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Abstract We consider an optimal control problem of linear stochastic integro-differential

equation with conic constraints on the phase variable and the control of singular-regular

type. Our setting includes consumption-investment problems for models of financial

markets in the presence of proportional transaction costs where that the prices are

geometric Lévy processes and the investor is allowed to take short positions. We prove

that the Bellman function of the problem is a viscosity solution of the HJB equation.

A uniqueness theorem for the solution of the latter is established. Special attention is

paid to the Dynamic Programming Principle.
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1 Introduction

In this paper we study the classical consumption-investment model with infinite horizon

in the presence of transaction costs. Our aim is to extend the results of [18] to the

case where the price processes are geometric Lévy process. Namely, we show that the

Bellman function is a viscosity solution of the corresponding Hamilton–Jacobi–Bellman

equation. We also prove a uniqueness theorem for the latter.
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Mathematically, the consumption-investment problem with transaction costs is a

regular-singular control problem for a linear stochastic equation in a cone. Its speci-

ficity is that the Bellman function is not smooth and, therefore, one cannot use the

verification theorem (at least, in its traditional form) because the Itô formula cannot be

applied. Nevertheless, one can show that the Bellman function is a solution of the HJB

equation in viscosity sense. Though the general line of arguments is common, one needs

to re-examine each step of the proof. In particular, for the considered jump-diffusion

model, the HJB equation contains an integro-differential operator and the test func-

tions involved in the definition of the viscosity solution must be “globally” defined. It

seems that already in 1986 H.M. Soner noticed that the control problems with jump

parts can be considered in the framework of the theory of viscosity solutions, [26], [27].

There is a growing literature on extension of the concept of viscosity solutions to

equations with integro-differential operators, see, e.g., [23], [2], [22], [9], [8], [3], [4].

There are several variants of the definition of viscosity solution. Our choice is intended

to serve the model with a positive utility function. The definition can be viewed as a

simplified version of that adopted in [15].

A rather detailed study of consumption-investment problems under transaction

costs when the the prices follows exponential Lévy processes and the investor is con-

strained to keep long positions in all assets, money included, was undertaken in papers

by Benth et al. [10] and [11]. Our geometric approach seems to be more general than

that of the mentioned papers where the authors consider a ”parametric” version of the

stock market with transactions always passing through money (i.e. either “buy stock”

or “sell stock”). A more important difference is that in our setting the investor may

take short positions as was always assumed in the classical papers [21], [13], [25]. If

short positions are admitted, the ruin may happen due to a jump of the price process.

That is why the classical setting we consider here leads to a different HJB equation of

a more complicated structure. Following the ideas from the paper [18] we derive the

Dynamic Programming Principle splitted into two separate assertions. Though it is the

principal tool which allows to check that the Bellman function is a viscosity solution of

the HJB equation, it is rarely discussed in the literature (and even taken for granted,

see, e.g., in [1], [25], [10]).

The main results of the paper is Theorem 10.1 claiming that if the Bellman function

is continuous up to the boundary then it is a viscosity solution of the HJB equation

and the uniqueness theorem for the Dirichlet problem arising in the model, Th. 11.2.

We formulate the latter in terms of the Lyapunov function, an object that is defined

in terms of the truncated operator, in which the utility function is not involved. Its

introduction allows us to disconnect the uniqueness of a solution and the existence of

a classical supersolution.

The structure of the problem is the following. In Sections 2 and 3 we introduce the

model dynamics and describe the goal functional providing comments on the concavity

of the Bellman function W . In Section 4 we show that the Bellman function, if finite,

then it is continuous in the interior of the solvency cone. In Section 5 we give a formal

description of the HJB equation. Sections 6 and 7 contain a short account of basic

facts on viscosity solutions for integro-differential operators. In Section 8 we explain

the role of classical supersolutions to the HJB equations. Section 9 is devoted to the

Dynamic Programming Principle. In Section 10 we use it to show that the Bellman

function is the solution of our HJB equation. Section 11 contains a uniqueness theorem

formulated in terms of a Lyapunov function. In Section 12 we provide examples of

Lyapunov functions and classical supersolutions.
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2 The Model

Our setting is more general than that of the standard model of financial market under

constant proportional transaction costs. In particular, the cone K is not supposed to

be polyhedral. We assume that the asset prices are geometric Lévy processes. Our

framework appeals to a theory of viscosity solutions for non-local integro-differential

operators.

Let Y = (Yt) be an Rd-valued semimartingale on a stochastic basis (Ω,F , F, P )

with the trivial initial σ-algebra. Let K and C be proper closed cones in Rd such that

C ⊆ intK 6= ∅. Define the set A of controls π = (B, C) as the set of predictable

càdlàg processes of bounded variation such that, up to an evanescent set,

Ḃ ∈ −K, Ċ ∈ C. (2.1)

Here Ḃ denotes a (measurable version) of the Radon–Nikodym derivative of B with

respect to the total variation process ||B||. The notation Ċ has a similar sense. Though

models with arbitrary C is of interest, we restrict ourselves in the present paper by

considering consumption processes admitting intensity. To this and we define Aa as

the set of controls π with absolutely continuous components C such that the increment

∆C0 := C0−Ci
0− = 0 where C0− = 0. For the elements of Aa we have c := dC/dt ∈ C.

The controlled process V = V x,π is the solution of the linear system

dV i
t = V i

t−dY i
t + dBi

t − dCi
t , V i

0− = xi, i = 1, ..., d. (2.2)

In general, ∆V0 = ∆B0 is not is not equal to zero: the investor may revise the portfolio

when entering the market.

The solution of (2.2) can be expressed explicitly using the Doléans-Dade exponen-

tials

Et(Y
i) = eY i

t −(1/2)〈Y ic〉t
∏

s≤t

(1 + ∆Y i
s )e−∆Y i

s . (2.3)

Namely,

V i
t = Et(Y

i)xi + Et(Y
i)

∫

[0,t]
E−1

s− (Y i)(dBi
s − dCi

s), i = 1, ..., d. (2.4)

We introduce the stopping time

θ = θx,π := inf{t : V x,π
t /∈ int K}.

For x ∈ intK we consider the subsets Ax and Ax
a of “admissible” controls for which

π = I[0,θx,π]π and {V− + ∆B ∈ int K} = {V− ∈ intK}. This means that for an

admissible control the process V x,π stops at the moment when it leaves the interior

of the solvency cone and there is no more consumption. Moreover, the process V does

not leave the interior of K due to a jump of B: the investor is reasonable enough not

to ruin himself by making too expensive portfolio revision.

The important hypothesis that the cone K is proper, i.e. K ∩ (−K) = {0}, or

equivalently, intK∗ 6= ∅, corresponds to the model of financial market with efficient

friction. In a financial context K (usually containing Rd
+) is interpreted as the solvency

region and C = (Ct) as the consumption process; the process B = (Bt) describes



4

accumulated fund transfers. In the “standard” model with proportional transaction

costs (sometimes referred to as the model of currency market)

K = cone {(1 + λij)ei − ej , ei, 1 ≤ i, j ≤ d}

where λij ≥ 0 are transaction costs coefficients, see Section 3.1 in the book [19] for

details and other examples.

The process Y represents the relative price movements. If Si is the price process

of the ith asset, then dSi
t = Si

t−dY i
t and Si

t = Si
0Et(Y

i). Without loss of generality we

assume that Si
0 = 1 for all i. In this case Y i is the so-called stochastic logarithm of Si.

The formula (2.4) can be re-written as follows:

V i
t = Si

tx
i + Si

t

∫

[0,t]

1

Si
s−

(dBi
s − dCi

s), i = 1, ..., d. (2.5)

We shall work assuming that

dYt = µt + Ξdwt +

∫
z(p(dz, dt) − q(dz, dt)) (2.6)

where µ ∈ Rd, w is a m-dimensional standard Wiener process and p(dz, dt) is a Pois-

son random measure with the compensator q(dz, dt) = Π(dz)dt such that Π(dz) is a

measure concentrated on ]− 1,∞[d. Note that the latter property of the Lévy measure

corresponds to the financially meaningful case where Si > 0. For the m×d-dimensional

matrix Ξ we put A = ΞΞ∗. We assume that

∫
(|z|2 ∧ |z|)Π(dz) < ∞. (2.7)

It is important to note that the jumps of Y and B cannot occur simultaneously.

More precisely, the process |∆B||∆Y | is indistinguishable of zero. Indeed, for any ε > 0

we have, using the predictability of the process ∆B = B − B−, that

E
∑

s≥0

|∆Bs||∆Ys|I{|∆Ys|>ε} = E

∫ ∞

0

∫
|∆Bs|I{|z|>ε}|z|p(dz, ds)

= E

∫ ∞

0

∫
|∆Bs||z|I{|z|>ε}Π(dz)ds = 0

because for each ω the set {s : ∆Bs(ω) 6= 0} is at most countable and its Lebesgue

measure is equal to zero. Thus, the process |∆B||∆Y |I{|∆Y |>ε} is indistinguishable of

zero and so is the process |∆B||∆Y |.

