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Abstract. The main purpose of the paper is to provide a mathematical back-
ground for the theory of bond markets similar to that available for stock markets.
We suggest two constructions of stochastic integrals with respect to processes
taking values in a space of continuous functions. Such integrals are used to
define the evolution of the value of a portfolio of bonds corresponding to a trad-
ing strategy which is a measure-valued predictable process. The existence of an
equivalent martingale measure is discussed and HJM-type conditions are derived
for a jump-diffusion model. The question of market completeness is considered
as a problem of the range of a certain integral operator. We introduce a concept
of approximate market completeness and show that a market is approximately
complete iff an equivalent martingale measure is unique.
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1 Introduction

In the last few years a remarkable progress has been made in the understanding of
bond market phenomena. The main issues of the theory developed by a number
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of researchers in tight cooperation with practitioners are the term structure of
interest rates and the pricing of derivative securities (caps, floors, swaptions,
etc.), see, e.g., books [11], [15], papers [1], [7], [9], [10], [16], [18], [19], [22],
[32], [38], and references therein. The standard framework is that of continuous
trading which is based on a stochastic calculus for semimartingales. The great
success of continuous time models for description of stock markets and valuations
of options on stocks strongly influenced research in the term structure of interest
rates. In the majority of papers the dynamics of prices of zero-coupon bonds
with maturity θ is described by a diffusion processPt (θ), t ≤ θ, whereθ is
considered as acontinuousparameter. However, only a few works ([2], [5], [28],
[35], and some others) deal with jump-diffusion models in spite of the evidences
in favour of the latter. The subject of the absolute majority of the above references
can be characterized as that of aspecial theory of bond markets: mathematical
description of price evolution of basic securities and floating interest rates.

The problem of term structure of interests rates is, of course, very important
(and one can even imagine that these key words are synonymous to the math-
ematical theory of bond markets). Given an adequate model for security prices
one can use it for valuation of contingent claims and hedging positions by repli-
cation of a claim by dynamically rebalanced portfolios. Here we come to a very
important difference of all widely accepted models of bond markets from that of
a stock market:

in the continuous-time bond market model there is naturally a continuum of
basic traded securities (zero-coupon bonds parameterized by their maturitiesθ)
while in the standard model of a stock market there is normally only a finite
number of securities.

This observation makes clear that a consistent theory must admit hedging
portfolios which may contain an infinite number and even a continuum of se-
curities. Certainly, this implies the necessity of a rigorous mathematical defini-
tion of such a portfolio. In a stock market withd underlying assets, a vector
φ = (φ1, ..., φd) representing the quantities of assets of each type kept att in a
portfolio can be identified with a linear functional (i.e. with an element of the
dual spaceRd∗ coinciding withRd); a portfolio valueVt is the actionφt Pt of this
functional to the price vectorPt = (P1

t , . . . ,P
d
t ) (and this is just a scalar product);

after the work by Harrison and Pliska [17], the most general and widely accepted
model for the dynamics of the latter is a semimartingale while the time-evolution
of a portfolio strategy is described by a predictable process. The classic stochastic
calculus provides all necessary machinery for the model: the integration theory
for semimartingales is tailor-made for mathematical analysis of stock markets.

In the context of a bond market,Pt is not a finite-dimensional vector but
a price curve, i.e. an element of some functional vector space; apparently, the
Banach space of continuous functions is adequate to the problem and the idea
of considering the evolution of the price curvePt (.) in a such space has been
exploited, e.g., in [7] and [30].

It is natural to extend the definition of a portfolio as a continuous linear
functional; in this case againVt = φt Pt and, by analogy, one could expect that the
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relevant mathematics here is an integration theory with respect to Banach space-
valued semimartigales. Surprisingly, we enter hereterra incognita: the existing
literature on the infinite-dimensional stochastic integration does not meet the
needs of mathematical finance; moreover, it is not clear what should be called a
semimartingale in this case, see Remark on p. 18 in the recent article by Laurent
Schwartz [33].

In the present paper we suggest two approaches to a stochastic integration
which serves as modelling tool of the bond market theory. The first one, given
in Section 2 and inspired by the book of Métivier [29], is based on the concept
of controlled processes as integrators. It is important to note that our integrands
are weakly predictable measure-valued processes; this not only allows us to
avoid problems arising from non-separability of the space of measures in the
total variation topology but also opens a way to practical applications since one
can approximate “theoretical” portfolios by “realistic” strategies involving only
a finite (but arbitrary large) number of securities. We prove in Section 3 that an
asset giving an interest equal to the spot rate (its presence in a “zero-coupon
bond market” is usually justified by some limit procedure) is a portfolio of just
maturing bonds; this portfolio involves a continuum of bonds but instantaneously
it contains only a single one.

In Section 4 it is considered a jump-diffusion model, where the price process
of each single bond (i.e. a “section” of the price curve dynamics) is a rather gen-
eral semimartingale. For this model, including the majority of those discussed
in the literature, we suggest another approach to define the integral for measure-
valued integrands; the integration theory is reduced via Fubini theorems to the
standard stochastic calculus. We prove that, modulo a slight difference in hy-
potheses, the alternative construction results in the same process as the general
one. Since the integration theory in this paper is intended only for financial mod-
elling we are always trying to be on a reasonable level of generality, leaving
possible extensions for the future.

In Section 5 we treat in detail the jump-diffusion model specified through the
dynamics of the forward rate curves. We investigate here the problem of existence
of a martingale measure and derive HJM-type conditions for the coefficients.

Section 6 is devoted to the hedging of contingent claims in a bond market. It
is well-known that in the mathematical theory of security markets the problem of
hedging is closely related to the completeness of a market. There is an informal
principle (seems to have been formulated first by Bensoussan in [3]): to hedge
againstn sources of randomness one needsn non-redundant securities besides
the nuḿeraire. According to this principle, there is no completeness in a stock
market model based on a Lévy process with continuous jump spectrum and hence
with a continuum of sources of randomness which is too much for a market with
a finite number of stocks. The absence of completeness is one of the principal
objections against seemingly more adequate models driven by a Lévy process.

Fortunately, in a bond market model where there is, by definition, a continuum
of securities one can construct a hedge using strategies involving a continuum
of assets. Nevertheless, it turns out that, in general, one can hedge (even with
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measure-valued portfolios) in the most favorable situation only a dense subset in
the space of contingent claims. We examine the problem by considering families
of “martingale operators” and their adjoints, “hedging operators”, and relate the
uniqueness of a martingale measure with the injectivity of martingale operators
while the market completeness requires surjectivity of hedging operators. The
latter, being integral operators of the first kind, may have, at best, a dense image
and only in the “degenerate case” of a finite Lévy measure are surjective (iff the
martingale operators are injective). This reasoning leads to the conclusion that
the fundamental concept isthe approximate completenesswhich is equivalent to
the uniqueness of the martingale measure.

In our paper [6] addressed to readers which are mostly interested in the
financial counterpart of the theory (and which deals with technically simpler
models) we provide some more specific results on a market completeness and
the structure of hedgeable claims.

It is worth to note that in stock market models a continuum of derivative se-
curities is also implicitly present, say, call options parameterized by the maturity
time and/or strikes, and, therefore, our approach can also be applied to such se-
curity markets. Moreover, the theory developed here gives a hint why real-world
financial markets generate an enormous amount of various derivative securities:
typically they are not driven by a finite number of sources of randomness and
the risk averse agents, preferring at least an “approximately” complete market
create a corresponding demand.

At last, Appendix contains stochastic versions of the Fubini theorem for
continuous martingales and random measures.

2 Integration with respect to CT-valued processes

Let (Ω,F ,F = (Ft ),P) be a stochastic basis (filtered probability space) satisfy-
ing the usual conditions, and letP = (Pt ), t ∈ R+, be an adapted process on it
with values in the Banach space of continuous functionsCT (with the uniform
norm denoted by‖.‖) where, ifT is a compact subset of [0,∞], CT is the space
of all continuous functions, otherwise it isC0

R+
, the space of continuous functions

converging to zero at infinity.
We denote byP the predictableσ-algebra inΩ × R+ generated by all real

left-continuous adapted processes.
Let M T be the space of signed measures onT equipped with the total variation

norm ‖.‖V . For m ∈ M T and f ∈ CT put

mf :=
∫

T
f (θ)m (dθ) .

Let MT be theσ-algebra generated by the weak topology1. Recall that the space
M T with the weak topology is separable.

Our aim is to define a stochastic integral
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φ · Pt :=
∫ t

0
φsdPs (2.1)

for (weakly) predictable measure-valued processesφ, i.e. for measurable map-
pings

φ : (Ω × R+,P ) → (M T ,MT).

Let E b be the set of elementary integrands, i.e. of processes

φt (ω) =
n∑

i =1

IΓi×]ti ,ti +1] (ω, t)mi (2.2)

wheremi ∈ M T , 0≤ t1 < t2 < . . . < tn+1 <∞, Γi ∈ Fti .
For φ ∈ E b we set, as usual,

φ · Pt :=
n∑

i =1

(mi Pti +1∧t −mi Pti∧t )IΓi . (2.3)

To ensure the path regularity ofφ · P (in other words, to be c̀adl̀ag) for
elementary integrands we impose onP the following

Assumption 2.1 The process P is weakly regular: there is a setΩ1 with
P(Ω1) = 1 such that for anyω ∈ Ω1 and m∈ M T the real function mP.(ω) :=∫

P.(θ, ω)m(dθ) is right-continuous and with left limits.

