On Martingale Selectors of Cone-Valued Processes

Yuri Kabanov^{1,2}, Christophe Stricker²

- ