H^n_1 \Delta S_1 - r^n \to \zeta \) where \(H^n_1 \in L^0(\mathbb{R}^b, \mathcal{F}_0) \), \(r^n \in L_+^0 \).

The claim is: \(\zeta = H_1 \Delta S_1 - r \) where \(H_1 \in L^0(\mathbb{R}^b, \mathcal{F}_0) \), \(r \in L_+^0 \).

We represent \((H^n_1) \) as the infinite matrix

\[
H_1 := \begin{bmatrix}
H_{11}^{11} & H_{12}^{21} & \cdots & H_{1d}^{n1} & \cdots \\
H_{11}^{12} & H_{12}^{22} & \cdots & H_{1d}^{n2} & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
H_{11}^{1d} & H_{12}^{2d} & \cdots & H_{1d}^{nd} & \cdots
\end{bmatrix}.
\]

Suppose that the claim holds when \(H_1 \) has, for each \(\omega \) \(m \) zero lines. We show that it holds also when \(H_1 \) has \(m - 1 \) zero lines.

Let \(\Omega_i \in \mathcal{F}_0 \) form a finite partition of \(\Omega \). An important (but obvious) observation: we may argue on each \(\Omega_i \) separately.
DMW-theorem : proof of the “difficult” implication

\[A_T \cap L_0^0 = \{0\} \Rightarrow A_T = \bar{A}_T \text{ (closure in } L^0). \]

We consider only the case \(T = 1 \).
Let \(H^n_1 \Delta S_1 - r^n \to \zeta \) where \(H^n_1 \in L^0(\mathbb{R}^b, \mathcal{F}_0), \ r^n \in L_+^0 \).
The claim is : \(\zeta = H_1 \Delta S_1 - r \) where \(H_1 \in L^0(\mathbb{R}^b, \mathcal{F}_0), \ r \in L^0_+ \).
We represent \((H^n_1)\) as the infinite matrix

\[
H_1 := \begin{bmatrix}
H^{11}_1 & H^{21}_1 & \cdots & \cdots & H^{n1}_1 & \cdots \\
H^{12}_1 & H^{22}_1 & \cdots & \cdots & H^{n2}_1 & \cdots \\
\vdots & \vdots & \ddots & \cdots & \vdots & \cdots \\
H^{1d}_1 & H^{2d}_1 & \cdots & \cdots & H^{nd}_1 & \cdots
\end{bmatrix}.
\]

Suppose that the claim holds when \(H_1 \) has, for each \(\omega \) \(m \) zero lines. We show that it holds also when \(H_1 \) has \(m - 1 \) zero lines.
Let \(\Omega_i \in \mathcal{F}_0 \) form a finite partition of \(\Omega \). An important (but obvious) observation : we may argue on each \(\Omega_i \) separately.
DMW-theorem : proof of the “difficult” implication

Let $H_1 := \liminf |H_1^n|$. On $\Omega_1 := \{H_1 < \infty\}$ by the lemma on subsequences, we find a strictly increasing sequence of \mathcal{F}_0-measurable r.v. τ_k such that $H_1^{T_k}$ converges to some H_1; automatically, r^{T_k} converges to some $r \geq 0$ and we conclude.

On $\Omega_2 := \{H_1 = \infty\}$ we put $G_1^n := H_1^n / |H_1^n|$ and $h_1^n := r_1^n / |H_1^n|$. Then $G_1^n \Delta S_1 - h_1^n \to 0$ a.s. By the lemma we find \mathcal{F}_0-measurable τ_k such that $G_1^{T_k}(\omega)$ converges to some \tilde{G}_1. It follows that $\tilde{G}_1 \Delta S_1 = \tilde{h}_1 \geq 0$. Because of the NA-property, $\tilde{G}_1 \Delta S_1 = 0$.