To extend the integral to a reasonably large class of integrands we need

Assumption 2.2There exist a predictable random measureκ(dt, du) = lt (du)dt
given on(R+ × U ,B+ ⊗ U ) where (U ,U ) is some Lusin space, Kt := 1 +
κ([0, t ] × U ) <∞ for finite t , and a measurable function

p : (Ω × R+ × U ×M T ,P ⊗U ⊗MT) → (R+,B+)

with the following properties:
(a) p(ω, t , u, .) is a seminorm onM T ,
(b) p(ω, t , u, .) is weakly continuous,
(c) p(ω, t , u,m) ≤ ‖m‖V ,
(d) for any T ∈ R+ there is a constant CT such that for any stopping time

τ ≤ T and anyφ ∈ E b

E sup
t≤τ

|φ · Pt |2 ≤ CTEKτ

∫ τ

0

∫
U

p2(s, u, φs)κ(ds, du). (2.4)

We shall say that (κ, p) in the above condition is acontrol pair for P and
that a processP satisfying Assumption 2.2 is acontrolled process.

Clearly, a linear combination of controlled processes is again a controlled
process.
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Let τ be a bounded stopping time such thatEK2
τ <∞. Let us introduce the

linear spaceL2
τ = L2

τ (p, κ) of all predictable processesφ with values inM T such
that qτ (φ) <∞, whereqτ = qτ (.;κ, p) is a seminorm onL2

τ defined by

q2
τ (φ) := EKτ

∫ τ

0

∫
U

p2(s, u, φs)κ(ds, du). (2.5)

Lemma 2.3 The linear spaceE b is dense in L2τ in the topology given by qτ .

Proof.The inclusionE b ⊂ L2
τ holds due to Assumption 2.2.(c). To show that it is

dense, notice that the ballBc :=
{

m : ‖m‖V ≤ c
}

is compact in the weak topol-
ogy of M T (the Banach–Alaoglu theorem) and metrizable. Hence, a measurable
mapping

φ : (Ω × R+,P ) → (Bc,MT |Bc )

can be approximated in the sense of the weak convergence byP -measurable step
functions, i.e. by processes of the form

∑
IAi (ω, t)mi whereAi are predictable

sets. The properties (b) and (c) ensure that the approximating sequence converges
to φ in the seminormqτ .

Since the real-valued predictable processes∑
ai IΓi×]ti ,ti +1] (ω, t)

(which are a generating set forP , see [13]) are dense inL2(P , dPdKτ ), we
get that the elements ofE b are dense in the set of norm-bounded predictable
processes in the topology given byqτ and hence inL2

τ . ut
Let Πτ be the vector space of real adapted processes with regular trajectories

equipped with the seminormπτ (Y) = (E supt≤τ |Yt |2)1/2 (as usual, we identify
indistinguishable processes). It is well-known thatΠτ is complete with respect
to this seminorm.

Thus, the linear mappingφ 7→ I[0,τ ]φ · P defined onE b and taking values
in Πτ , which is continuous by (2.4), can be extended to the unique continuous
linear mapping fromL2

τ into Πτ .
Standard localization arguments allow us to extend the definition of the inte-

gral φ · P to all predictable processesφ such that∫ t

0

∫
U

p2(s, u, φs)κ(ds, du) <∞ a.s. (2.6)

for all finite t .
Let (κ, p′) be another control pair. Then (κ, p′′) := (κ, p+p′) is again a control

pair. Assume thatφ satisfies (2.6) together with the corresponding relation for
(κ, p′) and hence for (κ, p′′) also.

Since the seminormqτ (.;κ, p + p′) is stronger thanqτ (.;κ, p), the integral
φ ·P defined using (κ, p) coincides with that based on (κ, p′′) and, by symmetry,
on (κ, p′). Thus, the integral does not depend on the particular choice ofp,
and, by similar arguments, on the particular choice ofκ. Thus, the definition of
the integral (which is a class of indistinguishable processes) is independent on
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the particular choice of a control pair (κ, p). We denote the class of processes
for which the integral in the above sense exists byL2

loc(P) (the set of weakly
predictable processes satisfying (2.6)). One can notice that the integralφ · P is
a process which can be approximated uniformly in probability by “elementary”
integrals of the form (2.3).

As usual, for any stopping timeσ we haveφ · Pσ = I[0,σ]φ · P∞.
Some properties of the stochastic integral are summarized in the following

Theorem 2.4 Let φ ∈ L2
loc(P). Then

(a) the processφ ·P is a (real) semimartingale and for any stopping timeτ (2.4)
holds;
(b) the processφ · P is continuous if P is weakly continuous;
(c) if P is a martingale thenφ · P is a locally square integrable martingale.

Proof. (a) Inequality (2.4) holds for allφ ∈ L2
loc(P) by definition.

Let H be a real bounded elementary integrand given byH =
∑

ξj I]tj ,tj +1]

whereξj areFtj -measurable. For the adapted right-continuous processX := φ ·P
we putH · X :=

∑
ξj (Xtj +1 − Xtj ). It follows from (2.4) that

E sup
t≤τ

|H · Xt |2 ≤ ‖H ‖2 EKτ

∫ τ

0

∫
U

p2(s, u, φs)κ(ds, du).

We easily infer from this inequality that for a sequence of bounded elementary
integrandsH n uniformly converging to zero the sequence of integralsH n · X∞
tends to zero in probability. Thus,X is a semimartingale by the Dellacherie–
Bichteler–Mokobodzki theorem, see, [13].
(b) The property is evident for elementary integrands. In the general case the
integral is defined through uniform convergence which preserves continuity.
(c) From the definition it follows that for an elementary integrandφn the process
φn · P is a martingale andE|φn · Pτ |2 < ∞ for any τ such thatEK2

τ < ∞. If,
moreover,τ is such that the right-hand side of (2.4) is finite we conclude, by the
approximation, that the stopped processφ ·Pτ is a square integrable martingale.

ut
Proposition 2.5 Let P1, P2 be two controlled processes andφ be a process inte-
grable with respect to P1 and P2, i.e.φ ∈ L1(P1) ∩ L1(P2). Thenφ ∈ L1(P1 + P2)
andφ · (P1 + P2) = φ · P1 + φ · P2.

Proof. Let (κi , pi ) be a control pair forPi such that, with terms indexed byi , the
relation (2.6) holds. Without loss of generality we can assume thatU1 and U2

are distinct. PutU := U1 ∩ U2 and definep := p1IU1 + p2IU2, κ := κ1IU1 + κ2IU2.
Clearly, (κ, p) is a control pair forP1 + P2 and sinceφ satisfies (2.6) the result
holds. ut
Remark.The above construction of the stochastic integral goes well without any
changes for an arbitrary Banach space. Certainly, the definition of the control
pair can be modified and generalized in various ways (e.g., one can modify (2.4)
by taking the supremum not over [0, τ ] but over [0, τ [ as was done in [29]). A



148 T. Björk et al.

more general integration theory merits a special study which is beyond of the
scope of the present paper.

3 General model of a bond market

1. The forward and spot rates
In the mathematical description of a bond market it is usually assumed that for
fixed θ ∈ T the processPt (θ), t ∈ [0, θ], gives the dynamics of the default-free
zero-coupon bond (with unit nominal value) maturing at timeθ. Evidently, this
process must be strictly positive andPθ(θ) = 1.

It would be quite natural to impose also the constraintPt (θ) ≤ 1 but, follow-
ing the tradition, we do not persist on this requirement since it excludes some
easily treated models leading to explicit formulae.

In the continuous-time modelling of bond markets (in contrast with that of
stock markets) the straightforward specification of the evolution of asset prices
as a diffusion or jump-diffusion is not convenient. The main methodology is to
start with a model for interest rates; the general opinion now is in favour of the
forward rate though the models based on the spot rate have their own advantages.
We shall follow the same mainstream of ideas adapting it to our approach which
emphasizes the evolution of the whole price curve in the space of continuous
functions in contrast with the traditional point of view that considers as primary
object a family of individual price processes parameterized by bond maturities.

Assumption 3.1The price curve dynamics is given by a controlled process P=
(Pt ). There exists a CT-valued adapted process f= f (t) such that for anyθ ∈ T

Pt (θ) = exp
{
−
∫ θ

t
f (t , s)ds

}
, t ≤ θ. (3.1)

The random variablef (t , θ) is called theinstantaneous forward spot rate(at
time t of the bond maturing atθ) or simply the forward rate. By definition,
rt := f (t , t) is the instantaneous spot rateor simply thespot rate(called in the
literature also theshort rate, instantaneous riskless rateetc.).
Remark.One can assume thatP(t , θ) is continuously differentiable inθ and
define the forward rate in an equivalent way as

f (t , θ) = − ∂

∂θ
ln Pt (θ). (3.2)

In almost all known models (quite often implicitly) it is assumed that there
is a traded asset that pays interestrt , i.e. the unit of money invested at time zero
in this asset results att in the amount

R−1
t := exp

{∫ t

0
rsds

}
(one can think about a bank account with the floating ratert ).
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It is convenient to take this asset as anuḿeraire, that is to express all other
values in the units of this particular security. Prices calculated in units of the
numéraire are called thediscounted prices; in our case the discounting factor is
Rt . This means that the discounted price processZ is given by the formula

Zt (θ) := Rt Pt (θ) = exp
{
−
∫ t

0
rsds

}
Pt (θ). (3.3)

It is instructive to understand a possible reasoning explaining the “existence”
of this nuḿeraire. Let us split the interval [0, t ] into small subintervals ]ti , ti +1]
and consider the strategy to invest at time zero a unit amount of money into the
bond maturing att1, at the momentt1 to reinvest the obtained value (which is
equal toP−1

0 (t1−)) into the bond maturing att2, and so on. Clearly, under a mild
condition of equicontinuity, at timet the resulting amount is

exp
{ N∑

i =0

∫ ti +1

ti

f (ti , s)ds
}
≈ exp

{ N∑
i =0

rti (ti +1 − ti )
}
,

and it approximatesR−1
t . In other words, the existence of the asset with the

interest rt means that we are allowed to execute a roll-over strategy on just-
maturing bonds which leads to a portfolio involving a continuum of securities.