It follows that ∆Bθ = 0. Since the predictable process I{V−∈∂K}I[0,θ] has at most

countable number of jumps, the same reasoning as above leads to the conclusion that

I{V−∈∂K}|∆Y |I[0,θ] is indistinguishable of zero. This means that θ is the first moment

when either V or V− leaves intK. This property will be used in the proof that W is

lower semicontinuous on intK.

In our proof of the dynamic programming principle (needed to derive the HJB

equation) we shall assume that the stochastic basis is a canonical one, that is the space

of càdlàg functions under which the coordinate process is the Lévy process.
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We denote by Cρ(K) the subspace of the space of continuous functions f on K such

that supx∈K |f(x)|(1 + |x|ρ) < ∞. The notation f ∈ C2(x) means that f is smooth in

some neighborhood of x.

Let f ∈ C1(K) ∩ C2(int K). Using the abbreviation

I(z, x) := I{z: x+diag xz∈int K} = Iint K(x + diag xz)

we introduce the function

I(f, x) :=

∫
(f(x + diag xz) − f(x) − diag xzf ′(x))I(z,x)Π(dz), x ∈ int K.

It is well-defined and continuous in x. Indeed, let ε > 0 be such that the ball Oε(x) ⊂ K

and δ := ε/(2|x|). Then, using the Taylor formula, we have the bound

|f(x + diag xz) − f(x) − diag xzf ′(x))| ≤ κ1|z|
2IOε/2(x)(z) + κ2|z|IK\Oε/2(x)(z)

which right-hand side is integrable with respect to Π .

3 Goal Functionals and Concavity of the Bellman Function

Let U : C → R+ be a concave function such that U(0) = 0 and U(x)/|x| → 0 as

|x| → ∞. With every π = (B,C) ∈ Ax
a we associate the “utility process”

Jπ
t :=

∫ t

0
e−βsU(cs) ds , t ≥ 0 ,

where β > 0. We consider the infinite horizon maximization problem with the goal

functional EJπ
∞ and define its Bellman function W by

W (x) := sup
π∈Ax

a

EJπ
∞ , x ∈ intK . (3.8)

Since Ax1

a ⊆ Ax2

a when x2 − x1 ∈ K, the function W is increasing with respect

to the partial ordering ≥K generated by the cone K.

If πi, i = 1, 2, are admissible strategies for the initial points xi, then the strategy

λπ1 +(1−λ)π2 is an admissible strategy for the initial point λx1+(1−λ)x2, λ ∈ [0, 1],

laying on the interval connecting x1 and x2. In the case where the relative price process

Y is continuous, the corresponding ruin time for the process

V λx1+(1−λ)x2,λπ1+(1−λ)π2 = λV x1,π1 + (1 − λ)V x2,π2 (3.9)

dominates the maximum of the ruin times for processes V xi,πi . The concavity of u

implies that

J
λπ1+(1−λ)π2

t ≥ λJπ1

t + (1 − λ)Jπ2

t . (3.10)

and, hence, the function W is concave on intK.

Unfortunately, in our main case of interest, where Y has jumps, the ruin times

cannot be related in such a simple way. One can easily imagine a situation where

θx1,π1 = θλx1+(1−λ)x2,λπ1+(1−λ)π2 < ∞ while θx2,π2 = ∞ and the relations (3.9) and

(3.10) do not hold. Therefore, we cannot guarantee, by the above argument, that the

Bellman function is concave. Of course, these considerations show only that the concav-

ity of W cannot be obtained in a straightforward way as claimed in some publications.
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It is not excluded. Moreover, the concavity is rather plausible because one may guess

that for the optimal strategies there are no short positions in the risky assets and the

ruin by jumps is impossible.

The concavity of the Bellman function W is not a property just interesting per se.

The classical definition of viscosity solution, as was given by the famous “User’s guide”

[12], requires the continuity. On the other hand, a concave function is continuous in the

interior of its domain (and even locally Lipschitz), see, e.g., [5]. Of course, the model

must contains a provision which ensures that W is finite. But the latter property in the

case of continuous price processes implies that W is continuous on int K. In the case of

processes with jumps one needs to analyze the continuity of W using other arguments.

In the next section we show that the finiteness of W still guarantees its continuity

in the interior of K. We do this using the following assertion.

Lemma 3.1 Suppose that W is a finite function. Let x ∈ int K. Then the function

λ 7→ W (λx) is right-continuous on R+.

Proof. Let λ > 0. Then λπ ∈ Aλx
a if and only if π ∈ Ax

a. For a concave function U with

U(0) = 0 we have, for any ε > 0 the inequality U(c) ≥ (1 + ε)−1U((1 + ε)c). Hence,

for an arbitrary strategy π ∈ Ax
a we have that

J
(1+ε)π
∞ − Jπ

∞ = E

∫ ∞

0
e−βt

(
U((1 + ε)ct) − U(ct)

)
dt

≤ εE

∫ ∞

0
e−βtU(ct))dt ≤ εW (x).

It follows that W ((1 + ε)x) ≤ (1 + ε)W (x). Since W (x) ≤ W ((1 + ε)x), we infer from

here that λ 7→ W (λx) is right-continuous at the point λ = 1. Replacing x by λx we

obtain the claim. 2

If U is a homogeneous function of order γ with γ ∈]0, 1[, i.e. U(λx) = λγU(x) for

all λ > 0, x ∈ K, then W (λx) = λγW (x). Thus, the function λ 7→ W (λx) is concave

and, therefore, continuous if finite.

Remark 1. In financial models usually C = R+e1 and σ0 = 0, i.e. the only first (non-

risky) asset is consumed. Correspondingly, U(c) = u(e1c) = u(c1) where u is a utility

function of a scalar argument. Our presentation is oriented to the power utility function

uγ(x) = xγ/γ with γ ∈]0, 1[. The case of γ ≤ 0, where, by convention, u0(x) = ln x, is

of interest but it is not covered by the present study.

Remark 2. We consider here a model with mixed “regular-singular” controls. In fact,

the assumption that the consumption process has an intensity c = (ct) and the agent’s

utility depends on this intensity is not very satisfactory from the economical point of

view. One can consider models with an intertemporal substitution and the consumption

by “gulps”, i.e. dealing with “singular” controls of the class Ax and the goal functionals

like

Jπ
t :=

∫ t

0
e−βsU(C̄s)ds ,

where

C̄s =

∫ s

0
K(s, r)dCr

with a suitable kernel K(s, r) (the exponential kernel e−γ(s−r) is the common choice).
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4 Continuity of the Bellman Function

Proposition 4.1 Suppose that W (x) < ∞ for all x ∈ int K. Then W is continuous

on intK.

Proof. First, we show that the function W is upper semicontinuous on intK. Suppose

that this is not the case and there is a sequence xn converging to some x0 ∈ int K

such that lim supn W (xn) > W (x0). Without loss of generality we way assume that

the sequence W (xn) converges. The points x̃k = (1 + 1/k)x0, k ≥ 1, belong to the ray

R+x0 and converges to x0. We find a subsequence xnk such that x̃k ≥K xnk for all

k ≥ 1. Indeed, since

(1 + 1/k)x0 ∈ x0 + intK,

there exists εk > 0 such that

(1 + 1/k)x0 + Oεk(0) ∈ x0 + intK.

It follows that

(1 + 1/k)x0 + (xn − x0) + Oεk(0) ∈ xn + intK

and, therefore, (1+1/k)x0 ∈ xn +intK for all n such that |xn −x0| < εk. Any strictly

increasing sequence of indices nk with |xnk − x0| < εk gives us in a subsequence of

points xnk having the needed property. The function W is increasing with respect to

the partial ordering ≥K . Thus,

lim
k

W (x̃k) ≥ lim
k

W (xnk) > W (x0).

On the other hand, the function λ 7→ W (λx0) is right-continuous at λ = 1 and,

hence, limk W (x̃k) = W (x0). This contradiction shows that W is upper semicontinuous

on intK.

Let us show now that lim infn W (xn) ≥ W (x0) as xn → x0, i.e. W is lower semi-

continuous on int K.

Fix ε > 0. Due to the finiteness of the Bellman function there are a strategy π and

T ∈ R+ such that for θ = θx0,π we have the bound

E

∫ T∧θ

0
e−βsU(cs)ds ≥ W (x0) − ε.