As $\tilde{G}_1(\omega) \neq 0$, there exists a partition of Ω_2 into d disjoint subsets $\Omega^i_2 \in \mathcal{F}_0$ such that $\tilde{G}_1^i \neq 0$ on Ω^i_2.

Define $\bar{H}_1^n := H_1^n - \beta^n \tilde{G}_1$ where $\beta^n := H_1^{ni} / \tilde{G}_1^i$ on Ω^i_2. Then $\bar{H}_1^n \Delta S_1 = H_1^n \Delta S_1$ on Ω_2. The matrix \bar{H}_1 has, for each $\omega \in \Omega_2$, at least m zero lines: our operations did not affect the zero lines of H_1 and a new one has appeared, namely, the ith one on Ω^i_2. We conclude by the induction hypothesis.
DMW-theorem: proof of the “difficult” implication

Let $H_1 := \lim \inf |H_1^n|$. On $\Omega_1 := \{H_1 < \infty\}$ by the lemma on subsequences, we find a strictly increasing sequence of \mathcal{F}_0-measurable r.v. τ_k such that $H_1^{T_k}$ converges to some H_1; automatically, r^{T_k} converges to some $r \geq 0$ and we conclude.

On $\Omega_2 := \{H_1 = \infty\}$ we put $G_1^n := H_1^n / |H_1^n|$ and $h_1^n := r_1^n / |H_1^n|$. Then $G_1^n \Delta S_1 - h_1^n \to 0$ a.s. By the lemma we find \mathcal{F}_0-measurable τ_k such that $G_1^{T_k}(\omega)$ converges to some \tilde{G}_1. It follows that $\tilde{G}_1 \Delta S_1 = \tilde{h}_1 \geq 0$. Because of the NA-property, $\tilde{G}_1 \Delta S_1 = 0$.

As $\tilde{G}_1(\omega) \neq 0$, there exists a partition of Ω_2 into d disjoint subsets $\Omega_2^i \in \mathcal{F}_0$ such that $\tilde{G}_1^i \neq 0$ on Ω_2^i.

Define $\tilde{H}_1^n := H_1^n - \beta^n \tilde{G}_1$ where $\beta^n := H_1^{ni} / \tilde{G}_1^i$ on Ω_2^i. Then $\tilde{H}_1^n \Delta S_1 = H_1^n \Delta S_1$ on Ω_2. The matrix \tilde{H}_1 has, for each $\omega \in \Omega_2$, at least m zero lines: our operations did not affect the zero lines of H_1 and a new one has appeared, namely, the ith one on Ω_2^i. We conclude by the induction hypothesis.
Outline

1. Classical model
 - Harrison-Pliska theorem
 - Dalang–Morton–Willinger theorem: FTAP

2. Ramifications
 - Restricted information
 - Infinite horizon

3. Hedging theorems
NA-criteria under restricted information

We are given a filtration $G = (G_t)_{t\leq T}$ with $G_t \subseteq F_t$. The strategies are predictable with respect to G, i.e. $H_{t-1} \in L^0(G_t)$, a situation when the portfolios are revised on the basis of restricted information, e.g., due to a delay. We define the sets R_T, A_T and give a definition of the arbitrage which, in these symbols, looks exactly as (a) before and we can list the corresponding necessary and sufficient conditions. Notation : $X^o_t := E(X_t|G_t)$.

Theorem (Kabanov–Stricker, 2006)

The following properties are equivalent:

(a) $A_T \cap L^0_+ = \{0\}$ (NA condition);
(b) $A_T \cap L^0_+ = \{0\}$ and $A_T = \tilde{A}_T$;
(c) $\tilde{A}_T \cap L^0_+ = \{0\}$;
(d) there is a process $\rho \in \mathcal{M}$, $\rho > 0$, with $(\rho S)^o \in \mathcal{M}(G)$;
(e) there is a bounded process $\rho \in \mathcal{M}$, $\rho > 0$, with $(\rho S)^o \in \mathcal{M}(G)$.