Up to now the bond pricePt (θ) has been given only fort ≤ θ. To work with
processes defined for allt ∈ R+ we putPt (θ) = R−1

t Rθ for t ≥ θ. One can think
that after maturity the bond is transferred automatically into the unit of money
in the bank account.

There is another option: reparameterize the model by consideringθ as time
to maturity.

2. Portfolios of bonds
We define a (feasible)portfolio or trading strategyas a pair (φ, η) whereφ is a
P-integrable predictable measure-valued process,η is a real predictable process
with ∫ t

0
|ηs|ds<∞ (3.4)

for finite t .
The value processof such a portfolio is given by

Vt (φ, η) = φt Pt + ηtβt (3.5)

with β := R−1.
We shall consider asadmissibleonly strategies with value processes bounded

from below.
A portfolio is said to beself-financingif its increments are caused by price

movements only, i.e.
Vt (φ, η) = x + φ · Pt + η · βt (3.6)

wherex is an initial endowment.
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We show now that the roll-over “strategy” of permanent reinvestment of the
whole current valueVt− in the just maturing bond (without involving the “bank
account”) is an admissible portfolio (φ, η) = (V−δ, 0) whereV− := (Vt−) andδt

is a unit mass onT concentrated at the pointt , and this portfolio gives rise to
an asset with interest rater . Formally, this means that the linear equation

V = 1 + V−δ · P (3.7)

has a solution, the solution is unique and coincides withβ. The result (under
certain additional hypotheses) is a corollary of the following two lemmas.

Lemma 3.2 The equation

V = 1 + V−φ · P (3.8)

whereφ is a locally bounded predictableM T-valued process, has a unique solu-
tion in the class of locally bounded processes with regular paths.

Proof. Let W be the difference of two solutions. ThenW = W−φ · P. By lo-
calization, we can assume that|W|, φ, andK are bounded by some constant. It
follows from Assumption 2.2 that

E sup
s≤t

|W−φ · P|2

≤ CTEKt

∫ t

0

∫
U

p2(s, u,W−φ)κ(ds, du) ≤ C
∫ t

0
E sup

v≤s
|Wv|2ls(U )ds.

Thus,W is zero by the Gronwall–Bellman lemma.�

Lemma 3.3 Assume that the following conditions are satisfied:
i) the spot rate r is a regular process (càdlàg);
ii) for any finite T we have

lim
θ↓t

sup
t≤T

|f (t , θ)− f (t , t)| = 0; (3.9)

iii) in the control pair (κ, p) for the price process P the function p has the
form

p(ω, t , u,m) = |mg(ω, t , u)| (3.10)

whereg(ω, t , θ, u) is bounded by a constant and right-continuous in t.
Then for any continuous process G we have

Gδ · Pt =
∫ t

0
Gsrsds. (3.11)
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Proof. Standard localization arguments reduce the problem to the case when
G and K are bounded. Let us consider the approximation ofφ := Gδ by the
processes

φn
s (dθ) =

n∑
i =0

Gti δti +1(dθ)I]ti ,ti +1] (s) (3.12)

with ti = it /n. It is rather obvious that

φn · Pt =
n∑

i =0

Gti (Pti +1(ti +1)− Pti (ti +1)) =
n∑

i =0

Gti

(
1− exp

{
−
∫ ti +1

ti

f (ti , s)ds
})

=
n∑

i =0

Gti rti (ti +1 − ti ) + o(1)→
∫ t

0
Gsrsds (3.13)

due toi ) and ii )
On the other hand, making useiii ) we have:

q2
t (φs − φn

s ) ≤ CE
∫ t

0

∫
U
|(φs − φn

s )g(s, u)|2ls(du)ds

= CE
∫ t

0

∫
U

n∑
i =0

|Gsg(s, s, u)−Gti g(s, ti +1, u)|2I]ti ,ti +1] (s)ls(du)ds→ 0. (3.14)

Hence the left-hand side of (3.13) converges in probability to the stochastic
integralφ · Pt and (3.11) holds.�

As a corollary of (3.11) we have that

βδ · Pt =
∫ t

0
βsrsds = βt − 1. (3.14)

Thus, under the assumptions of Lemma 3.2 the processβ is the solution of (3.7)
(which is unique at least in the class of locally bounded processes).

Remark.One may think that the above reasoning is not correct in some sense
since we extended the bond prices after maturity using the processRθβ. How-
ever, the approximation (3.12) is chosen in such a way that the corresponding
integral sum does not involve values of the bonds after maturities. Of course, the
arguments can be repeated for the case whenθ is the time to maturity.

3. Classification of portfolios
Now we consider discounted bond pricesZt (θ) := Rt Pt (θ) and discounted values
of a portfolio V Z

t (φt , ηt ) := Rt Vt (φt , ηt ) which correspond to a choice of the
roll-over strategy as the nuḿeraire. Clearly,Zt (θ) = 1 for t ≥ θ andV Z

t (φ, η) =
φt Zt +ηt . For a self-financing portfolio we haveV Z

t (φ, η) = x +φ ·Zt . From now
on we shall consider only self-financing strategies. Since in this case the value
process (hence, the processη) is uniquely defined by theφ-component we omit
η in notations.
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For particular models of bond prices one can expect a redundancy of traded
assets. It may happen that a certain value process corresponds to different trad-
ing strategies. It is important to distinguish also portfolios that instantaneously
involve only a finite number of assets. To study different possible situations we
introduce the following definitions.

We say that two trading strategiesφ and φ′ are equivalent if they have
the same value processes:V (φ) = V (φ′) (P-a.s.). A strategyφ is called ann-
dimensionalif for any t and almost allω the measureφ(ω, t , dθ) is concentrated
at most inn points ofT. We say that a strategyφ is n-reducibleif there exists an
n-dimensional equivalent strategy but there is nok-dimensional strategy withk <
n. The definitions ofcountably dimensionaland countably reduciblestrategies
follow the above patterns. Some results concerning the problem of reducibility
are given in [6].

4 Jump-diffusion model

1.
In this section we consider more specific integrators by assuming that for every
fixed θ the real-valued processP(θ) = (Pt (θ)) is a semimartingale of a rather
general form. This hypothesis leads to a setting which covers the majority of
existing models of bond price processes and provides an important example of
application of the theory developed above. Making use of the imposed particular
structure we suggest as alternative a more explicit construction of the integral
for measure-valued processes and show that it results in the same object.

Let P = (Pt ) be aCT-valued process such that for anyθ ∈ T the real process
P(θ) = (Pt (θ)) admits the representation

Pt (θ) = x(θ) +
∫ t

0
as(θ)ds+

∫ t

0
σs(θ)dws +

∫ t

0

∫
X
g(s, x, θ)(µ(ds, dx)−ν(ds, dx))

(4.1)
wherew is a Wiener process with values inRn, µ(ω, dt, dx) is a P ⊗ X -σ-
finite integer-valued random measure (adapted to the filtration),ν(ω, dt, dx) =
λt (ω, x)dx is its compensator (dual predictable projection), (X,X ) is a Lusin
space (in applications, usually,X = Rn, or X = N, or a finite set),g(., θ) is a
P ⊗X -measurable function (P is the predictableσ-algebra inΩ ×R+). The
coefficients must be such that all integrals are well-defined and this requirement
is met, of course, by the following

Assumption 4.1The coefficients of (4.1) are continuous inθ, a(θ) andσ(θ) are
predictable processes with values inR and Rn such that for finite t∫ t

0
‖as‖ds<∞,

∫ t

0
‖σs‖2ds<∞ a.s., (4.2)

g(., θ) is a P ⊗X -measurable real-valued function such that for finite t
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∫ t

0

∫
X
‖g(s, x)‖2ν(ds, dx) <∞ a.s. (4.3)

Put Λt = t . In the standard notations of the stochastic calculus for semi-
martingales (4.1) can be written as follows:

Pt (θ) = x(θ) + a(θ) · Λt + σ(θ) · wt + g(θ) ∗ (µ− ν)t . (4.4)

Remark.The definition (4.1) includes as a particular case the process generated
by the Gaussian–Poisson model:

Pt (θ) = x(θ) +
∫ t

0
as(θ)ds +

∫ t

0
σs(θ)dws +

m∑
i =1

∫ t

0
gs(i , θ)(dNi

s − λi
sds) (4.5)

whereN i are independent Poisson processes with intensitiesλi
t .

2.
Let φ be a predictableM T-valued process such that for all finitet∫ t

0
|φsas|ds<∞, (4.6)

∫ t

0
|φsσs|2ds<∞, (4.7)

and ∫ t

0

∫
X
|φsg(s, x)|2ν(ds, dx) <∞ (4.8)

where

φsas =
∫

T
as(θ)φs(dθ)

etc. Forφ satisfying (4.6) – (4.8) we put

φ◦Pt :=
∫ t

0
φsasds+

∫ t

0
φsσsdws+

∫ t

0

∫
X
φsg(s, x)(µ(ds, dx)−ν(ds, dx)) (4.9)

where the first integral in the right-hand side is the ordinary Lebesgue integral
and the second and the third ones are the usual stochastic integrals. In abbreviated
notations one can write (4.9) as

φ ◦ Pt := (φa) · Λt + (φσ) · wt + (φg) ∗ (µ− ν)t . (4.10)
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Proposition 4.2 (a) Under Assumption 4.1 the process P(θ) is controlled and
φ · Pt = φ ◦ Pt for φ ∈ E b.

