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Abstract In this note we discuss a result of Guasoni, Rásonyi, and Scha-
chermayer on the existence of martingale selectors for a class of continuous
cone-valued processes. The setting includes that arising in models of finan-
cial markets with transaction costs.
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1 Introduction

Let C be a cone in Rd containing the vector 1 = (1, ..., 1) in its interior.
Let S = (St)t∈[0,1] be a Rd-valued continuous adapted process with strictly
positive components defined on a stochastic basis (Ω,F ,F, P ). The ran-
dom diagonal operators Σt : (x1, ..., xd) 7→ (S1

t x1, ..., Sd
t xd) define the cone-

valued adapted process ΣC = (ΣtC)t∈[0,1]. The question is: when is the set

M1
0(ΣC \ {0}) non-empty? That is, when does there exist an Rd-valued

martingale M with Mt(ω) ∈ Σt(ω)C \ {0} for all ω and t?
This type of martingale selection problem arises in models of financial

markets with constant proportional transaction costs where S is the price
process and C = K∗, the dual of the solvency cone K (the investor positions
are measured in units of a numéraire). In “canonical” notations ΣtC is just
K̂∗

t where K̂t is the solvency cone (random because of price movements)
when the investor positions are measured in “physical” units. In the theory
of markets with transaction costs the martingales evolving in K̂∗ \ {0} play
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the role of (densities of) martingale measures, see [4], [5], [6] etc. They are
called consistent price systems, [8].

To formulate the result we introduce the following hypotheses.
If τ and σ are two stopping times with values in [0, 1] such that σ ≥ τ ,

let Aτ,σ denote the (random) topological support of the regular conditional
distribution P τ,σ(dx, ω) of Sσ − Sτ with respect to Fτ .

H1: 0 ∈ ri conv Aτ,σ a.s. on {τ < 1} for all stopping times τ and σ such
that σ ≥ τ (ri means: relative interior).

H2: P (supτ≤r≤1 |Sr − Sτ | ≤ ε|Fτ ) > 0 a.s. on {τ < 1} for all ε > 0 and
all stopping times τ .

Theorem 1 Assume that H1 and H2 hold. Then M1
0(ΣC \ {0}) 6= ∅.

This note can be viewed as a seminar comment to the interesting re-
cent paper [3], where the authors suggested a sufficient condition for the
non-emptiness of M1

0(ΣC \ {0}). Though our formulation sounds slightly
more general (as we prefer the Levental–Skorohod type condition, [7]), the
arguments follow the same lines. We only take a shortcut, in the proof of the
key lemma (interesting on its own), by directly using the Dalang–Morton–
Willinger (DMW) theorem, [1], [2], instead of repeating a part of its proof
(cf. Lemma 3.3 in [3]).

2 Key Lemma

Let X = (Xn)n≥0 be an Rd-valued discrete-time adapted process on a
stochastic basis (Ω,F ,G = (Gn), P ). Put ξn = ∆Xn, Γn := {ξn = 0}.
Lemma 1 Suppose that the following conditions hold:

(i) for each finite N the process (Xn)n≤N has the NA-property;
(ii) IΓn ↑ 1 a.s.;
(iii) E(IΓn |Gn−1) > 0 a.s. on Γ c

n−1 for each n ≥ 1.
Then there exists a probability Q ∼ P such that X is a Q-martingale

bounded in L2(Q).

Proof. By the DMW theorem condition (i) is equivalent to the NA-property
for each one-step model: the relation γξn ≥ 0 with γ ∈ L0(Rd,Gn−1) may
hold only if γξn = 0. The same theorem asserts that each ξn admits an
equivalent martingale measure which can be chosen to ensure the integra-
bility of any fixed finite random variable, e.g., |ξn|2. In terms of densities
this means that there exist Gn-measurable random variables ᾱn > 0 such
with E(ᾱnξn|Gn−1) = 0 and cn := E(ᾱn|ξn|2|Gn−1) < ∞. Normalizing, we
can add to this the property E(ᾱn|Gn−1) = 1.

We define a Gn-measurable random variable αn > 0 by the formula

αn = IΓn−1 +
[

(1− δn)IΓn

E(IΓn |Gn−1)
+

δnᾱnIΓ c
n

E(ᾱnIΓ c
n
|Gn−1)

]
IΓ c

n−1∩An + IΓ c
n−1∩Ac

n
,
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where An := {E(ᾱnIΓ c
n
|Gn−1) > 0} and δn := 2−nE(ᾱnIΓ c

n
|Gn−1)/(1 + cn).

Clearly, E(αn|Gn−1) = 1. Noting that ᾱnIΓ c
n
IAc

n
= 0 (a.s.), we obtain

that E(αnξ2
n|Gn−1) ≤ 2−n and E(αnξn|Gn−1) = 0.

The process Zn := α1...αn is a martingale. It converges stationarily a.s.
to a random variable Z∞ > 0 with EZ∞ ≤ 1. Since IΓn

↑ 1 (a.s.) and
Z∞IΓn = ZnIΓn ,

EZ∞ = E lim
n

Z∞IΓn
= lim

n
EZ∞IΓn

= lim
n

EZnIΓn
= 1− lim

n
EZnIΓ c

n
.

It follows that EZ∞ = 1 (i.e. (Zn) is uniformly integrable martingale).
Indeed, E(αkIΓ c

k
|Gk−1 ≤ 2−k and, hence,

EIΓ c
n
Zn = E

∏

k≤n

αkIΓ c
k
≤

∏

k≤n

2−k → 0.

Thus, Q := Z∞P is a probability measure under which X is a martingale.
At last,

EQX2
n =

∑

k≤n

EZkξ2
k ≤

∑

k≤n

2−k ≤ 1,

i.e. Xn belongs to the unit ball of L2(Q). 2

Remark. The condition (iii) cannot be omitted. Indeed, let X be the sym-
metric random walk starting from zero and stopped at the moment when it
arrives to unit. It is already a martingale and the condition (ii) holds. Since
X∞ = 1 a.s., the process X cannot be a uniformly integrable martingale
with respect to some Q ∼ P .

3 Martingale Selection Theorem: Proof

Fix θ > 1. Define the sequence of stopping times, τ0 = 0,

τn := inf{t ≥ τn−1 : max
i≤d

| ln Si
t − ln Si

τn−1
| ≥ ln θ} ∧ 1, n ≥ 1,

and the stopping time τt := min{τn : τn > t} for t ∈ [0, 1[. Put also
σt := max{τn : τn ≤ t} and ν := max{n : τn < 1}. Since the ratios Si

t/Si
σt

and Si
τt

/Si
σt

take values in the interval [θ−1, θ], we have the bounds

θ−2 ≤ Si
τt

/Si
t ≤ θ2, i ≤ d. (1)

Set Xn := SτnI{τn<1}+Sτν I{τn=1}, Gn := Fτn . Suppose that the discrete-
time process X = (Xn) satisfies the conditions of the lemma. Then X is
a uniformly integrable Q-martingale with respect to some probability mea-
sure Q = Z∞P equivalent to P . Consider the continuous-time martingale
S̃t := EQ(X∞|Ft), t ∈ [0, 1]. Since S̃τn = Xn we have the inequalities

θ−1 ≤ S̃i
τn

/Si
τn
≤ θ
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where τn can be replaced by τt. Using this and the bounds (1) we get

θ−3 ≤ S̃i
τt

/Si
t ≤ θ3.

But S̃i
t/Si

t = EQ(S̃i
τt

/Si
t |Ft) and, therefore, the ratios S̃i

t/Si
t take values in

the interval [θ−3, θ3]. Thus, for θ sufficiently close to unit, the Q-martingale
S̃ evolves in ΣC \ {0} and so does also the P -martingale M := ZS̃.

It remains to note that properties (i) and (iii) hold by virtue of H1 and
H2 while (ii) is always fulfilled for continuous S. 2

Remark. An important part of the paper [3] is devoted to the property of
S called “conditional full support”, implying H1 and H2. This property is
shown to hold for a wide class of continuous processes.
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