Yuri Kabanov

Financial markets with transaction costs.
NA-criteria under restricted information

We are given a filtration $\mathbf{G} = (\mathcal{G}_t)_{t \leq T}$ with $\mathcal{G}_t \subseteq \mathcal{F}_t$. The strategies are predictable with respect to \mathbf{G}, i.e. $H_{t-1} \in L^0(\mathcal{G}_t)$, a situation when the portfolios are revised on the basis of restricted information, e.g., due to a delay. We define the sets R_T, A_T and give a definition of the arbitrage which, in these symbols, looks exactly as (a) before and we can list the corresponding necessary and sufficient conditions. Notation: $X_t^\circ := E(X_t|\mathcal{G}_t)$.

Theorem (Kabanov–Stricker, 2006)

The following properties are equivalent:

(a) $A_T \cap L^0_+ = \{0\}$ (*NA condition*);

(b) $A_T \cap L^0_+ = \{0\}$ and $A_T = \bar{A}_T$;

(c) $\bar{A}_T \cap L^0_+ = \{0\}$;

(d) there is a process $\rho \in \mathcal{M}$, $\rho > 0$, with $(\rho S)^\circ \in \mathcal{M}(\mathbf{G})$;

(e) there is a bounded process $\rho \in \mathcal{M}$, $\rho > 0$, with $(\rho S)^\circ \in \mathcal{M}(\mathbf{G})$.
No-Free-Lunch criteria for infinite horizon (Schachermayer)

- $R_\infty := \bigcup_{T \in \mathbb{N}} R_T$, $A_\infty := R_\infty - L_0^+$.
- **NA-property**: $R_\infty \cap L_+^0 = \{0\}$ (or $A_\infty \cap L_+^0 = \{0\}$).
- **NFL-property**: $\overline{C}_\infty \cap L_+^\infty = \{0\}$ where \overline{C}_∞ is the closure of $C_\infty := A_\infty \cap L_\infty^\infty$ in the topology $\sigma(L_\infty^\infty, L_1^\infty)$.

Theorem

NFL holds if and only if there is $P' \sim P$ such that $S \in \mathcal{M}_{loc}(P')$.

Theorem

Any L_1^∞-neighborhood of a separating measure contains a measure P' under which S is a local martingale.

Theorem

Let $S \in \mathcal{M}_{loc}(P)$. Then there exists $\tilde{P} \sim P$ such that $S \in \mathcal{M}(\tilde{P})$.
No-Free-Lunch criteria for infinite horizon (Schachermayer)

- $R_\infty := \bigcup_{T \in \mathbb{N}} R_T$, $A_\infty := R_\infty - L_0^+$.
- **NA-property**: $R_\infty \cap L_0^+ = \{0\}$ (or $A_\infty \cap L_0^+ = \{0\}$).
- **NFL-property**: $\overline{C}_\infty^w \cap L_\infty^+ = \{0\}$ where \overline{C}_∞^w is the closure of $C_\infty := A_\infty \cap L_\infty$ in the topology $\sigma(L_\infty, L_1)$.

Theorem

*NFL holds if and only if there is $P' \sim P$ such that $S \in \mathcal{M}_{\text{loc}}(P')$.***

Theorem

Any L_1-neighborhood of a separating measure contains a measure P' under which S is a local martingale.

Theorem

Let $S \in \mathcal{M}_{\text{loc}}(P)$. Then there exists $\tilde{P} \sim P$ such that $S \in \mathcal{M}(\tilde{P})$.
No-Free-Lunch criteria for infinite horizon (Schachermayer)

- \(R_\infty := \bigcup_{T \in \mathbb{N}} R_T \), \(A_\infty := R_\infty - L_+^0 \).
- **NA-property**: \(R_\infty \cap L_+^0 = \{0\} \) (or \(A_\infty \cap L_+^0 = \{0\} \)).
- **NFL-property**: \(\bar{C}_\infty^w \cap L_\infty^1 = \{0\} \) where \(\bar{C}_\infty^w \) is the closure of \(C_\infty := A_\infty \cap L^\infty \) in the topology \(\sigma(L^\infty, L^1) \).

