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1 Introduction

The arbitrage theory for financial markets with proportional transaction costs is one of

the most advanced and interesting domains of mathematical finance. It success is due to

a geometric viewpoint which provides an appropriate language to attack problems. The

approach based on convex geometry not only makes arguments much more transparent

comparatively with traditional, “parametric”, modeling but also allows to put problems

in a more general mathematical framework. To the date, for the discrete-time setting

there is a plethora of criteria for various types of arbitrage, see Chapter 3 of the

book [4]. In a surprising contrast, for continuous-time models only a few results on

the no-arbitrage criteria are available. In the recent paper [2] Guasoni, Rásonyi, and
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Schachermayer established an interesting result in this direction. They formulated the

question on sufficient and necessary conditions for the absence of arbitrage not for

a single model but for a whole family of them. Namely, they considered two-asset

models with a fixed continuous price process and constant transaction costs tending

to zero. In a rather spectacular way, the resulting no-arbitrage criterion happens to be

very simple: the NAw-property holds for each model if and only if each model admits

a consistent price system. The advantage of such a formulation is clear: topological

properties, common in this theory, are not involved. It looks very similar to the no-

arbitrage criterion for the model with finite Ω, see Th. 3.1.1 in the book [4] and Th.

3.2 in the original paper [6].

Apparently, this result merits to be put in the mainstream of the theory of financial

markets with transaction costs. In the present note we extend, using the now “stan-

dard” geometric approach, the main theorem of [2] to the case of multi-asset models.

The paper [2] serves us as the roadmap.

2 Main Result

Let ε ∈]0, 1] and let Kε∗ := R+(1 +Uε), where Uε := {x ∈ Rd : maxi |x
i| ≤ ε}. That

is, Kε∗ is the closed convex cone in Rd generated by the max-norm ball of radius ε

with center at 1 := (1, . . . , 1). We denote by Kε the (positive) dual cone of Kε∗.

Let (Ω,F , (Ft), P ) be a stochastic basis and let S = (St)t≤T be a continuous

semimartingale with strictly positive components. We consider the linear controlled

stochastic equation

dV i
t = V i

t−dY
i
t + dBi

t, V i
0 = 0, i ≤ d,

where Y i is the stochastic logarithm of Si, i.e. dY i
t = dSi

t/S
i
t , Y

i
0 = 1, and the strategy

B is a predictable càdlàg process of bounded variation with Ḃ ∈ −Kε. The notation Ḃ

stands for (a measurable version of) the Radon–Nikodym derivative of B with respect

to ||B||, the total variation process of B.

A strategy B is ε-admissible if for the process V = V B there is a constant κ such

that Vt +κSt ∈ K
ε for all t ≤ T . The set of processes V corresponding to ε-admissible

strategies is denoted by ATε
0 while the notation ATε

0 (T ) is reserved for the set of random

variables VT , V ∈ ATε
0 .

Using the random operator

φt : (x1, ..., xd) 7→ (x1/S1
t , ..., x

d/Sd
t )

define the random cone K̂ε
t = φtK

ε with the dual K̂ε∗
t = φ−1

t Kε∗. Put V̂t = φtVt. We

denote by MT
0 (K̂ε∗ \ {0}) the set of martingales Z such that Zt ∈ K̂ε∗

t \ {0} for all

t ≤ T .

Theorem 2.1 We have:

ATε
0 (T ) ∩ L0(Rd

+,FT ) = {0} ∀ ε ∈]0, 1] ⇔ MT
0 (K̂ε∗ \ {0}) 6= ∅ ∀ ε ∈]0, 1].

Comments on financial applications.

It is easily seen that for the case d = 2 our model is exactly the same as that of [2]

and our theorem is Th. 1.1 therein. The only difference is that we use the ”old-fashion”
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definition of the value processes. The reader is invited to verify that one can use the

more sophisticated one as defined in [4] (following the original paper [1]) and get the

same result. In the financial interpretation the cones Kε and K̂ε are the solvency

regions in the terms of the numéraire and physical units, respectively, V and V̂ are

value processes, elements of MT
0 (K̂ε∗ \ {0}) are ε-consistent price systems, etc. The

condition “ATε
0 (T ) ∩ L0(Rd

+,FT ) = {0} for all ε” can be referred to as the universal

NAw-property.