(b) If, moreover, for finite t∫ t

0
‖as‖2ds<∞ (4.11)

andφ is a predictable process such that (4.6) – (4.8) are fulfilled and also∫ t

0
|φs|ds<∞ (4.12)

for t <∞ thenφ ∈ L2
loc(P) andφ · P = φ ◦ P.

Proof. (a) Notice that forφ ∈ E b of the formφ = IΓ×]t1,t2]m we have by the
definitions and the Fubini theorems for ordinary and stochastic integrals (see
Appendix) that

φ · P = IΓ

∫
T

(∫ t2

t1

as(θ)ds

)
m(dθ) + IΓ

∫
T

(∫ t2

t1

σs(θ)dws

)
m(dθ)

+IΓ

∫
T

(∫ t2

t1

∫
X
g(s, x, θ)(µ(ds, dx)− ν(ds, dx)

)
m(dθ)

= IΓ

∫ t2

t1

(∫
T

as(θ)m(dθ)

)
ds + IΓ

∫ t2

t1

(∫
T
σs(θ)m(dθ)

)
dws

+IΓ

∫ t2

t1

∫
X

(∫
T
g(s, x, θ)m(dθ)

)
(µ(ds, dx)− ν(ds, dx)) = φ ◦ P.

To show thatP is a controlled process it is sufficient to check that each
integral in (4.1) defines a controlled process.

Let φ ∈ E b. For any stopping timeτ we have by the Cauchy–Schwarz
inequality that

E sup
t≤τ

(∫ t

0
φsasds

)2
≤ EKa

τ

∫ τ

0
p2

a(s, φs)dKa
s (4.13)

where

K a
t := 1 +

∫ t

0
‖as‖ds, pa(s, φs) := |φsas|‖as‖⊕,

and⊕ is the “pseudoinverse”:b⊕ = b−1 for b /= 0 and 0⊕ = 0.
By the Doob inequality

E sup
t≤τ

(∫ t

0
φsσsdws

)2
≤ 4E

∫ τ

0
p2
σ(s, φs)‖σs‖2ds≤ 4EKσ

τ

∫ t

0
q2

s (φs)dKσ
s

where

K σ
t := 1 +

∫ t

0
‖σs‖2ds, pσ(s, φs) := |φsσs|‖σs‖⊕.
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Similarly,

E sup
t≤τ

(∫ t

0

∫
X
φsg(s, x)(µ(ds, dx)− ν(ds, dx))

)2

≤ 4E
∫ τ

0

∫
X

p2
g(s, x, φs)‖g(s, x)‖2ν(ds, dx)

≤ 4EKg
τ

∫ τ

0

∫
X

p2
g(s, x, φs)κ(ds, dx)

where

κ(ds, dx) := ‖g(s, x)‖2ν(ds, dx), K g
t := 1 +κ([0, t ] × X),

pg(s, x, φs) := |φsg(s, x)|‖g(s, x)‖⊕.

ThusP is a controlled process.
(b) Notice that, under (4.11), (4.12), one can write instead of (4.13) that for
τ ≤ T <∞

E sup
t≤τ

(∫ t

0
φsasds

)2
≤ TE

∫ τ

0
|φsas|2ds≤ TEK̃ a

τ

∫ τ

0
p2

a(s, φs)dK̃ a
s

where

K̃ a
t := 1 +

∫ t

0
‖as‖2ds.

In view of Proposition 2.5 it is sufficient to consider the case when there is only
one integral in the representation (4.1) ofP. E.g., assume thatPt (θ) is simply
the integral with respect tow. Let τ be the minimum ofN > 0 and the hitting
time of the levelN by the process

∫ .
0 ‖σs‖2ds. Then the processφ satisfying

(4.7) is in L2
τ (pσ,Kσ) and the convergence of integrandsφn to φ in this space

means exactly that

E
∫ τ

0
|φn

sσs − φsσs|2ds→ 0.

Hence, for the approximating sequence of elementary integrands we have that
φn · PT = φn ◦ PT approach simultaneouslyφ · PT andφ ◦ PT . ut

Remark.The definition (4.9) does not require neither continuity ofPt and of the
coefficients of (4.1) inθ nor the integrability conditions (4.2) – (4.3).
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5 Existence of an equivalent martingale measure for the jump-diffusion
model

1. From forward rates to price curves
Suppose that a bond price process is specified through forward rates, i.e. for
θ ∈ R+

Pt (θ) = exp
{
−
∫ θ

t
f (t , s)ds

}
, t ≤ θ, (5.1)

where f (t , .) is a CR+-valued adapted process and hence the price curves are
continuously differentiable with

f (t , θ) = − ∂

∂θ
ln Pt (θ). (5.2)

Assumption 5.1The dynamics of the forward rates is given by

df (t , θ) = α(t , θ)dt + σ(t , θ)dwt +
∫

X
δ(t , x, θ)(µ(dt, dx)− ν(dt, dx)) (5.3)

wherew is a standard Wiener process inRn, µ is aP ⊗X -σ-finite random mea-
sure (one can think that it is the jump measure of a semimartingale) with the con-
tinuous compensatorν(dt, dx), the coefficients are continuous inθ, the functions
α(t , θ) and σ(t , θ) are P ⊗B +-measurable, andδ(t , x, θ) is P ⊗X ⊗B +-
measurable.

For all finite t andθ ≥ t∫ θ

0

∫ θ

t
|α(u, s)|dsdu<∞,

∫ θ

0

∫ θ

t
|σ(u, s)|2dsdu<∞, (5.4)

and ∫ θ

0

∫
X

∫ θ

t
|δ(u, x, s)|2dsν(du, dx) <∞. (5.5)

It is convenient to extend the definitions of the coefficients by putting them equal
to zero forθ < t .

To abbreviate the formulae we shall use sometimes the notation ¯µ := µ− ν.
The relation (5.3) means that

f (t , θ) = f (0, θ) +
∫ t

0
α(u, θ)du +

∫ t

0
σ(u, θ)dwu +

∫ t

0

∫
X
δ(u, x, θ)µ̄(du, dx).

(5.6)
In particular, for the spot ratert := f (t , t) we have

rt = f (0, t) +
∫ t

0
α(u, t)du +

∫ t

0
σ(u, t)dwu +

∫ t

0

∫
X
δ(u, x, t)µ̄(du, dx). (5.7)

Notice that the integrability conditions (5.4) – (5.5) are fulfilled if the coeffi-
cients are bounded fort andθ from a bounded set (by a constant depending on
ω and the set) andν([0, t ] × X) <∞ for finite t .
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Put

At (θ) = −
∫ θ

t
α(t , s)ds, (5.8)

St (θ) = −
∫ θ

t
σ(t , s)ds, (5.9)

D(t , θ, x) = −
∫ θ

t
δ(t , x, s)ds. (5.10)

The dynamics of the price curve is given by the following

Proposition 5.2 The discounted bond price process Zt (θ) on [0, θ] has the form

Zt (θ) = Z0(θ) exp
{∫ t

0
As(θ)ds +

∫ t

0
Ss(θ)dws

+
∫ t

0

∫
X

D(s, x, θ)µ̄(ds, dx)
}

(5.11)

and satisfies the linear stochastic differential equation

dZt (θ)
Zt−(θ)

= at (θ)dt + St (θ)dwt +
∫

X
D(t , x, θ)µ̄(dt, dx)

+
∫

X
(eD(t,x,θ) − 1− D(t , x, θ))µ(dt, dx) (5.12)

with

at (θ) = At (θ) +
1
2
|St (θ)|2. (5.13)

Proof. Applying the Fubini theorem and its stochastic versions we get from (5.1)
and (5.6) that

ln Pt (θ) = −
∫ θ

t
f (t , s)ds = −

∫ θ

t
f (0, s)ds

−
∫ t

0

∫ θ

t
α(u, s)dsdu−

∫ t

0

∫ θ

t
σ(u, s)dsdwu −

∫ t

0

∫
X

∫ θ

t
δ(u, x, s)dsµ̄(du, dx)

= −
∫ θ

0
f (0, s)ds−

∫ t

0

∫ θ

u
α(u, s)dsdu−

∫ t

0

∫ θ

u
σ(u, s)dsdwu

−
∫ t

0

∫
X

∫ θ

u
δ(u, x, s)dsµ̄(du, dx)

+
∫ t

0
f (0, s)ds +

∫ t

0

∫ t

u
α(u, s)dsdu+

∫ t

0

∫ t

u
σ(u, s)dsdwu

+
∫ t

0

∫
X

∫ t

u
δ(u, x, s)dsµ̄(du, dx)

= ln P0(θ) +
∫ t

0
Au(θ)du +

∫ t

0
Su(θ)dwu +

∫ t

0

∫
X

D(u, x, θ)µ̄(du, dx) +
∫ t

0
rsds
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according to our definitions (5.8) – (5.10) and since the sum of the four integrals
in the left-hand side of the last equality (again by the Fubini theorems) coincides
with the expression for the integrated spot rate∫ t

0
f (0, s)ds +

∫ t

0

∫ s

0
α(u, s)duds

+
∫ t

0

∫ s

0
σ(u, s)dwuds +

∫ t

0

∫ s

0

∫
X
δ(u, x, s)µ̄(du, dx)ds.

Thus, (5.11) is proved. By the Ito formula we get from (5.11) that

dZt (θ) = Zt−(θ)
[
At (θ)dt + St (θ)dwt +

∫
X

D(t , x, θ)µ̄(dt, dx)

+
1
2
|St (θ)|2dt +

∫
X

(eD(t,x,θ) − 1− D(t , x, θ))µ(dt, dx)
]

and (5.12) holds.�

2. Absence of arbitrage and dynamics under a martingale measure
As usual, we shall use the notationPt := P|Ft (the restriction ofP to the σ-
algebraFt ).