Theorem

NFL holds if and only if there is \(P' \sim P \) **such that** \(S \in \mathcal{M}_{loc}(P') \).

Theorem

Any \(L^1 \)-neighborhood of a separating measure contains a measure \(P' \) **under which** \(S \) **is a local martingale.**

Theorem

Let \(S \in \mathcal{M}_{loc}(P) \). **Then there exists** \(\tilde{P} \sim P \) **such that** \(S \in \mathcal{M}(\tilde{P}) \).
No-Free-Lunch criteria for infinite horizon (Schachermayer)

- $R_\infty := \bigcup_{T \in \mathbb{N}} R_T$, $A_\infty := R_\infty - L^0_+$.
- \textit{NA-property}: $R_\infty \cap L^0_+ = \{0\}$ (or $A_\infty \cap L^0_+ = \{0\}$).
- \textit{NFL-property}: $\overline{C}_\infty^w \cap L^\infty_+ = \{0\}$ where \overline{C}_∞^w is the closure of $C_\infty := A_\infty \cap L^\infty$ in the topology $\sigma(L^\infty, L^1)$.

\textbf{Theorem}

\textit{NFL holds if and only if there is $P' \sim P$ such that $S \in \mathcal{M}_{\text{loc}}(P')$.}

\textbf{Theorem}

\textit{Any L^1-neighborhood of a separating measure contains a measure P' under which S is a local martingale.}

\textbf{Theorem}

\textit{Let $S \in \mathcal{M}_{\text{loc}}(P)$. Then there exists $\tilde{P} \sim P$ such that $S \in \mathcal{M}(\tilde{P})$.}
Outline

1. Classical model
 - Harrison-Pliska theorem
 - Dalang–Morton–Willinger theorem: FTAP

2. Ramifications
 - Restricted information
 - Infinite horizon

3. Hedging theorems
Hedging of European options

- Let $\xi \in L^0(\mathcal{F}_T)$. Define the set of hedging endowments
 \[\Gamma := \Gamma(\xi) := \{ x : \exists H \in \mathcal{P} \text{ such that } x + H \cdot S_T \geq \xi \}, \]
 i.e., Γ is the set of capitals starting from which we can super-replicate the pay-off of European option with maturity T by the terminal value of a self-financing portfolio.

- Let Q^a, Q^e denote the sets of absolute continuous and equivalent martingale measures and let Z^a, Z^e denote the corresponding sets of density processes.

Theorem

Suppose that NA holds, i.e. $Q^e \neq \emptyset$. Suppose that $\xi \geq 0$ and $E_Q \xi < \infty$ for every $Q \in Q^e$. Then $\Gamma = D$ where

\[D := [\bar{x}, \infty[= \{ x : x \geq E\rho_T \xi \text{ for all } \rho \in Z^e \}. \]
Hedging of European options

- Let $\xi \in L^0(\mathcal{F}_T)$. Define the set of hedging endowments

$$\Gamma := \Gamma(\xi) := \{x : \exists H \in \mathcal{P} \text{ such that } x + H \cdot S_T \geq \xi\},$$

i.e., Γ is the set of capitals starting from which we can super-replicate the pay-off of European option with maturity T by the terminal value of a self-financing portfolio.

- Let Q^a, Q^e denote the sets of absolute continuous and equivalent martingale measures and let Z^a, Z^e denote the corresponding sets of density processes.