In the case d > 2 the considered cones Kε and Kε∗ do not correspond to a financial

model (though sometimes the traditional terminology is still in use). What is important,

our result can be applied to a wide class of financially meaningful models, even with

varying transaction costs. To see this, let us consider the family of models of currency

markets with the solvency cones given by the matrices of transaction costs coefficients

Λε = (λε
ij) as follows:

K(Λε) = cone {(1 + λε
ij)ei − ej , ei, 1 ≤ i, j ≤ d}.

Suppose that for every ε ∈]0, 1] there is ε′ ∈]0, 1] such that K(Λε) ⊆ Kε′

and, vice

versa, for any δ ∈]0, 1] there is δ′ ∈]0, 1] such that Kδ ⊆ K(Λδ′

). It is obvious that

under this hypothesis Theorem 2.1 ensures that for the currency markets theNAw(Λε)-

property holds for every ε ∈]0, 1] if and only if an ε-consistent price system does exist

for every ε ∈]0, 1]. The hypothesis is fulfilled if Λε → 0 and the duals K∗(Λε) have

interiors containing 1, e.g., in the case where all λε
ij = ε. Adding some extra arguments

one can easily get the following corollary of the main theorem for the family of models

with the efficient friction condition.

Proposition 2.2 Suppose that Λε → 0 and intK∗(Λε) 6= ∅ for all ε ∈]0, 1]. Then

NAw(Λε) ∀ ε ∈]0, 1] ⇔ MT
0 (K̂∗(Λε) \ {0}) 6= ∅ ∀ ε ∈]0, 1].

Proof. (⇒) Let δ ∈]0, 1] and w ∈ K∗(Λδ). Then wi/wj ≤ 1 + λδ
ij → 1 as δ → 0. It

follows that K∗(Λδ′

) ⊆ Kδ∗ for some δ′ ∈]0, 1]. For the primary cones the inclusion is

opposite. Thus, the assumed no-arbitrage property implies the no-arbitrage property

in the formulation of Theorem 2.1. Take now ε ∈]0, 1] and a vector v ∈ intK∗(Λε)∩U1.

We define the operator

ψv : (x1, ..., xd) 7→ (v1x1, ..., vdxd).

Choose δ ∈]0, 1] such that ψv(1 + Uδ) ⊂ K∗(Λε). By virtue of Theorem 2.1 there is

Z ∈ MT
0 (K̂δ∗ \ {0}). The process ψvZ is a martingale. Since ψvZ = φψvφ

−1Z, it is

an element of MT
0 (K̂∗(Λε) \ {0}).

For the proof of the reverse implication see the beginning of Section 5. 2

The strategy of the proof of Theorem 2.1.

To prove the nontrivial implication (⇒) we exploit the fact that the universal

NAw-property holds for any imbedded discrete-time model. Using the criterion for

NAr-property we deduce from here in Section 3 the existence of a “universal chain”,

that is there exists a sequence of stopping times τn increasing stationary to T and

such that Mτn
0 (K̂ε∗ \ {0}) 6= ∅ for all ε ∈]0, 1] and n ≥ 1. In an analogy with [2], we

relate with this “universal chain” functions F i(ε), i ≤ d, and check that there is, for

each i, an alternative: either F i = 0, or F i(0+) = 1. This is the most involved part of

the proof isolated in Section 4. If all F i = 0, the sets Mτn
0 (K̂ε∗ \ {0}) are non-empty
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and we conclude. If there is a coordinate i for which F i(0+) = 1, there exists a strict

arbitrage opportunity, see Section 5. In Section 6 we discuss the properties of richness

of the set of consistent price systems.

3 Universal Discrete-Time NA
w-property

We say that the continuous-time model has universal discrete-time NAw-property if

for any ε > 0, N ≥ 2, and an increasing sequence of stopping times σ1, . . . , σN with

values in [0, T ] and such that σn < σn+1 on the set {σn < T}, we have that

L0(Rd
+,FT ) ∩

N∑

n=1

L0(−φσnK
ε,Fσn) = {0}.

Proposition 3.1 Suppose that the model has the universal discrete-time NAw-property.