Let Q be the set of all probability measuresP̃ with P̃t ∼ Pt for all finite t and
such that the discounted bond price processZt := Rt Pt (θ) is a localP̃-martingale
for everyθ ∈ T.

We say that amodel has theEMM-property if the setQ is nonempty.
We begin with a comment concerning terminology. In the literature on the

term structure of interest rates the EMM-property (or its slight modification) is
quite often referred to as absence of arbitrage. This is rather confusing since it
would be more consistent, as it is usually done in the theory of stock markets, to
separate the “no-arbitrage” or “no-free lunch” properties which have a transparent
economical meaning (impossibility to obtain “profits” without “risk”) from the
more mathematically convenient but difficult to interpret EMM-property. We use
the quotation marks above since the mentioned concepts should be rigorously
defined; one can find different variants in [14] where the problem of no-arbitrage
is solved for a continuous-time market model with a finite number of assets; see
also [26] for an approach based on the notion of a large financial market. Of
course, EMM-property always implies no-arbitrage.

The EMM-property implies that the coefficients of the model are interrelated
and cannot be chosen in an arbitrary way. The following result (generalizing the
well-known observation of Heath–Jarrow–Morton [18] for the diffusion case)
reveals this fact in a remarkably simple way when the model is specified under
a (local) martingale measure.

Proposition 5.3 The probabilityP ∈ Q iff the following two conditions hold:∫ t

0

∫
X

(eD(s,x,θ) − 1− D(s, x, θ))ν(ds, dx) <∞, (5.14)
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∫ t

0
as(θ)ds +

∫ t

0

∫
X

(eD(s,x,θ) − 1− D(s, x, θ))ν(ds, dx) = 0 (5.15)

for any t ∈ R+.
In the particular case whenν(dt, dx) = λt (dx)dt, the probabilityP ∈ Q iff

(5.14) holds for any t∈ R+ and

at (θ) +
∫

X
(eD(t,x,θ) − 1− D(t , x, θ))λt (dx) = 0 (5.16)

(dPdt-a.e.).

Proof. (⇐) Under (5.14) the representation (5.12) can be rewritten in the follow-
ing way:

dZt (θ)
Zt−(θ)

= at (θ)dt + St (θ)dwt +
∫

X
(eD(t,x,θ) − 1)(µ(dt, dx)− ν(dt, dx))

+
∫

X
(eD(t,x,θ) − 1− D(t , x, θ))ν(dt, dx). (5.17)

It follows from (5.15) that the process [Z−(θ)]−1 · Z(θ) is a local martingale,
henceZ(θ) is also a local martingale, i.e.P ∈ Q .
(⇒) In this case the processM := [Z−(θ)]−1 ·Z(θ) is a local martingale. LetµM

be the jump measure ofM and νM be its compensator. By II.2.29 in [21] we
have that|x| ∧ |x|2 ∗ νM

t <∞ for finite t . Hence

|eD − 1| ∧ |eD − 1|2 ∗ νt = |x| ∧ |x|2 ∗ νM
t <∞.

Since |D |2 ∗ νt < ∞ the property (5.14) holds by virtue of the elementary
inequality

eD − 1− D ≤ C(|eD − 1| ∧ |eD − 1|2 + D2)

whereC is a constant. Using (5.17) we infer thatM is a local martingale only
if the process given by the left-hand side of (5.15) is indistinguishable from
zero. �

Remark.One can observe that the hypothesisν(dt, dx) = λt (dx)dt is not a re-
striction since (5.15), actually, implies this structure on the set whereµ has an
effect on the price curve dynamics. We leave the formal statement to the reader.

3. A jump-diffusion model in the Brace–Musiela parameterization
Quite recently Brace and Musiela [7] (see also [30]) observed that in some aspects
it is more natural to describe the forward rate in the Heath–Jarrow–Morton model
using another parameterization: not in terms ofmaturity timebut in terms oftime
to maturity. In particular, in their version the dynamics of the forward rate curve
under an equivalent martingale measure is given by a very simple stochastic
differential equation in the space of continuous functions.

Assume that theCR+-valued adapted processr (t , .) := f (t , t + .) is such that
for any u the scalar processr (., u) admits the representation
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r (t , u) = r (0, u) +
∫ t

0
βs(u)ds+

∫ t

0
τs(u)dws +

∫ t

0

∫
X
η(s, x, u)µ̄(ds, dx) (5.18)

where the coefficients satisfy the integrability conditions: for all finitet∫ t

0

∫ t

0
|βs(u)|dsdu<∞,

∫ t

0

∫ t

0
|τs(u)|2dsdu<∞, (5.19)

and ∫ t

0

∫
X

∫ t

0
|η(s, x, u)|2dsν(du, dx) <∞. (5.20)

Proposition 5.4 For the forward rates given by (5.18) the discounted bond price
process Zt (θ) on [0, θ] satisfies the linear stochastic differential equation

dZt (θ)
Zt−(θ)

=

[
r (t , θ − t)− r (t , 0) + Bt (θ − t) +

1
2
|Tt (θ − t)|2

]
dt + Tt (θ − t)dwt

+
∫

X
H (t , x, θ− t)µ̄(dt, dx) +

∫
X

(eH (t,x,θ−t)−1−H (t , x, θ− t))µ(dt, dx) (5.21)

where

Bt (θ) = −
∫ θ

0
βt (u)du, (5.22)

Tt (θ) = −
∫ θ

0
τt (u)du, (5.23)

H (t , x, θ) = −
∫ θ

0
η(t , x, u)du. (5.24)

Proof. Put Ft (θ) := Zt (θ + t). From the definitions and the Fubini theorems it
follows that

ln Ft (θ) = −
∫ t

0
rsds−

∫ θ

0
r (t , u)du = −

∫ t

0
r (s, 0)ds−

∫ θ

0
r (0, u)du

−
∫ t

0

∫ θ

0
βs(u)duds−

∫ t

0

∫ θ

0
τs(u)dudws −

∫ t

0

∫
X

∫ θ

0
η(s, x, u)duµ̄(ds, dx).

Applying the Ito formula we easily get the representation

dFt (θ)
F t−(θ)

=

[
−r (t , 0) + Bt (θ) +

1
2
|Tt (θ)|2

]
dt + Tt (θ)dwt

+
∫

X
(eH (t,x,θ) − 1)µ̄(dt, dx) +

∫
X

(eH (t,x,θ) − 1− H (t , x, θ))ν(dt, dx). (5.25)

Since

dZt (θ) = dFt (θ − t)− ∂Ft (θ − t)
∂x

dt = dFt (θ − t) + Zt (θ)r (t , θ − t)dt,

the equation (5.25) implies (5.21).ut
Similarly to Proposition 5.3 we get as a corollary a certain relation between

the coefficients for the case when the basic probability is a martingale measure.
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Proposition 5.5 Assume thatν(dt, dx) = λt (dx)dt. Then the probabilityP ∈ Q
iff ∫ t

0

∫
X

(eH (t,x,u) − 1− H (t , x, u))λt (dx)dt <∞ (5.26)

for finite t and u, and

r (t , .) = r (t , 0)− Bt (.)− 1
2
|Tt (.)|2 − Rt (.) (5.27)

(dPdt-a.e.) where

Rt (u) :=
∫

X
(eH (t,x,u) − 1− H (t , x, u))λt (dx) (5.28)

and the functions Bt (u), Tt (u), and H(t , x, u) are defined by (5.22) – (5.24).

Remark.The relation (5.27) implies (under a mild integrability assumption) that
r (t , .) is an absolutely continuous function and

βt (.) =
∂

∂u
r (t , .) +

1
2
τt (.)

∫ .

0
τt (v)dv +

∂

∂u
Rt (.) (5.29)

with
∂

∂u
Rt (u) = −

∫
X

(eH (t,x,u) − 1)η(t , x, u))λt (dx).

One can deduce from (5.18), (5.29) that if the model is specified under a mar-
tingale measure then the dynamics of the forward rate curve is given by the
following stochastic evolution equation

dr(t , .) = [Ar (t , .) + C(t , .)]dt + τt (.)dwt +
∫

X
η(t , x, .)µ̄(dt, dx), (5.30)

whereA :=∂/∂u,

C(t , .) :=
1
2
τt (.)

∫ .

0
τt (v)dv −

∫
X

(eH (t,x,.) − 1)η(t , x, .)λt (dx). (5.31)

4. Modeling under the objective probability
For the case whenP is a martingale measure the relations between coefficients
of the model for forward rates are simple and easy to treat. Certainly, the ob-
jective probability need not to be a martingale measure and now we investigate
consequences of the EMM-property for this general case assuming for simplicity
that ν(dt, dx) = λt (dx)dt.

Proposition 5.6 Let P̃ ∈ Q . Then there exist a predictable processϕ with values
in Rn and aP ⊗X -measurable function Y= Y(ω, t , x) > 0 with∫ t

0
|ϕs|2ds<∞, (5.32)
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∫ t

0

∫
X

(
√

Y(s, x)− 1)2λs(dx)ds<∞ (5.33)

for finite t such that:
1) the process

w̃t := wt −
∫ t

0
ϕsds (5.34)

is Wiener with respect tõP;
2) the random measurẽν := Yν is theP̃-compensator ofµ;
3) the following integrability condition is satisfied:∫ t

0

∫
X

(eD(s,x,θ) − 1)I{D(s,x,θ)>ln 2}Y(s, x)λs(dx)ds<∞ (5.35)

for finite t andθ;
4) it holds that for anyθ

at (θ) + St (θ)ϕt +
∫

X
[(eD(t,x,θ) − 1)Y(t , x)− D(t , x, θ)]λt (dx) = 0 (5.36)

dPdt-a.e.