It remains to show that

lim inf
n

θn ∧ T ≥ θ ∧ T a.s., (4.11)

where we use the abbreviation θn := θxn,π. Indeed, with this bound we get, using the

Fatou lemma, that

lim inf
n

W (xn) ≥ lim inf
n

E

∫ θn∧T

0
e−βsU(cs)ds ≥ E lim inf

n

∫ θ∧T

0
e−βsU(cs)ds

≥ E

∫ θ∧T

0
e−βsU(cs)ds ≥ W (x0) − ε

and the claim follows since ε is arbitrarily small.
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To prove (4.11), we observe that on [0, θn ∧ θ ∧ T ] we have the representation

V xn,π
t − V x0,π

t = diag (xn − x0)St

implying that

sup
t≤θn∧θ∧T

|V xn,π
t − V x0,π

t | ≤ S∗
T |xn − x0|,

where S∗
T := supt≤T |St|. Fix arbitrary, “small”, δ > 0. For almost all ω the distance

ρ(ω) of a trajectory V x0,π
t (ω) on the interval [0, θ ∧ T − δ] is strictly positive. The

above bound shows that for sufficiently large n the V xn,π
t (ω) does not deviate from

V x0,π
t (ω) more than on ρ(ω)/2 on the interval [0, θn(ω) ∧ θ(ω) ∧ T ]. It follows that

θn(ω) ≥ θ(ω) ∧ T − δ. Thus,

lim inf
n

θn ∧ T ≥ θ ∧ T − δ a.s.

and (4.11) holds. 2

5 The Hamilton–Jacobi–Bellman Equation

Let G := (−K) ∩ ∂O1(0) where Or(y) := {x ∈ Rd : |x − y| < r}. The set G is

compact and −K = cone G. We denote by ΣG the support function of G, given by

the relation ΣG(p) = supx∈G px. The convex function U∗(.) is the Fenchel dual of the

convex function −U(−.) whose domain is −C, i.e.

U∗(p) = sup
x∈C

(U(x) − px).

We introduce a function of five variables by putting

F (X, p, I(f, x), W, x) := max{F0(X, p,I(f, x), W, x) + U∗(p),ΣG(p)},

where X belongs to Sd, the set of d × d symmetric matrices, p, x ∈ Rd, W ∈ R,

f ∈ C1(K) ∩ C2(x) and the function F0 is given by

F0(X, p, I(f, x),W, x) :=
1

2
tr A(x)X + µ(x)p + I(f, x) − βW

where A(x) is the matrix with Aij(x) := aijxixj , µi(x) := µixi, 1 ≤ i, j ≤ d.

In a more detailed form we have that

F0(X, p,I(f, x),W, x) =
1

2

d∑

i,j=1

aijxixjXij +

d∑

i=1

µixipi + I(f, x) − βW.

Note that F0 is increasing in the argument f in the same sense as I.

If φ is a smooth function, we put

Lφ(x) := F (φ′′(x), φ′(x), I(φ, x), φ(x), x).

In a similar way, L0 corresponds to the function F0.

We show, under mild hypotheses, that W is the unique viscosity solution of the

Dirichlet problem for the HJB equation

F (W ′′(x),W ′(x),I(W, x),W (x), x) = 0, x ∈ int K, (5.12)

W (x) = 0, x ∈ ∂K, (5.13)

with the boundary condition understood in the usual classical sense.
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6 Viscosity Solutions for Integro-Differential Operators

Since, in general, W may have no derivatives at some points x ∈ intK (and this

is, indeed, the case for the model considered here), the notation (5.12) needs to be

interpreted. The idea of viscosity solutions is to substitute W in F by suitable test

functions. Formal definitions (adapted to the case we are interested in) are as follows.

A function v ∈ C(K) is called viscosity supersolution of (5.12) if for every x ∈ int K

and every f ∈ C1(K)∩C2(x) such that v(x) = f(x) and v ≥ f the inequality Lf(x) ≤ 0

holds.

A function v ∈ C(K) is called viscosity subsolution of (5.12) if for every x ∈ int K

and every f ∈ C1(K)∩C2(x) such that v(x) = f(x) and v ≤ f the inequality Lf(x) ≥ 0

holds.

A function v ∈ C(K) is a viscosity solution of (5.12) if v is simultaneously a viscosity

super- and subsolution.

At last, a function v ∈ C1(K)∩C2(int K) is called classical supersolution of (5.12)

if Lv ≤ 0 on int K. We add the adjective strict when Lv < 0 on the set intK.

For the sake of simplicity and having in mind the specific case we shall work on,

we incorporated in the definitions the requirement that the viscosity super- and sub-

solutions are continuous on K including the boundary. For other cases this might be

too restrictive and more general and flexible formulations can be used.

Lemma 6.1 Suppose that the function v is a viscosity solution of (5.12). If v is twice

differentiable at x0 ∈ int K, then it satisfies (5.12) at this point in the classical sense.

Proof. One needs to be more precise with definitions since it is not assumed that v′ is

defined at every point of a neighborhood of x0. “Twice differentiable” means here that

the Taylor formula at x0 holds:

v(x) = P2(x − x0) + (x − x0)
2h(|x − x0|)

where

P2(x − x0) := v(x0) + 〈v′(x0), x − x0〉 +
1

2
〈v′′(x0)(x − x0), x − x0〉

and h(r) → 0 as r ↓ 0.

We introduce the notation Γr := {z ∈ Rd : |diag x0z| ≤ r}, r ≥ 0.

Let ε > 0. We choose a number δ0 ∈]0, 1[ such that |h(s)| ≤ ε for s ≤ δ0 and define

δ := δ0/(1+ |x0|). Take ∆ ∈]δ, 1[ sufficiently close to δ to insure that x0 +O∆(0) ⊂ K,

Π(O∆(0) \ Oδ(0)) ≤ ε, and Π(Γ∆ \ Γδ) ≤ ε.

We define the function fε ∈ C1(K) ∩ C2(x0) by the formula

fε(x) =






P2(x − x0) + ε(x − x0)
2, x ∈ x0 + Oδ(0),

g(x)∨ v(x), x ∈ x0 + O∆(0) \ Oδ(0),

v(x), x ∈ x0 + Oc
∆(0),

where

g(x) := P2

(
δ

x − x0

|x − x0|

)
+ εδ +

δ − |x − x0|

∆ − |x − x0|
.

Clearly, fε(x0) = v(x0) and fε ≥ v. Since v is a viscosity subsolution, Lfε(x0) ≥ 0.

Note that,

|Lfε(x0) −Lv(x0)| ≤ ε

n∑

i=1

aii(xi
0)

2 + |I(fε − v, x0)|.
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It is not difficult to show that |I(fε − v, x0)| is also proportional to ε. Indeed,

|I((fε − v)IOδ(0), x0)| ≤ ε|x0|
2
∫

O1(0)
z2Π(dz).

Due to the choice of ∆ we have the bound

|I((fε − v)IO∆(0)\Oδ(0), x0)| ≤ 2MΠ(O∆(0) \ Oδ(0)) ≤ 2Mε,

where M is the supremum of v on the ball x0 + O|x0|(0).

Since

|fε(x0 + diag x0z) − v(x0 + diag x0z)| ≤ ε|x0|
2|z|2, z ∈ Γδ \ Γ0,

we get that

|I((fε − v)IOc
∆(0)∩Γδ\Γ0

, x0)| ≤ ε|x0|
2
∫

O1(0)
|z|2Π(dz).

Also we have

|I((fε − v)IOc
∆(0)∩Γ∆\Γδ

, x0)| ≤ (2m + ε)Π(Γ∆ \ Γδ) ≤ (2m + ε)ε,

where m is the supremum of v on the ball x0+O1(0). Letting ε tend to zero, we obtain

that Lv(x0) ≥ 0. Arguing similarly with ε < 0, we get the opposite inequality. 2

7 Jets

Let f and g be functions defined in a neighborhood of zero. We shall write f(.) / g(.)

if f(h) ≤ g(h) + o(|h|2) as |h| → 0. The notations f(.) ' g(.) and f(.) ≈ g(.) have the

obvious meaning.

For p ∈ Rd and X ∈ Sd we consider the quadratic function

Qp,X(z) := pz + (1/2)〈Xz, z〉 , z ∈ Rd ,

and define the super- and subjets of a function v at the point x:

J+v(x) := {(p, X) : v(x + .) / v(x) + Qp,X(.)},

J−v(x) := {(p, X) : v(x + .) ' v(x) + Qp,X(.)}.

In other words, J+v(x) (resp. J−v(x)) is the family of coefficients of quadratic

functions v(x) + Qp,X(y − .) dominating the function v(.) (resp., dominated by this

function) in a neighborhood of the point x with precision up to the second order

included and coinciding with v(.) at this point.

In the classical theory developed for differential equations the notion of viscosity

solutions admits an equivalent formulation in terms of super- and subjets. Since the

latter are “local” concepts, such a characterization is not possible for integro-differential

operators. Nevertheless, one can prove the following useful result.
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Lemma 7.1 Let v be a viscosity supersolution of the HJB equation and let x ∈ int K.

Let (p, X) ∈ J−v(x). Then there is a function f ∈ C1(K)∩C2(x) such that f ′(x) = p,

f ′′(x) = X, f(x) = v(x), f ≤ v on K and, hence,

F (X,p, I(f, x),W (x), x) ≤ 0.