Then there is a strictly increasing sequence of stopping times τn with P (τn < T ) → 0

as n→ ∞ such that for any N and ε ∈]0, 1] the set MτN
0 (K̂ε∗ \ {0}) is non-empty.

Proof. Define recursively the increasing sequence of stopping times:

σ0 = 0, σn = σε
n := inf{t ≥ σn−1 : max

i≤d
| lnSi

t − lnSi
σn−1

| ≥ ln(1+ ε/8)}, n ≥ 1.

This sequence has the following property which we formulate as a lemma.

Lemma 3.2 For any integer N ≥ 1 there exists Z ∈ MσN
0 (K̂ε∗ \ {0}).

Proof. To avoid a new notation we suppose without loss of generality that S = SσN .

Let Xn := Sσn . By our assumption and in virtue of the criterion for the NAr-property

there is a discrete-time martingale (Mn)n≤N with Mn ∈ L∞(φ−1
σn
Kε/4∗ \{0}), see Th.

3.2.1 in [4] or Th. 3 in [5]. Put Zt := E(MN |Ft) and Z̃t := φtZt. Let us check that

Z ∈ MσN
0 (K̂ε∗ \ {0}). On the set {t ∈ [σn−1, σn]}

Z̃t = E(φtφ
−1
σn
Z̃σn |Ft).

Note that

(1 + ε/8)−2 ≤
Si

σn

Si
t

=
Si

σn−1

Si
t

Si
σn

Si
σn−1

≤ (1 + ε/8)2.

Therefore,

(1 + ε/8)−2E(Z̃i
σn

|Ft) ≤ Z̃i
t ≤ (1 + ε/8)2E(Z̃i

σn
|Ft).

But E(Z̃σn |Ft) = E(φσnMn|Ft) ∈ cone (1 + Uε/4) \ {0}, i.e. the components of

E(Z̃σn |Ft) take values in the interval with the extremities λ(1 ± ε/4) where λ > 0

depends on n and ω. Thus,

1 − ε ≤ (1 + ε/8)−2(1 − ε/4) ≤ Z̃i
t/λ ≤ (1 + ε/8)2(1 + ε/4) ≤ 1 + ε.

This implies the assertion of the lemma. 2

To finish the proof of the proposition, we proceed exactly as at the end of proof of

Th. 1.4 in [2]. Namely, we take a sequence of εk ↓ 0. For each n ≥ 1 we find an integer

Nn,k such that

P (σεk

Nn,k
< T ) < 2−(n+k).



5

Without loss of generality we assume that for each k the sequence (Nn,k)n≥1 is in-

creasing. The increasing sequence of stopping times τn := mink≥1 σ
εk

Nn,k
converges to

T stationary: P (τn < T ) ≤ 2−n. Applying the lemma with εk we obtain that for the

process S stopped at σεk

Nn,k
there exists an εk-consistent price system. The latter, being

stopped at τn, is an εk-consistent price system for Sτn . 2

We call the sequence (τn) which existence was established above universal chain.

4 Properties of Universal Chains

We explore properties of a universal chain assuming that P (τn < T ) > 0 for all n.

Let us introduce the set TT of stopping times σ such that P (σ < T ) > 0 and, for

some n, the inequality σ ≤ τn holds on {σ < T}. This set is non empty: by the adopted

hypothesis it contains all τn.

Let σ ∈ TT and let n be such that σ ≤ τn holds on {σ < T}.

We denote by Mi(σ, ε, n) the set of processes Z such that:

1) Z = 0 on {σ = T};

2) Z is a martingale on [σ, τn], i.e. E(Zτn |Fϑ) = Zϑ for any stopping time ϑ such

that σ ≤ ϑ ≤ τn on {σ < T};

3) Zt(ω) ∈ int K̂ε∗
t (ω) when σ(ω) < T and t ∈ [σ(ω), τn(ω)];

4) EZi
σI{σ<T} = 1.

Note that the process Z = Z̃I{σ<T}/EZ̃
i
σI{σ<T} belongs to Mi(σ, ε, n) provided

that Z̃ ∈ Mτn
0 (int K̂ε∗).

Let F i(ε) := supσ∈TT
F i(σ, ε) where

F i(σ, ε) := lim
n

inf
Z∈Mi(σ,ε,n)

EZi
τn
I{τn<T}.