Proof. Existence ofϕ with the property 1) and satisfying (5.32) is given by the
classical Girsanov theorem (see Theorem III.3.24 in [21] for a general version).
Existence ofY ≥ 0 with the property 2) follows from the Girsanov theorem for
random measures (Theorem III.3.17 in [21]). SinceP̃ andP are locally equivalent
one can chooseY to be strictly positive. The property (5.33) holds because by
Theorem IV.3.39 in [21] the process (

√
Y−1)2∗ν is dominated by the Hellinger

processh(1/2,P,P̃) which is finiteP̃-a.s. (and henceP-a.s.) according to Theorem
IV.2.1 in [21].

Let µM ,θ be the jump measure of the semimartingaleM := [Z−(θ)]−1 · Z(θ)
having the representation (5.12). Notice that∆Mt =

∫
X (eD(t,x,θ) − 1)µ({t}, dx)

and ∫ ∫
R

f (t , u)µM ,θ(dt, du) =
∫ ∫

X
f (t , eD(t,x,θ) − 1)µ(dt, dx)

for any positive measurable functionf . Evidently, for theP̃ -compensator of
µM ,θ we have the similar property:∫ ∫

R
f (t , u)ν̃M ,θ(dt, du) =

∫ ∫
X

f (t , eD(t,x,θ) − 1)Y(t , x)ν(dt, dx).

The processM is a special semimartingale with respect toP̃. Hence, by
Proposition II.2.29 in [21]uI{|u|>1} ∗ ν̃M ,θ

t <∞ for finite t and (5.35) holds.
Now we get from (5.34) that∫ t

0
Ss(θ)dws =

∫ t

0
Ss(θ)dw̃s +

∫ t

0
Ss(θ)ϕsds,

and, furthermore, by simple transformations,
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(eD − 1)I{D>ln 2} ∗ µ = (eD − 1)I{D>ln 2} ∗ (µ− Yν)t + (eD − 1)I{D>ln 2}Y ∗ ν,
DI{|D|≤1} ∗ (µ− ν) = DI{|D|≤1} ∗ (µ− Yν)t + DI{|D|≤1}(Y − 1) ∗ ν,

[(eD − 1)I{D≤ln 2} − DI{|D|≤1}] ∗ µ
= F ∗ (µ− Yν) + [(eD − 1)I{D≤ln 2} − DI{|D|≤1}]Y ∗ ν

whereF := (eD −1)I{D≤ln 2}−DI{|D|≤1}. The right-hand sides of these identities
are well-defined and give the canonical decompositions with respect toP̃ of
special semimartingales. Substitution to (5.12) shows that the predictable process
in the canonical decomposition ofM with respect toP̃ is equal to∫ t

0
[as(θ) + Ss(θ)ϕs]ds +

∫ t

0

∫
X

[(eD(t,x,θ) − 1)Y(t , x)− D(t , x, θ)]ν(dt, dx).

But it must be zero and we get (5.36).�

The above proposition means that ifP̃ ∈ Q then the “integral” equations
(5.36) for almost all (ω, t) have a nonempty set of solutions (ϕ,Y) whereϕ ∈ Rn,
Y ≥ 0,

√
Y − 1 ∈ L2(X, λt ). Moreover, one can chose in these sets a certain

measurable selector such that the integrability properties (5.32), (5.33), and (5.35)
are fulfilled.

Remark.It follows from (5.5) and (5.10) that forθ finite we have∫
X

D2(t , x, θ)λt (dx) <∞. (5.37)

In the case whenλt (X) <∞ this implies that∫
X
|D(t , x, θ)|λt (dx) <∞ (5.38)

and, thus, one can transform (5.36) to the simpler form

at (θ)−
∫

X
D(t , x, θ)λt (dx) + St (θ)ϕt +

∫
X

(eD(t,x,θ) − 1)Y(t , x)λt (dx) = 0 (5.39)

which will be used later.

Now we discuss the reciprocal assertion to Proposition 5.6. Starting from
φ and Y > 0 satisfying the integrability conditions one can define the local
martingaleρ = (ρt ) with

ln ρt =
∫ t

0
ϕsdws − 1

2

∫ t

0
|ϕs|2ds

+
∫ t

0

∫
X

ln Y(s, x)µ(ds, dx) +
∫ t

0

∫
X

(1− Y(s, x))ν(ds, dx). (5.40)

As usual in the Girsanov theory, it may not be a true martingale (even if the
pair (ϕ,Y) originates fromP̃ by Proposition 5.6 !); including this property as
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an additional hypothesis, i.e. assuming thatEρt = 1, t ∈ R, we can define the
probability measureŝPt := ρt P for finite t . However, a measurêP such that
P̂t

t = P̂t still may not exist and one must exclude this unpleasant situation related
to “noncompactness” of the stochastic basis.

We say that a stochastic basis issufficiently richif for any family of probabil-
ity measures{P̂t} with the propertŷPt

s = P̂s
s for all s ≤ t there exists a measure

P̂ on F such that̂Pt
t = P̂t .

Since under the probability measureP̂, which is locally equivalent toP with
the density processρ, the processZ(θ) can be written as follows:

dZt (θ) = Zt−(θ)

[
at (θ)−

∫
X

D(s, x, θ)λt (dx) + St (θ)ϕt

+
∫

X
(eD(s,x,θ) − 1)Y(s, x)λt (dx)

]
dt+

+Zt−(θ)St (θ)dw̃t + Zt−(θ)
∫

X
(eD(s,x,θ) − 1)(µ(dt, dx)− ν̃(dt, dx)), (5.41)

the arguments above lead to the following

Proposition 5.7 Suppose that the stochastic basis is sufficiently rich and that the
measurable functionsϕ and Y(t , x) > 0 satisfy (5.32), (5.37), (5.35), (5.36), and
Eρt = 1 for all finite t . Then the setQ is nonempty.

Remark.To avoid the condition on the stochastic basis (which is not very esthetic)
one can work with a set of density processes or “martingale densities” (see [6])
imposing instead the more restrictive assumption thatEρ∞ = 1 (thenQ will
contain a probability which is absolutely continuous with respect toP).

6 Uniqueness of the martingale measure and market completeness

1.
Now we study the relation between uniqueness of the martingale measure (this
means that the setQ is a singleton) and market completeness. The model is the
same as in Section 5 but the following additional hypotheses will be assumed
throughout the end of the section:

Assumption 6.1 (Predictable representation property.) Any local martingale M
with respect toP has the form

Mt = M0 +
∫ t

0
/υsdws +

∫ t

0

∫
X
Ψ (s, x)(µ(ds, dx)− ν(ds, dx)) (6.1)

where/υ is a predictable process,Ψ is a P ⊗X -measurable function, and∫ t

0
|/υs|2ds<∞, (6.2)
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∫ t

0

∫
X

Ψ2(s, x)
1 + |Ψ (s, x)|ν(ds, dx) <∞ (6.3)

for finite t .

Let the filtrationF be generated byw andµ. Then there are two important
and well-known cases when the predictable representation property holds:
(a) µ is a Poisson random measure, i.e.ν is deterministic;
(b) µ is the measure associated with a multivariate point process in the sense of
[20] (or [21] with an extra requirement thatν([0, t ] × X) < ∞ for finite t) and
n = 0 (no Wiener process).

It turns out that in the latter case the representation property holds for arbitrary
n. To prove this, one can use the criteria Theorem III.4.29 of [21] and, arguing
with the conditional distributions ofµ given w = y, show the uniqueness of a
measure onF∞ such thatw is a Wiener process andµ hasν as compensator.

Notice that the predictable representation property is preserved under a locally
absolute continuous change of the probability measure, see Ch. III of [21] for an
extended discussion.

Now all density processes have the form given by (5.40) (hence, they are
uniquely defined by the Girsanov transformation parametersϕ and Y) and one
can combine Propositions 5.6 and 5.7 in the following

Proposition 6.2 Suppose that Assumption 6.1 is fulfilled and the stochastic basis
is sufficiently rich. ThenQ /= ∅ iff there are measurable functionsϕ and Y(t , x) >
0 satisfying (5.32), (5.37), (5.35), (5.36), and Eρt = 1 for all finite t .

Under the measurẽP defined by the density processρ, the properties 1) and
2) of Proposition 5.6 hold.

2. Martingale operators and uniqueness of the martingale measure
One can observe that the existence results involve “space-time” integrability
conditions and also “instantaneous identities” (5.36) or (5.39). Regarding the
latter as integral equations it is easy to formulate the uniqueness results in terms
of injectiveness of the corresponding operators.

We investigate the problem under

Assumption 6.3(a) The processλt (X) is finite.
(b) For almost allω, t and N there exists cN (ω, t) <∞ such that|D(ω, t , x, θ)| ≤
cN (ω, t) for all x ∈ X andθ ≤ N .

Let us consider the family of continuous linear operators

Kt (ω) : Rn × L1(X,X , λt (ω, dx)) → CR+ (6.4)

defined by

Kt (ω) : (ϕ,Y) 7→ S(ω, t , .)ϕ +
∫

E
Y(x)(eD(ω,t,x,.) − 1)λt (ω, dx). (6.5)

We shall refer toK as “the martingale operators”.
In view of Proposition 5.6 the following result is almost evident.
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Proposition 6.4 Under Assumptions 6.1 and 6.3 suppose thatQ /= ∅. ThenQ is
a singleton iff dPdt-a.e.

KerKt (ω) = 0. (6.6)

Corollary 6.5 Suppose that the model coefficientsα(t ,T), σ(t ,T), δ(t , x,T), and
λt (dx) are deterministic and the martingale measure Q is unique. Then the Gir-
sanov transformation parametersϕ and Y are deterministic functions, i.e. under
Q the processW̃ is a Wiener process with drift andµ is a Poisson measure.