Moreover, this function f can be chosen equal to v outside of an arbitrary small neigh-

borhood of x.

Proof. Take r > 0 such that the ball O2r(x) = {y : |y − x| ≤ 2r} lays in the interior

of K. By definition,

v(x + h) − v(x) − Qp,X(h) ≥ |h|2ϕ(|h|),

where ϕ(u) → 0 as u ↓ 0. We consider on ]0, r[ the function

δ(u) := sup
{h: |h|≤u}

1

|h|2
(v(x + h) − v(x) − Qp,X(h))− ≤ sup

{y: 0≤y≤u}
ϕ−(y)

where a− := (−a) ∨ 0. Obviously, δ is continuous, increasing and δ(u) → 0 as u ↓ 0.

The function

∆(u) :=
2

3

∫ 2u

u

∫ 2η

η
δ(ξ)dξdη

vanishes at zero with its two right derivatives; u2δ(u) ≤ ∆(u) ≤ u2δ(4u). It follows

that the function x 7→ ∆(|x|) belongs to C2(Or(0)), its Hessian vanishes at zero, and

v(x + h) − v(x) − Qp,X(h) ≥ −|h|2δ(|h|) ≥ −∆(|h|).

Thus, f(y) := v(x) + Qp,X(y − x) − ∆(|y − x|) is dominated by v(y) in the ball

Or(x) = {y : |y − x| ≤ r}. We put f(y) = v(y) outside of the ball O2r(x). We can

extend f continuously to the remaining set O2r(x) \ Or(x) preserving the inequality

f ≤ v. 2

For subsolutions we have a similar result with the inverse inequalities.

8 Supersolutions and Properties of the Bellman Function

8.1 When is the Bellman Function W Finite on K?

First, we present sufficient conditions ensuring that the Bellman function W of the

considered maximization problem is finite.

Functions we are interested in are defined in the solvency cone K while the process

V which may jump out of the latter. In order to be able to apply later the Itô formula

we stop V = V x,π at the moment immediately preceding the ruin and define the

process

Ṽ = V θ− = V I[0,θ[ + Vσ−I[θ,∞[,

where θ is the exit time of V from the interior of the solvency cone K. This process

coincides with V on [0, θ[ but, in contrast to the latter, either always remains in K

(due to the stopping at θ if Vθ− ∈ int K) or exits to the boundary in a continuous way

and stays on it at the exit point.
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It follows from the definitions (2.2) and (2.6) that

Ṽt = v +

∫ t

0
I[0,θ](s)diag Ṽs(µsds + Ξdws)

+

∫ t

0

∫
diag Ṽs−zI(Ṽs−, z)(p(dz, ds) − q(dz, ds)) + Bt − Ct.

Let Φ be the set of continuous functions f : K → R+ increasing with respect to

the partial ordering ≥K and such that for every x ∈ intK and π ∈ Ax
a the positive

process Xf = Xf,x,π given by the formula

Xf
t := e−βtf(Ṽt) + Jπ

t , (8.14)

where V = V x,π, is a supermartingale.

The set Φ of f with this property is convex and stable under the operation ∧ (recall

that the minimum of two supermartingales is a supermartingale). Any continuous

function which is a monotone limit (increasing or decreasing) of functions from Φ

also belongs to Φ.

Lemma 8.1 (a) If f ∈ Φ, then W ≤ f ;

(b) if a point y ∈ ∂K is such that there exists f ∈ Φ such that f(y) = 0, then W is

continuous at y.

Proof. (a) Using the positivity of f , the supermartingale property of Xf , and, finally,

the monotonicity of f we get the following chain of inequalities leading to the required

property:

EJπ
t ≤ EXf

t ≤ f(Ṽ0) = f(V0) ≤ f(V0−) = f(x).

(b) The continuity of the function W at the point y ∈ ∂K follows from the inequal-

ities 0 ≤ W ≤ f . 2

Remark. Recall that a concave function is locally Lipschitz continuous on the interior

of its domain, i.e. on the interior of the set where it is finite. Thus, if W is concave

function and Φ is not empty, then W is continuous (and even locally Lipschitz contin-

uous) on int K. The concavity of W holds in the case where the price process has no

jumps.

Lemma 8.2 Let f : K → R+ be a function in C1(K) ∩ C2(int K). If f is a classical

supersolution of (5.12), then f ∈ Φ, i.e. Xf is a supermartingale.

Proof. First, notice that a classical supersolution is increasing with respect to the

partial ordering ≥K . Indeed, by the finite increments formula we have that for any

x, h ∈ intK

f(x + h) − f(x) = f ′(x + ϑh)h

for some ϑ ∈ [0, 1]. The right-hand side is greater or equal to zero because for the

supersolution f we have the inequality ΣG(f ′(y)) ≤ 0 whatever is y ∈ intK, or,

equivalently, f ′(y)h ≥ 0 for every h ∈ K, just by the definition of the support function

ΣG and the choice of G as a generator of the cone −K. By continuity, f(x+h)−f(x) ≥ 0

for every x, h ∈ K.
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Applying the “standard” Itô formula to e−βtf(Ṽt) we obtain that

e−βtf(Ṽt) = f(x) +

∫ t

0

e−βsf ′(Ṽs−)dṼs − β

∫ t

0

e−βsf(Ṽs−)ds

+
1

2

∫ t

0

e−βstr A(Ṽs−)f ′′(Ṽs−)ds

+
∑

s≤t

e−βs[f(Ṽs− + ∆Ṽs) − f(Ṽs−) − f ′(Ṽs−)∆Ṽs].

Note also that

∑

s≤t

e−βs[f(Ṽs− + ∆Ṽs) − f(Ṽs−) − f ′(Ṽs−)∆Ṽs]I{∆Bs=0}

=

∫ t

0

∫
e−βs[...]I(Ṽs−, z)I{∆Bs=0}I[0,θ](s)p(dz, ds)

=

∫ t

0

∫
e−βs[...]I(Ṽs−, z)I[0,θ](s)Π(dz)ds

+

∫ t

0

∫
e−βs[...]I(Ṽs−, z)I{∆Bs=0}I[0,θ](s)(p(dz, ds) − Π(dz)ds),

where we replace in the integrals by dots the lengthy expression

f(Ṽs− + diag Ṽs−z) − f(Ṽs−) − f ′(Ṽs−)diag Ṽs−z.

Using the above formulae we obtain after regrouping terms the following representation

for Xf
t = e−βtf(Ṽt) + Jπ

t :

Xf
t = f(x) +

∫ t∧θ

0
e−βs[L0f(Ṽs) − csf

′(Ṽs) + U(cs)]ds + Rt + mt, (8.15)

where

Rt :=

∫ t∧θ

0
e−βsf ′(Vs−)dBc

s +
∑

s≤t

e−βs[f(Ṽs− + ∆Bs) − f(Ṽs−)] (8.16)

and m is the local martingale

mt =

∫ t∧θ

0

e−βsf ′(Ṽs−)diag ṼsΞdws

+

∫ t∧θ

0

∫
e−βs[f(Ṽs− + diag Ṽs−z) − f(Ṽs−)]I(Ṽs−, z)(p(dz, ds) − Π(dz)ds).

By definition of a supersolution, for any x ∈ intK,

L0f(x) ≤ −U∗(f ′(x)) ≤ cf ′(x) − U(c) ∀ c ∈ C.

Thus, the integral in (8.15) is a decreasing process. The process R is also decreas-

ing. Indeed, the terms of the sum in (8.16) are less or equal to zero in virtue of the

monotonicity of f and

f ′(Vs−)dBc
s = I{∆Bs=0}f

′(Vs−)Ḃsd||B||s
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where f ′(Vs−)Ḃs ≤ 0 since Ḃ takes values in −K. Let σn be a localizing sequence for

m. Taking into account that Xf ≥ 0, we obtain from (8.15) that for each n the negative

decreasing process Rt∧σn dominates an integrable process and so it is integrable. The

same conclusion holds for the stopped integral. Being a sum of an integrable decreasing

process and a martingale, the process Xf
t∧σn

is a positive supermartingale and, hence,

by the Fatou lemma, Xf is a supermartingale as well. 2

Lemma 8.2 implies that the existence of a smooth positive supersolution f of (5.12)

ensures the finiteness of W on K. Sometimes, e.g., in the case of power utility function,

it is possible to find such a function in a rather explicit form.

Remark. Let Ō be the closure of an open subset O of K and let f : Ō → R+ be a

classical supersolution in Ō. Let x ∈ O and let τ be the exit time of the process V x,π

from Ō. The above arguments imply that the process Xf
t∧τ is a supermartingale and,

therefore,

E[e−β(t∧τ)f(Ṽt∧τ ) + Jπ
t∧τ ] ≤ f(x). (8.17)

8.2 Strict Local Supersolutions

For the strict supersolution we can get a more precise result which will play the crucial

role in deducing from the Dynamic Programming Principle the property of W to be a

subsolution of the HJB equation.