We also put

f i(σ, ε, n) := ess inf
Z∈Mi(σ,ε,n)

E((Zi
τn
/Zi

σ)I{τn<T}|Fσ).

Lemma 4.1 For any Z ∈ Mi(σ, ε, n) there is a process Z̄ ∈ Mi(σ, ε, n+ 1) such that

Z̄τn = Zτn .

Proof. To explain the idea we suppose first that Z ∈ Mi(σ, ε′, n) for some ε′ < ε. Take

δ > 0 and a process Z̃ ∈ Mi(σ, δ, n+ 1). Define the process Z̄ with components

Z̄j := ZjI[0,τn[ +
Zj

τn

Z̃j
τn

Z̃jI[τn,T ].

Note that

φtZt = λt(1 + u1
t , . . . , 1 + ud

t ), t ∈ [σ, τn],

φtZ̃t = λ̃t(1 + ũ1
t , . . . , 1 + ũd

t ), t ∈ [τn, τn+1],

where maxj |u
j | ≤ ε′, maxj |ũ

j | ≤ δ and λt, λ̃t > 0. It follows that Z̄ belongs to

Mi(σ, ε̄, n+ 1) with

ε̄ =
(1 + ε′)(1 + δ)

1 − δ
− 1.
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Since ε̄ < ε for sufficiently small δ = δ(ε′), the result follows.

In the general case we consider the partition of the set {σ < T} on Fτn-measurable

subsets Ak, on which the process Z evolves, on the interval [σ, τn], in the cones K̂εk∗,

where εk := (ε − 1/k) ∨ 0. As above, take processes Z̃k ∈ Mi(σ, δk, n + 1) with

δk = δ(εk). Then the process Z̄ with components

Z̄j := ZjI[0,τn[ +
∑

k

Zj
τn

Z̃kj
τn

Z̃kjIAk
I[τn,T ]

meets the requirements. 2

Lemma 4.2 The sequence (f i(σ, ε, n))n≥0 is decreasing and its limit f i(σ, ε) ≤ F i(ε).

Proof. By Lemma 4.1 for any Z ∈ Mi(σ, ε, n) there is a process Z̄ ∈ Mi(σ, ε, n + 1)

such that Z̄τn = Zτn . Using the martingale property of Z̄ we get that

E((Zi
τn
/Zi

σ)I{τn<T}|Fσ) = E((Z̄i
τn
/Z̄i

σ)I{τn<T}|Fσ) ≥ E((Z̄i
τn+1

/Z̄i
σ)I{τn+1<T}|Fσ).

It follows that f i(σ, ε, n) ≥ f i(σ, ε, n+ 1).

Suppose that the claimed inequality f i(σ, ε) ≤ F i(ε) fails. Then there exist a non-

null Fσ-measurable set A ⊆ {σ < T} and a constant a > 0 such that for all sufficiently

large n

f i(σ, ε, n)IA ≥ (F i(ε) + a)IA.

Define the stopping time σA := σIA +TIAc and note that for any Z ∈ Mi(σ, ε, n) the

process ZIA/EZIA is an element of Mi(σA, ε, n). Since E(ξ|Fσ)IA = E(ξ|FσA )IA,

we have the bound

f i(σA, ε, n)IA ≥ f i(σ, ε, n)IA.

Thus, for any Z ∈ Mi(σA, ε, n) and sufficiently large n

EZi
τn
I{τn<T} = EZi

σA
E((Zi

τn
/Zi

σA
)I{τn<T}|FσA ) ≥ F i(ε) + a

in contradiction with the definition of F i(ε). 2

Lemma 4.3 Let σ ∈ TT be such that σ ≤ τn0 on the set {σ < T} and let ε, δ > 0.

Then there are n ≥ n0, Γ ∈ Fσ with P (Γ ) ≤ δ, and Z ∈ Mi(σ, ε, n) such that

Zi
σ = η := I{σ<T}/EI{σ<T} and

E(Zi
τn
I{τn<T}|Fσ) ≤

I{σ<T}

EI{σ<T}
[(F i(ε) + δ)IΓ c + IΓ ].