Proof. The operatorsKt do not depend ofω and hence (outside the exclusive
dPdt-null set) the values of the Girsanov transformation parameters correspond-
ing to a fixedt but differentω must satisfy thesameequation (5.39) which has
a unique solution by (6.6). ut

Notice that the operatorsKt (ω) are integral operators of the first kind.

Corollary 6.6 Suppose, in addition to the hypotheses of Corollary 6.5, that
α(t ,T) = α(T−t), σ(t ,T) = σ(T−t), δ(t , x,T) = δ(T−t , x), andλ(t , dx) = λ(dx).
Then the Girsanov transformation parametersϕ and Y do not depend also on t,
i.e. under the unique measure Q∈ Q the processW̃ is a Wiener process with a
constant drift andµ is a Poisson measure invariant under time translations.

The definition (6.5), being very simple, fits well the above claims. However,
it has a certain drawback because it involves the spaceCR+ with the unpleasant
dual. As we shall see below, it is rather natural to modify a bit the definition of
the martingale operators and impose the following constraint on the model:

Assumption 6.7There exists a positive predictable process Ct = Ct (ω) such that
for almost all(ω, t) its sections Ct (ω, .) : T → R+ are bounded functions,

Zt−(.)|eD(t,.,.) − 1| ≤ Ct a.e.,

and
lim
θ→∞

Zt−(θ)St (θ) = 0, lim
θ→∞

Zt−(θ)(eD(t,x,θ) − 1) = 0. (6.7)

Let C0
R+

be the space of continuous functions onR+ converging to zero at
infinity. Notice thatC0∗

R+
= M R+ , the space of measures onR+ with finite total

variation.
The formula

K Z
t (ω) : (ϕ,Y) 7→ Zt−(ω, .)S(ω, t , .)ϕ+Zt−(ω, .)

∫
X

Y(x)(eD(ω,t,x,.)−1)λt (ω, dx)

(6.8)
defines a family of linear operators

K Z
t (ω) : Rn × L2(X,X , λt (ω, dx)) → C0

R+
. (6.9)

In other words,K Z
t (ω) is the product of the operatorKt (ω) and the operator

Zt (ω) of multiplication by the functionZt−(ω, .), so, one can write thatK Z
t =
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Zt Kt . Clearly, the above results hold also withK substituted byK Z but the
modified definition allows to exploit a duality arising in the problem of market
completeness.

3. Hedging operators and market completeness
Using financial terminology, we say that abounded (contingent) T -claimΞ
(which is just a random variableΞ ∈ L∞(FT ) is hedgeable(or replicable)
if there is abounded discounted value processV Z such thatΞ = V Z

T , i.e. there
exist a strategyφ and an initial endowmentx such thatΞ = x + φ ◦ ZT and the
integralφ ◦ ZT is bounded on [0,T].

The bond market is said to becompleteif all boundedT-claims are hedgeable
for every T ∈ R+ and approximately completeif for any boundedT-claim Ξ
there exists a sequence of hedgeableT-claimsΞn converging toΞ in L2(Q) for
someQ ∈ Q .

We deliberately restrict ourselves to bounded claims in the above definitions
since the spaceL∞ (as well asL0) is invariant under an equivalent change of
probability measure (recall that convergence in probability can be expressed in
terms of convergence a.s. of subsequences). We may thus assume from now
on to the end of this subsection (mainly for notational convenience) that the
model is specifiedunder a martingale measure, i.e. P ∈ Q , and, moreover,
this is exactly the measure which is involved in the definition of the approximate
completeness.

Remark.Notice that integrability assumptions under a martingale measure, made
in the definitions of completeness on claims to be hedged (which one can observe
in the literature), are rather awkward and even inconsistent in the context of the
problem considered here that deals with properties ofQ .

We consider the family

K Z∗
t (ω) : M R+ → Rn × L2(X,X , λt (ω, dx)) (6.10)

of hedgingoperators acting on measures in the following way:

K Z∗
t (ω) : m 7→

 ∫∞
0 Zt−(ω, θ)St (ω, θ)m(dθ)∫∞

0 Zt−(ω, θ)(eD(ω,t,.,θ) − 1)m(dθ)

 . (6.11)

Evidently, the operatorK Z∗
t (ω) is adjoint toK Z

t (ω).
We recall that, due to Assumption 6.1, for anyΞ ∈ L2(FT ,P) the martingale

Mt := E(Ξ|Ft ), t ≤ T, admits the predictable representation

Mt = M0 +
∫ t

0
/υsdws +

∫ t

0

∫
X
Ψ (s, x)(µ(ds, dx)− ν(ds, dx)) (6.12)

with M0 = EΞ and, since it is square integrable, it follows easily that

E
∫ T

0
|/υs|2ds<∞, (6.13)
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E
∫ T

0

∫
X
Ψ2(s, x)ν(ds, dx) <∞. (6.14)

The coefficients of this representation are uniquely defined. More precisely,Ξ 7→
(/υ, Ψ ) is a continuous linear mapping fromL2(FT ,P) ontoL2(P , dPdt)×L2(P ⊗
X , dPλt (dx)dt).

Proposition 6.8 The claimΞ ∈ L∞(FT ) is hedgeable iff there exists a pre-
dictable measure-valued process h= h(t , dθ) which satisfies the integrability
conditions

E
∫ T

0

∣∣∣∣∫
R+

Zt (θ)St (θ)h(t , dθ)

∣∣∣∣2 dt <∞, (6.15)

E
∫ T

0

∫
X

∣∣∣∣∫
R+

Zt−(θ)(eD(ω,t,x,θ) − 1)h(t , dθ)

∣∣∣∣2 ν(dt, dx) <∞, (6.16)

and solves on[0,T] (dPdt-a.e.) the equation

K Z∗
t h =

[
/υt

Ψ (t , .)

]
. (6.17)

Proof. SinceP ∈ Q we have by Propositions 5.2 and 5.3 that

dZt (θ) = Zt−(θ)St (θ)dwt + Zt−(θ)
∫

X
(eD(ω,t,x,θ) − 1)(µ(ds, dx)− ν(ds, dx)).

(6.18)
Thus, the discounted value processV Z is of the form

V Z
t = x +

∫ t

0

(∫
R+

Zs(θ)Ss(θ)h(s, dθ)

)
dws

+
∫ t

0

∫
X

(∫
R+

Zs−(θ)(eD(ω,s,x,θ) − 1)h(s, dθ)

)
(µ(ds, dx)− ν(ds, dx)) (6.19)

Comparison of (6.12) and (6.19) yields the result.ut
As a corollary, we get

Proposition 6.9

1. The martingale measure is unique iff the mappingsK Z are injective (a.e.).
2. The market is complete iff the mappingsK Z∗ are surjective (a.e.).

The proof of a natural extension of the second assertion which we give below
involves a measurable selection technique. The operatorK Z∗

t (ω) is a mapping
to Rn × L2(X,X , λt (ω, dx)) and “cl” means the closure in this space.

Proposition 6.10 The following conditions are equivalent.

(i) The market is approximately complete.
(ii) cl (Im K Z∗

t (ω)) = Rn × L2(X,X , λt (ω, dx)) (a.e.).
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Proof. (i) ⇐ (ii ) Let Ξ be a bounded discounted contingentT-claim to be
approximated. Forε > 0 put

F ε(t ,m) := |K Z∗,1
t (m)− /υt |2 + ‖K Z∗,2

t (m)− Ψ (t , .)‖2
L2(λt (dx))

where we use superscripts to denote the first and the second “coordinates” in
(6.11). Recall that balls inM R+ are metrizable compacts, hence, (M R+ ,MR+)
is a Lusin space as a countable union of Polish spaces. The functionF ε, being
P -measurable in (ω, t) and continuous inm, is jointly measurable. Thus, the
set-valued mapping

(ω, t) 7→ {m ∈ M R+ : F ε(ω, t ,m) ≤ ε}
has aP ⊗M R+-measurable graph and, by assumption, non-empty values (a.e.).
Therefore, it admits aP -measurable a.e.-selectormε(t , dθ) (see, e.g., [13]),
which “almost” solves the problem. Indeed, for the value processV Z (hε) =
EΞ + hε ◦ Z corresponding to the strategyhεt (dθ) = I[0,t ] (θ)mε(t , dθ) we have

E|V Z
T (hε)− Ξ|2 ≤ E

∫ T

0
F (t ,mε)dt ≤ εT → 0, ε→ 0.

However, the construction is not accomplished since these strategies generate a
value processes which are not bounded (and even admissible). Notice that the
predictable processCt from Assumption 6.7 is locally bounded, i.e. there exists
a sequence of stopping timesσn ↑ ∞ a.s. and such thatCt ≤ n for t ≤ σn. Put

hε,n(t , .) := hεI{‖(hε(t,.)‖V≤n}I{t≤σn}.

Clearly, E|V Z
T (hε,n) − V Z

T (hε)|2 → 0 asn → ∞. By Assumption 6.7, we have
that ∣∣∣∣∫

R+

Zt−(θ)(eD(ω,t,x,θ) − 1)hε,n(t , dθ)

∣∣∣∣ ≤ ∫
R+

Ct h
ε,n(t , dθ) ≤ n2.