We fix a ball Ōr(x) ⊆ int K such that the larger ball Ō2r(x) ⊆ intK and define

τπ = τπ
r as the exit time of V π,x from Or(x), i.e.

τπ := inf{t ≥ 0 : |V π,x
t − x| ≥ r}.

Lemma 8.3 Let f ∈ C1(K) ∩ C2(O2r(x)) be such that Lf ≤ −ε < 0 on Ōr(x). Then

there exist a constant η = ηε > 0 and an interval ]0, t0] such that

sup
π∈Ax

a

EXf,x,π
t∧τπ ≤ f(x) − ηt ∀ t ∈]0, t0].

Proof. We fix a strategy π and omit its symbol in the notations below. In what follows,

only the behavior of the processes on [0, τ ] does matter. Note that |Vτ − x| ≥ r on the

set {τ < ∞}. As in the proof of Lemma 8.2, we apply the Itô formula and obtain the

representation

Xf
t∧τ := e−β(t∧τ)f(Ṽt∧τ ) + Jπ

t∧τ

= f(x) +

∫ t∧θ∧τ

0
e−βsLf(Ṽs)ds

−

∫ t∧θ∧τ

0
e−βs[U∗(Vs) + csf

′(Ṽs) − U(cs)]ds + Rt∧τ + mt∧τ .

Due to the monotonicity of f we may assume without loss of generality that on the

interval [0, τ ] the increment ∆Bt does not exceed the distance of Vs to the boundary

of Or(x). In other words, if the exit from the ball is due to an action (and not because

of a jump of the price process), we can replace this action by a less expensive one,

with the jump of the process Ṽ in the same direction but a smaller one, ending on the

boundary of the ball.
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By assumption, for y ∈ Or(x) we have the bounds Lf(y) ≤ −ε (helpful to estimate

the first integral in the right-hand side) and ΣG(f ′(y)) ≤ −ε. The latter inequal-

ity means that kf ′(y) ≤ −ε|k| for every k ∈ −K (therefore, we have the inclusion

f ′(Ōr(x)) ⊂ intK∗). In particular, for s ∈ [0, τ ]

f ′(Vs−)Ḃs ≤ −ε|Ḃs|, [f(Ṽs− + ∆Bs) − f(Ṽs−)] ≤ −ε|∆Bs|.

Since |Ṽs−−x| ≤ r for s ∈ [0, τ ], we obtain, using the finite increment formula and the

linear growth of f the bound

[f(Ṽs− + diag Ṽs−z) − f(Ṽs−)]I(Ṽs−, z) ≤ κ1|z|
2I{|z|≤1/2} + κ2|z|I{|z|>1/2}.

It follows that the local martingale (mt∧τ ) is a martingale with mt∧τ = 0.

The above observations imply the inequality

EXf,x
t∧τ ≤ f(x) − e−βtENt,

where

Nt := ε (t ∧ τ ) +

∫ t∧τ

0
H(cs, f

′(Vs))ds + ε

∫ t∧τ

0
|Ḃs|d||B||s

with H(c, p) := U∗(p) + pc − U(c) ≥ 0. It remains to verify that ENt dominates, on a

certain interval ]0, t0], a strictly increasing linear function which is independent of π.

The process Nt looks a bit complicated but we can replace it by another one of a

simpler structure. To this end, note that there is a constant κ (“large”, for convenience,

κ ≥ 1) such that

inf
p∈f ′(Ōr(x))

H(c, p) ≥ κ−1|c|, ∀ c ∈ C, |c| ≥ κ.

Indeed, being the image of a closed ball under continuous mapping, the set f ′(Ōr(x))

is a compact in int K∗. The lower bound of the continuous function U∗ on f ′(Ōr(x))

is finite. For any p from f ′(Ōr(x)) and c ∈ C ⊆ K we have the inequality (c/|c|)p ≥ ε.

At last, U(c)/|c| → 0 as c → ∞. Combining these facts we infer the claimed inequality.

Thus, for the first integral in the definition of Nt we have the bound

∫ t∧τ

0
H(cs, f

′(Vs))ds ≥ κ−1
∫ t∧τ

0
I{|cs|≥κ}|cs|ds.

The second integral in the definition dominates κ1||B||t∧τ for some κ1 > 0. To see

this, let us consider the absolute norm |.|1 in Rd. In contrast with the total variation

||B|| calculated with respect to the Euclidean norm |.|, the total variation of B with

respect to the absolute norm admits a simpler expression
∑

i VarBi where Var Bi is

the total variation of the scalar process Bi. Obviously,

|Ḃ|1 =
∑

i

|Ḃi| =
∑

i

∣∣∣∣∣
dBi

d||B||

∣∣∣∣∣ =
∑

i

∣∣∣∣∣
dBi

dVarBi

∣∣∣∣∣
dVarBi

d||B||
=

d
∑

i VarBi

d||B||
.

But norms in Rd are equivalent, i.e. κ̃−1|.| ≤ |.|1 ≤ κ̃|.| for some strictly positive

constant κ̃. The same inequalities relate the corresponding total variation processes.

The claimed property follows from here with the constant κ1 = κ̃2.
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Summarizing, we conclude that it is sufficient to check the domination property for

EÑt with

Ñt := t ∧ τ +

∫ t∧τ

0
I{|cs|≥κ}|cs|ds + ||B||t∧τ . (8.18)

These processes Ñ have a transparent dependence on the control. The idea of the

concluding reasoning is very simple: on a certain set of strictly positive probability,

where one may neglect the random fluctuations, either τ is “large”, or the total vari-

ation of the control is “large”: one can accelerate exit only by an intensive trading or

consumption.

The formal arguments are as follows. Using the stochastic Cauchy formula (2.4)

and the fact that E0+(Y i) = E0(Y
i) = 1, we get immediately that there exist a number

t0 > 0 and a measurable set Γ with P (Γ ) > 0 on which

|V x,π − x| ≤ r/2 + δ(||B|| + ||C||) on [0, t0]

whatever is the control π = (B,C). Of course, diminishing t0, we may assume without

loss of generality that κt0 ≤ r/(4δ). For any t ≤ t0 we have on the set Γ ∩ {τ ≤ t} the

inequality ||B||τ + ||C||τ ≥ r/(2δ) and, hence,

Ñt ≥ ||B||τ + ||C||τ −

∫ τ

0
I{|cs|<κ}|cs|ds ≥

r

2δ
− κt0 ≥ κt0 ≥ t0 ≥ t.

On the set Γ ∩ {τ > t} the inequality Ñt ≥ t is obvious. Thus, EÑt ≥ tP (Γ ) on [0, t0]

and the result is proven. 2

9 Dynamic Programming Principle

The aim of this section is to establish the following two assertions which will serve

to derive the HJB equation for the Bellman function. For the considered model, they

constitute an analog of the classical Dynamic Programming Principle. The latter is

usually written in the form of a single identity (see the remark at the end of the

section), but for our purpose this form, more precise, is needed.

Lemma 9.1 Let Tf be the sets of finite stopping times. Then

W (x) ≤ sup
π∈Ax

a

inf
τ∈Tf

E
(
Jπ

τ + e−βτW (V x,π
τ− )I{τ<θ}

)
. (9.19)

Lemma 9.2 Suppose that W is continuous on intK. Then for any τ ∈ Tf

W (x) ≥ sup
π∈Ax

a

E
(
Jπ

τ + e−βτW (V x,π
τ− )I{τ≤θ}

)
. (9.20)

We work on the canonical filtered space of càdlàg functions equipped with the

measure P which is the distribution of the driving Lévy process. The generic point

ω = ω. of this space is a d-dimensional càdlàg function on R+, zero at the origin.

Let F◦
t := σ{ωs, s ≤ t} and Ft := ∩ε>0F

◦
t+ε. We add the superscript P to denote σ-

algebras augmented by all P -null sets from Ω. Recall that F◦,P
t coincides with FP

t (this

assertion follows easily from the predictable representation theorem). The Skorohod

metric makes Ω a Polish space and its Borel σ-algebra coincides with F∞, for details

see [16].
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Since elements of Ω are paths, we can define such operators as the stopping ω. 7→ ωs
. ,

s ≥ 0, where ωs
. = ωs∧. and the translation ω. 7→ ωs+. − ωs. Taking Doob’s theorem

into account, one can describe F◦
s -measurable random variables as those of the form

g(w.) = g(ws
. ) where g is a measurable function on Ω.

We define also the “concatenation” operator as the measurable mapping

g : R+ × Ω × Ω → Ω

with gt(s, ω., ω̃.) = ωtI[0,s[(t) + (ω̃t−s + ωs)I[s,∞[(t).

Notice that

gt(s, ω
s
. , ω.+s − ωs) = ωt.