Proof. Recall that the essential infimum ξ of a family of random variables {ξα} is the

limit of a decreasing sequence of random variables of the form ξα1 ∧ ξα2 ∧ ... ∧ ξαm ,

m → ∞. Thus, for any a > 0 the sets {ξαk ≤ ξ + a} form a covering of Ω. Using the

standard procedure, one can construct from this covering a measurable partition of Ω

by sets Ak such that ξαk ≤ ξ + a on Ak.

Thus, for any fixed n ≥ n0 there are a countable partition of the set {σ < T} into

Fσ-measurable sets An,k and a sequence of Zn,k ∈ Mi(σ, ε, n) such that

E((Zn,k,i
τn

/Zn,k,i
σ )I{τn<T}|Fσ) ≤ f i(σ, ε, n) + 1/n on An,k.
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Put, for t ∈ [σ, τn],

Z̃n
t := η

∞∑

k=1

1

Zn,k,i
σ

Zn,k
t IAn,k .

Then Z̃n ∈ Mi(σ, ε, n), Z̃n,i
σ = η, and

E(Z̃n,i
τn
I{τn<T}|Fσ) = ηE((Z̃n,i

τn
/η)I{τn<T}|Fσ) ≤

I{σ<T}

EI{σ<T}
[f i(σ, ε, n) + 1/n].

Note that f i(σ, ε, n) + 1/n decreases to f i(σ, ε) ≤ F i(ε). By the Egorov theorem the

convergence is uniform outside of a set Γ of arbitrary small probability. The assertion

of the lemma follows from here immediately. 2

Proposition 4.4 For any ε1, ε2 we have the inequality

F i(ε1)F
i(ε2) ≥ F i((1 + ε1)(1 + ε2)/(1 − ε2) − 1). (4.1)

Either F i = 0, or there is ci ≥ 0 such that F i(ε) ≥ e−ciε1/3

for all sufficiently small ε.

Proof. Fix δ > 0 and a stopping time σ ≤ τn0 on the set {σ < T}. According to the

above lemma there are n ≥ n0 and Z1 ∈ Mi(σ, ε1, n) such that

EZ1i
τn
I{τn<T} ≤ F i(ε1) + δ.

Using the same lemma again (but now with τn playing the role of σ), we find m > n

and Z2 ∈ Mi(τn, ε2, m) with Z2i
τn

= I{τn<T}/EI{τn<T} such that outside of a set

Γ ∈ Fτn with P (Γ ) ≤ δ we have the bound

E(Z2i
τm
I{τm<T}|Fτn) ≤

I{τn<T}

EI{τn<T}
[(F i(ε2) + δ)IΓ c + IΓ ].

Define on [σ, τm] the martingale Z with Zj
t := Z1j

t on [σ, τn] and Zj
t := Z2j

t Z1j
τn/Z

2j
τn

on [τn, τm], j = 1, . . . , d. Then

φtZ
1
t = λ1

t (1 + u11
t , . . . , 1 + u1d

t ), t ∈ [σ, τn],

φtZ
2
t = λ2

t (1 + u21
t , . . . , 1 + u2d

t ), t ∈ [τn, τm],

where maxj |u
1j | ≤ ε1, maxj |u

2j | ≤ ε2 and λ1
t , λ

2
t > 0. It follows that

Z ∈ Mi(σ, (1 + ε1)(1 + ε2)/(1 − ε2) − 1,m).

Note also that

EZi
τm
I{τm<T} = P (τn < T )EZ2i

τm
Z1i

τn
I{τm<T}

≤ P (τn < T )EZ1i
τn
I{τn<T}E(Z2i

τm
I{τm<T}|Fτn).

Hence,

EZi
τm
I{τm<T} ≤ (F i(ε1) + δ)(F i(ε2) + δ) + EZ1i

τn
I{τn<T}IΓ .

The inequality (4.1) follows from here.

Note that for ε1, ε2 ∈]0, 1/4]

(1 + ε1)(1 + ε2)

1 − ε2
− 1 =

ε1 + 2ε2 + ε1ε2
1 − ε2

≤ 4(ε1 + ε2).

Since F is decreasing, we obtain from (4.1) that F i(ε1)F
i(ε2) ≥ F i(4(ε1 + ε2)) for all

ε1, ε2 ∈]0, 1/8]. Using Lemma 4.5 below with f = lnF i, we get the needed bound. 2
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Lemma 4.5 Let f :]0, x0] → R be a decreasing function such that

f(x1) + f(x2) ≥ f(4(x1 + x2)), ∀ x1, x2 ≤ x0. (4.2)

Then there is c > 0 such that f(x) ≥ −cx1/3 for x ∈]0, x0].

Proof. In the non-trivial case where f(x0) < 0, the constant κ = − infx∈]x0/8,x0] f(x)/x

is strictly greater than zero. Iterating the inequality 2f(x) ≥ f(8x) we obtain that

2nf(x) ≥ f(23nx) for all x ∈]0, 2−3nx0] and all integers n ≥ 0. Therefore,

f(x)

x
≥ 22n f(23nx)

23nx
=

1

4
x
2/3
0

(
23(n+1)

x0

)2/3
f(23nx)

23nx
.

For x ∈]2−3(n+1)x0, 2
−3nx0], the right-hand side dominates −cx−2/3 with the constant

c := κx
2/3
0 /4. Thus, the inequality f(x)/x ≥ −cx−2/3 holds on ]0, x0]. 2

5 Proof of Theorem 2.1

(⇐) The arguments are standard. For any ξ ∈ φTA
Tε
0 (T ) and Z ∈ MT

0 (K̂ε∗ \ {0}) we

have EZT ξ ≤ 0 and this inequality is impossible for ξ ∈ L0(Rd
+,FT ), ξ 6= 0.

(⇒) In view of Proposition 3.1 we need to consider the case where the universal chain

is such that P (τn < T ) > 0 for every n and we can apply the results on functions F i.

Now the claim follows from the assertions below (cf. Prop. 3.7 and Th. 3.7 in [2]).

Proposition 5.1 If
∑

i F
i(ε) = 0 for all ε ∈]0, 1], then MT

0 (K̂ε∗ \ {0}) 6= ∅.

Proof. Fix ε ∈]0, 1] and define a sequence of εk ↓ 0, such that ε̄N ↑ ε where ε̄1 = ε1,

ε̄N := (1 + ε1)
N∏

k=2

1 + εk
1 − εk

− 1, N ≥ 2.

We extend arguments of the proof of Proposition 4.4 in the following way. Namely, we

construct inductively an increasing sequence of integers (nN )N≥0 with n0 = 0 and a

sequence of Z(N) ∈ M
τnN
0 (K̂ ε̄N∗ \ {0}) such that for N = kd+ r where 0 ≤ r ≤ d− 1

EZ
(N) r+1
τnN

I{τnN
<T} ≤ 2−N . (5.3)

Since F 1(ε) = 0, Lemma 4.3 ensures the existence of Z1 ∈ M1(0, ε1, n1) with

EZ11
τn1

I{τn1
<T} ≤ 2−1.

Put Z(1) := Z1. Take now δ1 > 0 such that

EZ
(1)2
τn1

I{τn1
<T}IA ≤ 2−3

for every A ∈ Fτn1
with P (A) ≤ δ1. Using again Lemma 4.3 (now for the second

coordinate), we find an integer n2 > n1, a set Γ1 ∈ Fτn1
with P (Γ1) ≤ δ1 ∧ 2−3, and

a process Z2 ∈ M2(τn1 , ε2, n2) such that Z22
τn1

= I{τn1
<T}/EI{τn1

<T} and

E(Z22
τn2

I{τn2
<T}|Fτn1

) ≤
I{τn1

<T}

EI{τn1
<T}

[2−3 + IΓ1
].
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Put Z
(2)j
t = Z

(1)j
t on [0, τn1 ] and Z

(2)j
t = Z2j

t Z
(1)j
τn1

/Z2j
τn1

on ]τn1 , τn2 ], j = 1, . . . , d.

Note that Z(2) ∈ M
τn2

0 (φ−1cone {1 + Uε̄2} \ {0}) and

EZ
(2)2
τn2

I{τn2
<T} = P (τn1 < T )EZ22

τn2
Z

(1)2
τn1

I{τn2
<T}

≤ P (τn1 < T )EZ
(1)2
τn1

I{τn1
<T}E(Z22

τn2
I{τn2

<T}|Fτn1
) ≤ 2−2.

We continue this procedure passing at each step from the coordinate j to the coordinate

j + 1 for j ≤ d− 1 and from the coordinate d to the first one.