Hence, the value process corresponding tohε,n has the bounded jumps. Let
h̃ε,n := hε,nI[0,σ′

n ] where σ′n is the exit time ofV Z (hε,n) from [−n, n]. Then
V Z

T (h̃ε,n) is a sequence of headgeable claims converging inL2 to V Z
T (hε). This

leads to the desired goal.
(i) ⇒ (ii ) Assume that the market is approximately complete, i.e. an arbitrary
boundedT-claim can be approached by a sequence of hedgeable claims con-
verging inL2. Then there exists a countable setH = {Ξ j } of bounded hedgeable
random variables dense in the Hilbert spaceL2(FT ) and closed under linear com-
binations with rational coefficients; let (/υj , Ψ j ) be the coefficients in the integral
representation ofΞ j given by (6.12). We continue with the casen = 0; the argu-
ments can be extended easily for the general case but, in fact, there is no need
in this: one can identify the product space in the right-hand side of (ii ) with L2

over an extension ofE by n extra points. Of course, we may assume that for all
(ω, t) one has‖Ψn‖ω,t <∞ where‖.‖ω,t and (., .)ω,t are, respectively, the norm
and the scalar product inL2(X,X , λt (ω, dx)). Let us denote byHω,t the closure
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in this norm of the set{Ψn(ω, t)}, which is, evidently, a linear subspace, and by
H⊥
ω,t its orthogonal complement.

It is easy to show that there exists aP ⊗X -measurable functionΨ such that
‖Ψ‖ω,t = 1 if H⊥

ω,t /= 0. Indeed, let{I (i )} be a sequence of indicator functions
generatingX and

k(ω, t) := inf

{
i : inf

j
‖I (i )− Ψ j (ω, t , .)‖ω,t > 0

}
.

Put Ψ̃ (ω, t , x) := I (k(ω, t), x) if k(ω, t) < ∞ and Ψ̃ (ω, t , x) := 0 otherwise.
Clearly,Ψ̃ meets the necessary measurability requirements. Furthermore, there is
Ψ̃π which is measurable in the same way and such that all the sectionsΨ̃π(ω, t)
are representatives of the projections ofΨ̃ (ω, t) onto Hω,t (one can orthogonal-
ize {Ψ j (ω, t)} preserving measurability and notice that in this case the Fourier
coefficients are obviously predictable). Normalizing the differenceΨ̃ − Ψ̃π we
getΨ with the required properties.

The functionΨ defines by (6.12) withM0 = 0 a random variableMT ∈ L2(FT )
which is orthogonal, by construction, to allΞ j . If (ii) does not hold thenMT is
nontrivial. This leads to an apparent contradiction.ut

By experience from the theory of financial markets with finitely many assets
one could expect that the market is complete if and only if the martingale measure
is unique, but in our infinite dimensional setting this is no longer true. Due to
the duality relation (KerK )⊥ = cl (Im K ?) we obtain instead from the above
assertion

Theorem 6.11 The market is approximately complete iff the martingale measure
is unique.

Remark.For the above theorem, Assumption 6.3 (a), is not, of course, very
pleasant since it, actually, means that the setQ (always assumed to be non-
empty) contains a measure under which the compensator has such a property.
However, it automatically holds in the important case whenµ is a multivariate
point process with absolutely continuous compensator. We believe that Theorem
6.11 can be extended to a much more general setting.

For a model when all measuresλt (dx) are concentrated in a finite number of
points (in particular, when the mark spaceX is finite) and the hedging problem is
reduced to a finite-dimensional system of equations (for each (ω, t)), the duality
relation is simply (KerK )⊥ = Im K ∗, so in this case we have

Corollary 6.12 Suppose that the measuresλt (dx) are concentrated in a finite
number of points (a.e.). Then the bond market is complete iff the martingale mea-
sure is unique.

In general, the “principle” that uniqueness ofQ is equivalent to completeness
of the market fails: the set of hedgeable claims may be a strict subset in the set of
all claimsL∞(FT ). Clearly, this is the case whenD is smooth inx and bounded
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(so, the image contains only continuous functions); typically,K Z∗
t is a compact

operator and, hence, has no bounded inverse.

Thus, models with an infinite mark space introduce some completely new
features into the theory, and we also encounter some new problems when it
comes to the numerical computation of hedging portfolios. Namely, the hedging
equations (6.17) are, in general, ill-posed in the sense of Hadamard, i.e. the
inverse ofK Z∗

t restricted to ImK Z∗
t may not be bounded. Hence, a small

perturbation of the right-hand side (e.g., due to a small round-off error) gives rise
to large fluctuations in the solution. Thus, a simple approximation scheme for the
calculation of a concrete hedge may lead to great numerical errors. Fortunately,
the literature provides a number of methods to get stable solutions of ill-posed
problems.

7 Conclusions

A consistent theory of the zero-coupon bond markets can be based on a setting
where the price curve is considered as a point in the Banach space of continuous
functions and its evolution is described by a random process in this space. In
such an approach a portfolio strategy at a fixed time is identified with a linear
functional which is an element of the conjugate space, i.e. a measure on maturi-
ties. The dynamics of a strategy is given by a weakly predictable measure-valued
process.

The needed mathematical tool is a stochastic integration with respect toC-
valued processes for which our paper suggests a certain general recipe. As a
justification of the general framework, we prove that the asset paying an interest
corresponding to the short term interest rate is the value process of a roll-over
strategy consisting in permanent reinvestment in just maturing bonds. Tradition-
ally, the existence of such an asset in a bond market is an auxiliary hypothesis
explained by heuristic arguments.

The integration theory has a more explicit structure for models where the
dynamics of any bond, i.e. evolution of each point of the price curve, is given
by a jump-diffusion model. In this case, one can use a construction involving
standard finite-dimensional integrals. Starting the modelling from the description
of the forward rate dynamics we derive HJM-type conditions for the existence
of an equivalent martingale measure.

The formal definition of a portfolio strategy allows to define other economi-
cally meaningful properties of a bond market, in particular, market completeness.
For a model with a finite Ĺevy measure we show that the completeness is equiv-
alent to the uniqueness of the equivalent martingale measure, a relation which is
well-known for stock market models. However, in the case of an infinite Lévy
measure this is no longer true; it happens that the uniqueness of the equiva-
lent martingale measure is a property that holds iff the market is approximately
complete, i.e. every contingent claim can be approached in a certain sense by a
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sequence of hedgeable claims. This result is deduced from duality considerations
leading, moreover, to the conclusion that the hedging problem is ill-posed.

It is worth mentioning that the results of this paper open the door to a sys-
tematic use of models driven by Lévy processes that give better statistical fitting
of real-world financial data but lead to theoretical difficulties related to absence
of completeness. Moreover, the idea of measure-valued portfolios seems to be
useful also in the context of stock markets augmented by an infinite number of
derivative securities or bonds.

One can observe that a number of questions are only briefly touched here
and we foresee further mathematical developments within the framework of the
considered approach.

A Appendix

Stochastic Fubini theorems
We give formulations of the stochastic Fubini theorems which are used in the
present paper. The proofs for integrals with respect to a martingale can be found
in the textbook [31], the case of random measures is treated in the same way.

Let M be a continuous real martingale,µ = µ(dt, dx) a P ⊗ X -σ-finite
integer-valued adapted random measure with compensatorν = ν(dt, dx), and
m a measure on (T,BT) with the finite total variation|µ|. Let H = H (ω, t , θ)
andΨ = Ψ (ω, t , x, θ) be, correspondingly,P ⊗BT-measurable andP ⊗X ⊗
BT-measurable functions. We denote byH θ andΨθ their θ-sections, i.e.H θ :
(ω, t) 7→ H (ω, t , θ); as usual,O is the notation for the optionalσ-algebra;mH
(or m(H ) in ambiguous cases) stands for the integral with respect tom = m(dθ).

As in the ordinary Fubini theorem, there is a statement concerning measura-
bility; since in the stochastic case the integral is defined up to aP-null set, the
problem, in fact, is that of existence of suitably measurable versions.

Proposition A.1 (a) Assume that for eachθ the integral(H θ)2 · 〈M 〉t is finite for
finite t . Then there exists anO ⊗ BT-measurable function U(ω, t , θ) such that
for eachθ the process Uθ is a version of the stochastic integral Hθ ·M .

(b) Assume that for eachθ the integral(Ψθ)2 ∗ νt is finite for finite t . Then
there exists anO ⊗BT-measurable function V(ω, t , θ) such that for eachθ the
process Vθ is a version of the stochastic integralΨθ ∗ (µ− ν).

By virtue of these assertions the notationsH θ · M andΨθ ∗ (µ − ν) always
mean the suitable measurable versions of the integrals.

Proposition A.2 (a) Suppose that for finite t

(mH2) · 〈M 〉t :=
∫ t

0

(∫
T

H 2(t , θ)m(dθ)

)
d〈M 〉t <∞. (A.1)

Then the process m(H ·M ) is indistinguishable from(mH) ·M .
(b) Suppose that for finite t
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(mΨ2) ∗ νt :=
∫ t

0

∫
X

(∫
T
Ψ2(t , x, θ)m(dθ)

)
ν(dt, dx) <∞.

Then the process m(Ψ ∗ (µ− ν)) is indistinguishable from mΨ ∗ (µ− ν).

Comments.The measurability result has been proved in great generality in [36].
The interchangeability of the integrals under the assumptions above is almost
a folklore (for this and other versions see [31] with the literature therein and
also [37]; the book [12] contains an extension to Hilbert space-valued Wiener
processes) although it is not easy to give a precise reference except [27] for
the case of random measures. We do not consider ramifications of this result
which are delicate and still of current interest. Actually, the stochastic Fubini
theorem is rather unfortunate: even the usually reliable source [20] contains an
erroneous formulation in Theorem 5.44 (see p. 161 in [31] for a counterexample
and further remarks). The most general results are given in the recent deep study
[27] where the problem is treated in the framework of vector integration theory
(independently, the same approach to the stochastic Fubini theorem is used in
the paper [4] submitted, however, much later).

Acknowledgement.The authors expressed their thanks to Hans Föllmer and Christoph Stricker for
helpful discussions.

1 In the language of probability theory: i.e. generated by all mappingsm 7→ mf
where f∈ CT ; in the language of functional analysis this is, of course, weak*
topology.
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