Thus, π(ω) = π(g(s, ωs
. , ω.+s − ωs)).

Let π be a fixed strategy from Ax
a and let θ = θx,π be the exit time from intK for

the process V x,π.

Recall the following general fact on regular conditional distributions.

Let ξ and η be two random variables taking values in Polish spaces X and Y

equipped with their Borel σ-algebras X and Y. Then ξ admits a regular conditional

distribution given η = y which we shall denote by pξ|η(Γ, y). This means that pξ|η(., y)

is a probability measure on X , pξ|η(Γ, .) is a Y-measurable function, and

E(f(ξ, η)|η) =

∫
f(x, y)pξ|η(dx, y)

∣∣∣∣∣
y=η

(a.s.)

for any X × Y-measurable function f(x, y) ≥ 0.

We shall apply the above relation to the random variables ξ = (ω.+τ − ωτ ) and

η = (τ, ωτ ). It is well-known that the Lévy process starts afresh at stopping times,

i.e. the measure P (.) itself (not depending on y) is the regular conditional distribution

pξ|η(., y).

At last, for fixed s and ws, the shifted control π.+s(g(s, ωs
. , ω̃.)) is admissible for

the initial condition V x,π
s− (ω). Here we denote by ω̃. a generic point of the canonical

space.

Proof of Lemma 9.1. For arbitrary π ∈ Ax
a and Tf we have that

EJπ
∞ = EJπ

τ + Ee−βτ I{τ<θ}

∫ ∞

0
e−βrU(cr+τ )dr

= EJπ
τ + Ee−βτ I{τ<θ}E

(∫ ∞

0
e−βrU(cr+τ )dr

∣∣∣∣(τ, ωτ )

)
.

According to the above discussion we can rewrite the second term of the right-hand

side as

Ee−βτ I{τ<θ}

∫ (∫ ∞

0
e−βrU(cr+τ (g(τ, ωτ , ω̃)))dr

)
P (dω̃)

and dominate it by Ee−βτI{τ<θ}W (V x,π
τ− ). Thus,

EJπ
∞ ≤ EJπ

τ + Ee−βτ I{τ<θ}W (V x,π
τ− ).

This bound leads directly to the first announced inequality. 2

Proof of Lemma 9.2. Fix ε > 0. By hypothesis, the function W is continuous on intK.

For each x ∈ int K we can find an open ball Or(x) = x + Or(0) with r = r(ε, x) < ε
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contained in the open set {y ∈ intK : |W (y) − W (x)| < ε}. Moreover, we can find a

smaller ball Or̃(x) contained in the set y(x)+K with some y(x) ∈ Or(x). Indeed, take

an arbitrary x0 ∈ intK. Then, for some δ > 0, the ball x0 + Oδ(0) ⊂ K. Since K is a

cone, λx0 + Oλδ(0) ⊂ K for every λ > 0 and this inclusion implies that

x + Oλδ(0) ⊂ x − λx0 + K

Clearly, the requirement is met for y(x) = x − λx0 and r̃ = λδ when λ|x0| < r and

λδ < r. The family of sets Or̃(x)(x), x ∈ int K, is an open covering of intK. But any

open covering of a separable metric space contains a countable subcovering (this is

the Lindelöf property; in our case, where int K is a countable union of compacts, it is

obvious). Take a countable subcovering indexed by points xn. For simplicity, we shall

denote its elements by On and y(xn) by yn. Put A1 = O1, and An = On \ ∪k<nOk.

The sets An are disjoint and their union is intK.

Let πn = (Bn, Cn) ∈ Ayn
a be an ε-optimal strategy for the initial point yn, i.e.

such that

EJπn
∞ ≥ W (yn) − ε.

Let π ∈ Ax
a be an arbitrary strategy. We consider the strategy π̃ ∈ Ax

a defined by the

relation

π̃ = πI[0,τ [ +
∞∑

n=1

[(yn − V x,π
τ− , 0) + π̄n]I[τ,∞[IAn

(V x,π
τ− )I{τ≤θ}

where π̄n is the translation of the strategy πn: namely, for a point ω. with τ (ω) = s < ∞
we have

π̄n
t (ω.) := πn

t−s(ω.+s − ωs).

In other words, the strategy π̃ coincides with π on [0, τ [ and with the shift of πn on

]τ,∞[ when V x,π
τ− is in An; the correction term guarantees that in the latter case the

trajectory of the control system corresponding to the control π̃ passes at time τ through

the point yn.

Now, using the same considerations as in the previous lemma, we have:

W (x) ≥ EJ π̃
∞ = EJπ

τ +
∞∑

n=1

EIAn
(V x,π

τ− )I{τ≤θ}

∫ ∞

τ
e−βsU(c̄n

s )ds

≥ EJπ
τ +

∞∑

n=1

EIAn
(V x,π

τ− )I{τ≤θ}e
−βτ (W (yn) − ε)

≥ EJπ
τ + Ee−βτW (V x,π

τ− )I{τ≤θ} − 2ε.

Since π and ε are arbitrary, the result follows. 2

Remark. The previous lemmas imply that for any τ ∈ Tf the following identity holds:

W (x) = sup
π∈Ax

a

E
(
Jπ

τ + e−βτW (V x,π
τ− )I{τ≤θ}

)
.

It can be considered as a form of the dynamic programming principle but, seemingly,

it is not sufficient for our derivation of the HJB equation.
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10 The Bellman Function and the HJB Equation

Theorem 10.1 Assume that the Bellman function W is in C(K). Then W is a vis-

cosity solution of (5.12).

Proof. The claim follows from the two lemmas below. 2

Lemma 10.2 If (9.20) holds then W is a viscosity supersolution of (5.12).

Proof. Let x ∈ int K. Choose a test function φ ∈ C1(K)∩C2(x) such that φ(x) = W (x)

and W ≥ φ. Take r ∈]0, 1] small enough to ensure that the ball Ō2r(x) ⊂ K and φ is

smooth on O2r(x).

At first, we fix an arbitrary point m ∈ K. Let ε > 0 be sufficiently small to

guarantee that x − εm ∈ Or(x). The function W is increasing with respect to the

partial ordering generated by K. Thus,

φ(x) = W (x) ≥ W (x− εm) ≥ φ(x − εm).

Taking a limit as ε → 0, we easily obtain that −mφ′(x) ≤ 0 and, hence, ΣG(φ′(x)) ≤ 0.

Take now π with Bt = 0 and ct = c ∈ C. Let τr = τπ
r ≤ θ be the exit time of the

process V = V x,π from the ball Or(x); obviously, τr ≤ θ. The properties of the test

function and the inequality (9.20) imply that

φ(x) = W (x) ≥ E
(
Jπ

t∧τr
+ e−β(t∧τr)W (Vt∧τr−)

)

≥ E
(
Jπ

t∧τr
+ e−β(t∧τr)φ(Vt∧τr−)

)
.

We get from here using the Itô formula (8.15), that

0 ≥ E

(∫ t∧τr

0
e−βsU(cs)ds + e−β(t∧τr)φ(Vt∧τr−)

)
− φ(x)

≥ E

∫ t∧τr

0
e−βs[L0φ(Vs) − cφ′(Vs) + U(c)]ds

≥ min
y∈Ōr(x)

[L0φ(y) − cφ′(y) + U(c)]E

[
1

β

(
1 − e−β(t∧τr)

)]
.

Dividing the resulting inequality by t and taking successively the limits as t and r

converge to zero we infer that L0φ(x) − cφ′(x) + U(c) ≤ 0. Maximizing over c ∈ C

yields the bound L0φ(x) + U∗(φ′(x)) ≤ 0 and, therefore, W is a supersolution of the

HJB equation. 2

Lemma 10.3 If (9.19) holds then W is a viscosity subsolution of (5.12).

Proof. Let x ∈ int K and let φ ∈ C1(K) ∩ C2(x) be a function such that φ(x) = W (x)

and W ≤ φ on O. Assume that the subsolution inequality for φ fails at x. Thus, there

exists ε > 0 such that Lφ ≤ −ε on some ball Ōr(x) ⊂ intK. By virtue of Lemma 8.3

(applied to the function φ) there are t0 > 0 and η > 0 such that on the interval ]0, t0]

for any strategy π ∈ Ax
a

E
(
Jπ

t∧τπ + e−βτπ

φ(V
x,π
t∧τπ)

)
≤ φ(x) − ηt,
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where τπ is the exit time of the process V x,π from the ball Or(x). Fix arbitrary

t ∈]0, t0]. By the second claim of Lemma 9.1) there exists π ∈ Ax
a such that

W (x) ≤ E
(
Jπ

t∧τ + e−βτW (V x,π
t∧τ )

)
+

1

2
ηt,

for every stopping time τ , in particular for τπ.

Using the inequality W ≤ φ and applying Lemma 8.3 we obtain from the above

relations that W (x) ≤ φ(x) − (1/2)ηt. This is a contradiction because at the point x

the values of W and φ are the same. 2

11 Uniqueness Theorem

Before formulating the uniqueness theorem we recall the Ishii lemma.