Since P (τn = T ) ↑ 1, there is a process Z such that ZτnN = Z(N) for every N . The

components of Z are strictly positive processes on [0, T ]. The condition (5.3) ensures

that they are martingales. Therefore, Z ∈ MT
0 (K̂ε∗ \ {0}). 2

Proposition 5.2 Suppose that
∑
F i 6= 0. Then there is ε ∈]0, 1] for which the property

NAwε (the notation is obvious) does not hold.

Proof. At least one of functions, say, F 1, is not equal identically to zero. According to

Proposition 4.4, we have the bound F 1(ε) > e−cε1/3

for all sufficiently small ε. Hence,

there is a stopping time σ dominated by certain τn0 on the set {σ < T} such that

inf
Z∈M1(σ,ε,n)

EZ1
τn
I{τn<T} > e−cε1/3

for all sufficiently large n. Then for every Z ∈ M1(σ, ε, n) we have that

E(Z1
τn
I{τn=T}|Fσ) ≤ 1 − e−cε1/3

.

Let us consider the sequence of random variables ξn ∈ L0(Rd,Fτn) such that the

components ξn2 = . . . = ξnd = 0 and

ξn1 = −I{σ<T} + (1 − e−cε1/3

)−1I{σ<T,τn=T}.

Clearly,

E(Zτnξ
n|Fσ) ≤ −I{σ<T} + (1 − e−cε1/3

)−1E(Z1
τn
I{τn=T}|Fσ)I{σ<T} ≤ 0.

We have the inequality EZτnξ
n ≤ 0, and, therefore, by the superhedging theorem (see

Th. 3.6.3 in [4]), ξn is the terminal value of an admissible process V̂ = V̂ B in the

model having σ and τn as the initial and terminal dates, respectively. Note that on

the non-null set {σ < T} the limit of ξn1 is strictly positive. To conclude we use the

lemma below which one can get by applying, on each interval [0, τn], the Komlós-type

result (Lemma 3.6.5 in [4], Lemma 3.5 in [3]) followed by the diagonal procedure. 2

Lemma 5.3 Suppose that ξn = V̂ n
τn

where V̂ n + 1 ∈ K̂ε and ξn → ξ a.s. as n → ∞.

Then there is a portfolio process V̂ such that V̂ + 1 ∈ K̂ε and ξ = V̂T .
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6 Richness of the Set of Consistent Price Systems

The following condition of “richness” of consistent price systems plays an important

role in the continuous-time theory of financial markets with transaction costs.

Bε Let ξ ∈ L0(Rd,Ft). If Ztξ ≥ 0 for all Z ∈ MT
0 (K̂ε∗ \ {0}), then ξ ∈ K̂ε

t (a.s.).

Simple argument (see, e.g., [4], 3.6.3) shows that Bε is fulfilled for the model with

constant transaction costs if S admits an equivalent martingale measure. Its minor

changes leads to the next result which seems to be useful interesting in the setting of

families of models with vanishing transaction costs:

Proposition 6.1 Suppose that MT
0 (K̂ε∗\{0}) 6= ∅ for all ε ∈]0, 1]. Then the condition

Bε holds for all ε ∈]0, 1].

Proof. Take w ∈ intKε∗ with |w| = 1. For all sufficiently small δ > 0 we have the

inclusion w + Uδ ⊂ Kε∗. Take Z ∈ MT
0 (K̂δ∗ \ {0}) and consider the martingale

Zw = (w1Z1, . . . , wdZd). Note that φtZt = ρtZ̃t where ρt > 0 and Z̃t ∈ 1 + Uδ .

Then φtZ
w
t = ρtw̃t where w̃i

t = wiZ̃i
t . According to our definition, w̃t takes values in

w+Uδ ⊂ Kε∗. Therefore, Zw ∈ MT
0 (K̂ε∗ \ {0}) and Zwξ ≥ 0. The inequality implies

that w̃tηt ≥ 0 where ηt(ω) = φ−1
t (ω)ξ(ω). Letting δ → 0, we obtain that also wηt ≥ 0.

The latter inequality holds for all w ∈ Kε∗. Hence, φ−1
t ξ ∈ Kε and ξ ∈ K̂ε

t . 2
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