Theorem

Suppose that NA holds, i.e. $Q^e \neq \emptyset$. Suppose that $\xi \geq 0$ and $E^Q \xi < \infty$ for every $Q \in Q^e$. Then $\Gamma = D$ where

$$D := [\bar{x}, \infty[= \{x : x \geq E^\rho_T \xi \text{ for all } \rho \in Z^e\}.$$
Hedging of European options

- Let $\xi \in L^0(\mathcal{F}_T)$. Define the set of hedging endowments

$$\Gamma := \Gamma(\xi) := \{x : \exists H \in \mathcal{P} \text{ such that } x + H \cdot S_T \geq \xi\},$$

i.e., Γ is the set of capitals starting from which we can super-replicate the pay-off of European option with maturity T by the terminal value of a self-financing portfolio.

- Let Q^a, Q^e denote the sets of absolute continuous and equivalent martingale measures and let Z^a, Z^e denote the corresponding sets of density processes.

Theorem

Suppose that NA holds, i.e. $Q^e \neq \emptyset$. Suppose that $\xi \geq 0$ and $E_Q\xi < \infty$ for every $Q \in Q^e$. Then $\Gamma = D$ where

$$D := [\bar{x}, \infty[= \{x : x \geq E_{\rho_T} \xi \text{ for all } \rho \in Z^e\}.$$
Optional decomposition

Theorem (Kramkov, 1996, Föllmer–Kabanov, 1998)

Suppose that $Q^e \neq \emptyset$. Let $X \geq 0$ be a process which is a supermartingale with respect $Q \in Q^e$. Then there are a strategy H and an increasing process A such that $X = X_0 + H \cdot S - A$.

Proposition (El Karoui)

Suppose that $Q^e \neq \emptyset$. Let $\xi \in L^0_+$ be such that $\sup_{Q \in Q^e} E_Q \xi < \infty$. Then the process $X_t = \text{ess sup}_{Q \in Q^e} E_Q (\xi | \mathcal{F}_t)$ is a supermartingale with respect to every $Q \in Q^e$.

Proof of the hedging theorem. The inclusion $\Gamma \subseteq [\bar{x}, \infty]$ is obvious: if $x + H \cdot S_T \geq \xi$ then $x \geq E_Q \xi$ for every $Q \in Q^e$. To show the opposite one we suppose that $\sup_{Q \in Q} E_Q \xi < \infty$ (otherwise both sets are empty). Applying the ODT we get that $X = \bar{x} + H \cdot S - A$. Since $\bar{x} + H \cdot S_T \geq X_T = \xi$, the result follows.
Optional decomposition

Theorem (Kramkov, 1996, Föllmer–Kabanov, 1998)

Suppose that \(Q^e \neq \emptyset\). Let \(X \geq 0\) be a process which is a supermartingale with respect \(Q \in Q^e\). Then there are a strategy \(H\) and an increasing process \(A\) such that \(X = X_0 + H \cdot S - A\).

Proposition (El Karoui)

Suppose that \(Q^e \neq \emptyset\). Let \(\xi \in L^0_+\) be such that \(\sup_{Q \in Q^e} E_Q \xi < \infty\). Then the process \(X_t = \text{ess sup}_{Q \in Q^e} E_Q(\xi | \mathcal{F}_t)\) is a supermartingale with respect to every \(Q \in Q^e\).

Proof of the hedging theorem. The inclusion \(\Gamma \subseteq [\tilde{x}, \infty]\) is obvious: if \(x + H \cdot S_T \geq \xi\) then \(x \geq E_Q \xi\) for every \(Q \in Q^e\). To show the opposite one we suppose that \(\sup_{Q \in Q} E_Q \xi < \infty\) (otherwise both sets are empty). Applying the ODT we get that \(X = \tilde{x} + H \cdot S - A\). Since \(\tilde{x} + H \cdot S_T \geq X_T = \xi\), the result follows.
Optional decomposition

Theorem (Kramkov, 1996, Föllmer–Kabanov, 1998)

Suppose that $Q^e \neq \emptyset$. Let $X \geq 0$ be a process which is a supermartingale with respect $Q \in Q^e$. Then there are a strategy H and an increasing process A such that $X = X_0 + H \cdot S - A$.

Proposition (El Karoui)

Suppose that $Q^e \neq \emptyset$. Let $\xi \in L^0_+$ be such that $\sup_{Q \in Q^e} E_Q \xi < \infty$. Then the process $X_t = \text{ess sup}_{Q \in Q^e} E_Q(\xi | \mathcal{F}_t)$ is a supermartingale with respect to every $Q \in Q^e$.

Proof of the hedging theorem. The inclusion $\Gamma \subseteq [\bar{x}, \infty]$ is obvious: if $x + H \cdot S_T \geq \xi$ then $x \geq E_Q \xi$ for every $Q \in Q^e$. To show the opposite one we suppose that $\sup_{Q \in Q} E_Q \xi < \infty$ (otherwise both sets are empty). Applying the ODT we get that $X = \bar{x} + H \cdot S - A$. Since $\bar{x} + H \cdot S_T \geq X_T = \xi$, the result follows.
Hedging of American options

- For the American-type option the exercise date τ is a stopping time ($\leq T$) and the pay-off is Y_τ, the value at τ of an adapted process Y. The description of the pay-off process $Y = (Y_t)$ is a clause of the contract (as well as the final maturity date T).

- Define the set of initial capitals starting from which we can run a self-financing portfolio which values dominate the pay-off:

$$\Gamma := \Gamma(Y) := \{x : \exists H \in \mathcal{P} \text{ such that } x + H \cdot S \geq Y\}.$$

Theorem

Suppose that $Q^e \neq \emptyset$. Let $Y \geq 0$ be an adapted process such that $E_{Q^e} Y_t < \infty$ for every $Q \in Q^e$ and $t \leq T$. Then

$$\Gamma = \{x : x \geq E_{\rho_\tau} Y_\tau \text{ for all } \rho \in Z^e \text{ and all stopping times } \tau \leq T\}.$$
Hedging of American options

- For the American-type option the exercise date τ is a stopping time ($\leq T$) and the pay-off is Y_τ, the value at τ of an adapted process Y. The description of the pay-off process $Y = (Y_t)$ is a clause of the contract (as well as the final maturity date T).
- Define the set of initial capitals starting from which we can run a self-financing portfolio which values dominate the pay-off:

$$\Gamma := \Gamma(Y) := \{ x : \exists H \in \mathcal{P} \text{ such that } x + H \cdot S \geq Y \}.$$
Hedging of American options

- For the American-type option the exercise date τ is a stopping time ($\leq T$) and the pay-off is Y_{τ}, the value at τ of an adapted process Y. The description of the pay-off process $Y = (Y_t)$ is a clause of the contract (as well as the final maturity date T).
- Define the set of initial capitals starting from which we can run a self-financing portfolio which values dominate the pay-off:

$$\Gamma := \Gamma(Y) := \{x : \exists H \in \mathcal{P} \text{ such that } x + H \cdot S \geq Y\}.$$

Theorem

Suppose that $Q^e \neq \emptyset$. Let $Y \geq 0$ be an adapted process such that $E_Q Y_t < \infty$ for every $Q \in Q^e$ and $t \leq T$. Then

$$\Gamma = \{x : x \geq E_{\rho \tau} Y_{\tau} \text{ for all } \rho \in Z^e \text{ and all stopping times } \tau \leq T\}.$$
Hedging of American options: the proof

It is based on the optional decomposition theorem applied to the following result where \mathcal{I}_t denotes the set of stopping times $\tau \geq t$.

Proposition (El Karoui)

Suppose that $Q^e \neq \emptyset$. Let $\xi \in L_+^0$ be such that $\sup_{Q \in Q^e} E_Q \xi < \infty$. Then the process $X_t = \operatorname{ess sup}_{Q \in Q^e, \tau \in \mathcal{I}_t} E_Q (Y_\tau | \mathcal{F}_t)$ is a supermartingale with respect to every $Q \in Q^e$.