Lemma 11.1 Let v and ṽ be two continuous functions on an open subset O ⊆ Rd.

Consider the function ∆(x, y) := v(x)− ṽ(y)− 1
2n|x − y|2 with n > 0. Suppose that ∆

attains a local maximum at (x̂, ŷ). Then there are symmetric matrices X and Y such

that

(n(x̂ − ŷ), X) ∈ J̄+v(x̂), (n(x̂ − ŷ), Y ) ∈ J̄−ṽ(ŷ),

and (
X 0

0 −Y

)
≤ 3n

(
I −I

−I I

)
. (11.21)

In this statement I is the identity matrix and J̄+v(x) and J̄−v(x) are values of

the set-valued mappings whose graphs are closures of graphs of the set-value mappings

J+v and J−v, respectively.

Of course, if v is smooth, the claim follows directly from the necessary conditions

of a local maximum (with X = v′′(x̂), Y = ṽ′′(ŷ) and the constant 1 instead of 3 in

inequality (11.21)).

The inequality (11.21) implies the bound

tr (A(x)X − A(y)Y ) ≤ 3n|A|1/2|x − y|2 (11.22)

which will be used in the sequel (for the proof see, e.g., Section 4.2 in [19]).

The following concept plays a crucial role in the proof of the purely analytic result

on the uniqueness of the viscosity solution which we establish by a classical method of

doubling variables using the Ishii lemma.

Definition. We say that a positive function ℓ ∈ C1(K) ∩ C2(intK) is the Lyapunov

function if the following properties are satisfied:

1) ℓ′(x) ∈ intK∗ and L0ℓ(x) ≤ 0 for all x ∈ intK,

2) ℓ(x) → ∞ as |x| → ∞.

In other words, ℓ is a classical strict supersolution of the truncated equation

(without the term U∗), continuous up to the boundary, and increasing to infinity at

infinity.

Theorem 11.2 Assume that the jump measure Π does not charge (d−1)-dimensional

surfaces. Suppose that there exists a Lyapunov function ℓ. Then the Dirichlet problem

(5.12), (5.13) has at most one viscosity solution in the class of continuous functions

satisfying the growth condition

W (x)/ℓ(x) → 0, |x| → ∞. (11.23)
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Proof. Let W and W̃ be two viscosity solutions of (5.12) coinciding on the boundary

∂K. Suppose that W (z) > W̃ (z) for some z ∈ K. Take ε > 0 such that

W (z) − W̃ (z) − 2εℓ(z) > 0.

We introduce a family of continuous functions ∆n : K × K → R by putting

∆n(x, y) := W (x) − W̃ (y) −
1

2
n|x − y|2 − ε[ℓ(x) + ℓ(y)], n ≥ 0.

Note that ∆n(x, x) = ∆0(x, x) for all x ∈ K and ∆0(x, x) ≤ 0 when x ∈ ∂K. From

the assumption that the function ℓ has a higher growth rate than W we deduce that

∆n(x, y) → −∞ as |x|+ |y| → ∞. It follows that the level sets {∆n ≥ a} are compacts

and the function ∆n attains its maximum. That is, there exists (xn, yn) ∈ K ×K such

that

∆n(xn, yn) = ∆̄n := sup
(x,y)∈K×K

∆n(x, y) ≥ ∆̄ := sup
x∈K

∆0(x, x) > 0.

All (xn, yn) belong to the compact set {(x, y) : ∆0(x, y) ≥ 0}. It follows that the

sequence n|xn − yn|
2 is bounded. We continue to argue (without introducing new

notations) with a subsequence along which (xn, yn) converge to some limit (x̂, x̂).

Necessarily, n|xn − yn|
2 → 0 (otherwise we would have ∆0(x̂, x̂) > ∆̄). It is easily seen

that ∆̄n → ∆0(x̂, x̂) = ∆̄. Thus, x̂ is an interior point of K and so are xn and yn for

sufficiently large n.

By virtue of the Ishii lemma applied to the functions v := W − εℓ and ṽ := W̃ + εℓ

at the point (xn, yn) there exist matrices Xn and Y n satisfying (11.21) such that

(n(xn − yn), Xn) ∈ J̄+v(xn), (n(xn − yn), Y n) ∈ J̄−ṽ(yn). (11.24)

Suppose for a moment that

(n(xn − yn), Xn) ∈ J+v(xn), (n(xn − yn), Y n) ∈ J−ṽ(yn). (11.25)

Using the notations pn := n(xn−yn)+εℓ′(xn), qn := n(xn−yn)−εℓ′(yn) and putting

Xn := Xn + εℓ′′(xn), Yn := Y n − εℓ′′(yn), we may rewrite the last relations in the

following equivalent form:

(pn, Xn) ∈ J+W (xn), (qn, Yn) ∈ J−W̃ (yn). (11.26)

Since W and W̃ are viscosity sub- and supersolutions, one can find, according to

Lemma 7.1 the functions fn ∈ C1(K) ∩ C2(xn) and f̃n ∈ C1(K) ∩ C2(yn) such that

f ′
n(xn) = pn, f ′′

n (xn) = Xn, fn(xn) = W (xn), fn ≤ W on K, and f̃ ′
n(yn) = qn,

f̃ ′′
n (yn) = Yn, f̃n(yn) = W̃ (yn), f̃n ≥ W̃ on K,

F (Xn, pn, I(fn, xn), W (xn), xn) ≥ 0 ≥ F (Yn, qn, I(f̃n, yn), W̃ (yn), yn).

The second inequality implies that mqn ≤ 0 for each m ∈ G = (−K) ∩ ∂O1(0). But

for the Lyapunov function ℓ′(x) ∈ intK∗ when x ∈ int K and, therefore,

mpn = mqn + εm(ℓ′(xn) + ℓ′(yn)) < 0.

Since G is a compact, ΣG(pn) < 0. It follows that

F0(Xn, pn, I(fn, xn), W (xn), xn) + U∗(pn) ≥ 0,

F0(Yn, qn, I(f̃n, yn), W̃ (yn), yn) + U∗(qn) ≤ 0.
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Recall that U∗ is decreasing with respect to the partial ordering generated by C∗ hence

also by K∗. Thus, U∗(pn) ≤ U∗(qn) and we obtain the inequality

bn := F0(Xn, pn, I(fn, xn), W (xn), xn) − F0(Yn, qn, I(f̃n, yn), W̃ (yn), yn) ≥ 0.

Clearly,

bn =
1

2

d∑

i,j=1

(aijxi
nxj

nXn
ij − aijyi

nyj
nY n

ij ) + n
d∑

i=1

µi(xi
n − yi

n)2

−
1

2
βn|xn − yn|

2 − β∆n(xn, yn) + I(fn − εℓ, xn) − I(f̃n + εℓ, yn)

+ε(L0ℓ(xn) + L0ℓ(yn)).

By virtue of (11.22) the first term in the right-hand side is dominated by a constant

multiplied by n|xn −yn|
2; a similar bound for the second sum is obvious; the last term

is negative according to the definition of the Lyapunov function. To complete the proof,

it remains to show that

lim sup
n

(I(fn − εℓ, xn) − I(f̃n + εℓ, yn)) ≤ 0. (11.27)

Indeed, with this we have that lim sup bn ≤ −β∆̄ < 0, i.e. a contradiction arising from

the assumption W (z) > W̃ (z).

Let

Fn(z) :=
[
(fn − εℓ)(xn + diag xnz) − (fn − εℓ)(xn)

−diag xnz(f ′
n − εℓ′)(xn)

]
I(z, xn),

F̃n(z) :=
[
(f̃n + εℓ)(yn + diag ynz) − (f̃n + εℓ)(yn)

−diag ynz(f̃ ′
n + εℓ′)(yn)

]
I(z, yn).

and Hn(z) := Fn(z) − F̃n(z) With this notation

I(fn − εℓ, xn) − I(f̃n + εℓ, yn) =

∫
Hn(z)Π(dz)

and the inequality (11.27) will follow from the Fatou lemma if we show that there is a

constant C such that for all sufficiently large n

Hn(z) ≤ C(|z| ∧ |z|2) for all z ∈ K (11.28)

and

lim sup
n

Hn(z) ≤ 0 Π-a.s. (11.29)

Using the properties of fn we get the bound:

Fn(z) ≤
[
(W − εℓ)(xn + diag xnz) − (W − εℓ)(xn)

−diag xnzn(xn − yn)
]
I(z, xn)

Since the continuous function W and ℓ are of sublinear growth and the sequences xn

and n(xn − yn) are converging (hence bounded), absolute value of the function in the
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right-hand side of this inequality is dominated by a function c(1 + |z|). The arguments

for −F̃n(z) are similar. So, the function Hn is of sublinear growth.

We have the following identity:

Hn(z) = (∆n(xn + diag xnz, yn + diag ynz) − ∆n(xn, yn)

+(1/2)n|diag (xn − yn)z|2)I(z, xn)I(z, yn)

+(fn(xn + diag xnz) − W (xn + diag xnz))I(z, xn)I(z, yn)

−(f̃n(yn + diag ynz) − W̃ (yn + diag ynz))I(z, xn)I(z, yn)

+Fn(z)(1 − I(z, yn)) − F̃n(z)(1 − I(z, xn)).

The function ∆(x, y) attains its maximum at (xn, yn) and fn ≤ W , f̃n ≥ W̃ . It follows

that

Hn(z) ≤ (1/2)n|xn − yn|
2|z|2 + Fn(z)(1 − I(z, yn)) − F̃n(z)(1 − I(z, xn)).

Let δ > 0 be the distance of the point x̂ from the boundary ∂K. Then the points

xn, yn ∈ Oδ/2(x̂) for all sufficiently large n and, hence, the second and the third

terms in the right-hand side above are functions vanishing on O1(0). It follows that

for such n the function Hn is dominated from above on the ball O1(0) by cn|z|
2 where

cn := (1/2)n|xn − yn|
2 → 0 as n → ∞. Therefore, (11.28) holds. The relation (11.28)

also holds because the second and the first terms tends to zero (stationarily) for all z

except the set {z : x̂ + diag x̂z ∈ ∂K}. The coordinates of points of ∂K \ {0} are non-

zero. So this set is empty if x̂ has a zero coordinate. If all components x̂ are nonzero,

the operator given by the matrix diag x̂ is non-degenerate and the set in question is of

zero measure Π in virtue of our assumption.

However, the reasoning above is based on the assumption (11.25) while we know

only (11.24). Fortunately, we can replace the the objects xn, yn, Xn, Yn by objects x̂n,

ŷn, X̂n, Ŷn approaching rapidly the initial ones and for those (11.25) hold. Repeating

the arguments, we get the same contradiction. 2

Remark 1. In the case where the cone K is polyhedral, the hypothesis of the theorem

can be slightly relaxed. Namely, one can complete the proof using the assumption that

the measure Π does not charge hyperplanes.

Remark 2. Note that the definition of the Lyapunov function does not depend on U

and hence the uniqueness holds for any utility function U for which U∗ is decreasing

with respect to the partial ordering induced by K∗. However, to apply the uniqueness

theorem one needs to determine the growth rate of W and provide a Lyapunov with a

faster growth.

12 Existence of Lyapunov Functions and Classical Supersolutions

In this section we extend results of [18] on the existence of the Lyapunov function to

the considered case.

Let u ∈ C(R+) ∩ C2(R+ \ {0}) be an increasing strictly concave function with

u(0) = 0 and u(∞) = ∞. Introduce the function R := −u′2/(u′′u). Assume that

R̄ := supz>0 R(z) < ∞.

For p ∈ K∗ \ {0} we define the function f(x) = fp(x) := u(px) on K. If y ∈ K and

x 6= 0, then yf ′(x) = (py)u′(px) ≤ 0. The inequality is strict when p ∈ int K∗.
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Recall that A(x) is the matrix with Aij(x) = aijxixj and the vector µ(x) has the

components µixi. Suppose that 〈A(x)p, p〉 6= 0. Isolating the full square we obtain the

identity

L0f(x) =
1

2

[
〈A(x)p, p〉u′′(px) + 2〈µ(x), p〉u′(px) +

〈µ(x), p〉2

〈A(x)p, p〉

u′2(px)

u′′(px)

]

+
1

2

〈µ(x), p〉2

〈A(x)p, p〉
R(px)u(px) + I(f, x) − βu(px). (12.30)

Note that for x, diag xz ∈ int K we have by the Taylor formula that

(f(x + diag xz) − f(x) − diag xzf ′(x)) =
1

2
u′′(x + ϑdiag xz)(pdiag xzx)2,

where ϑ ∈ [0, 1]. Since u′′ ≤ 0, the expression in the square brackets is negative and so

is the whole right-hand side of the above formula if β ≥ η(p)R̄ where

η(p) :=
1

2
sup
x∈K

〈µ(x), p〉2

〈A(x)p, p〉
.

Of course, if 〈A(x)p, p〉 = 0 we cannot argue in this way. Nevertheless, if in such a case

also 〈µ(x), p〉 = 0, then for any β ≥ 0 we have the bound L0f(x) = −βu(px) ≤ 0. The

same conclusion holds (for arbitrary concave function u ∈ C1(int K)), if A = 0 and

〈µ(x), p〉 ≤ 0 for all x ∈ intK.

These simple observations lead us to the following existence result for Lyapunov

functions:

Proposition 12.1 Let p ∈ int K∗. Suppose that 〈µ(x), p〉 vanishes on the set {x ∈
int K : 〈A(x)p, p〉 = 0}. If β ≥ η(p)R̄, then fp is a Lyapunov function. In the absence

of diffusion, fp is a Lyapunov function for arbitrary concave u ∈ C1(intK) provided

that 〈µ(x), p〉 ≤ 0 for all x ∈ intK.

Let η̄ := supp∈K∗ η(p). Note that η(p) = η(p/|p|). Continuity considerations show

that η̄ is finite if 〈A(x)p, p〉 6= 0 for all x ∈ K \ {0} and p ∈ K∗ \ {0}. Obviously, if

β ≥ η̄R̄, then fp is a Lyapunov function for p ∈ int K∗.

The representation (12.30) is useful also in the search of classical supersolutions

for the operator L. Since Lf = L0f + U∗(f ′), it is natural to choose u related to

U . For a particular case, where C = Rd
+ and U(c) = u(e1c), with u satisfying the

postulated properties (except, maybe, unboundedness) and assuming, moreover, that

the inequality

u∗(au′(z)) ≤ g(a)u(z) (12.31)

holds, we get, using the homogeneity of L0, the following result.

Proposition 12.2 Let 〈A(x)p, p〉 6= 0 for each x ∈ intK and p ∈ K∗ \ {0}. Suppose

that (12.31) holds for every a, z > 0 with g(a) = o(a) as a → ∞. If β > η̄R̄, then there

exists a0 such that for every a ≥ a0 the function afp is a classical supersolution of

(5.12), whatever is p ∈ K∗ with p1 6= 0. Moreover, if p ∈ int K∗, then afp is a strict

supersolution on any compact subset of intK.
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For the power utility function u(z) = zγ/γ, γ ∈]0, 1[, we have

R(z) = γ/(1 − γ) = R̄,

and u∗(au′(z)) = (1 − γ)aγ/(γ−1)u(z). Therefore, the inequality (12.31) holds with

g(a) = o(a), a → 0.

Let A be a diagonal matrix with aii = σi. Suppose that σ1 = 0, µ1 = 0 (i.e.

the first asset is the numéraire) and σi 6= 0 for i 6= 1. Then, by the Cauchy–Schwarz

inequality applied to 〈µ(x), p〉, we have the bound

η(p) ≤
1

2

d∑

i=2

(
µi

σi

)2

.

The inequality

β >
1

2

γ

1 − γ

d∑

i=2

(
µi

σi

)2

(12.32)

(implying the relation β > η̄R̄) is a standing assumption in many studies on the

consumption-investment problem under transaction costs, see Akian et al. [1] and Davis

and Norman [13].

In particular, for the model with only one risky asset and the power utility function,

by virtue of the above computations, we have, for the function f(x) = au(px) given by

p ∈ K∗ with p1 = 1, that

L0f(x) + U∗(f ′(x)) = [...] +

(
1

2

γ

1 − γ

µ2

σ2
− β + (1 − γ)a1/(γ−1)

)
f(x)

where [...] ≤ 0. This implies the following conclusion.

Proposition 12.3 Suppose that in the two-asset model with the power utility function

the Merton parameter

κM :=
1

1 − γ

(
β −

1

2

γ

1 − γ

µ2

σ2

)
> 0.

Then the function

f(x) =
1

γ
κγ−1

M (px)γ (12.33)

is a classical supersolution of the HJB equation whatever is p ∈ K∗ with p1 = 1.
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I , II. Comm. P.D.E., 16 (1991), 1057–1093.
24. Shreve S. Liquidity premium for capital asset pricing with transaction costs. In: Math-

ematical Finance IMA Volume 65. Eds. M.H.A. Davis et al., Springer, New York, 1995,
117–133.

25. Shreve S., Soner M. Optimal investment and consumption with transaction costs. Annals

Appl. Probab. 4 (1994), 3, 609–692.
26. Soner H.M. Optimal control with state space constraint II, SIAM J. Control Optim., 24

(1986), 1110–1122.
27. Soner H.M. Optimal control of jump-markov processes and viscosity solutions. IMA Vols.

in Math. and Applic., 10, 501-511. Springer-Verlag, New York, 1986


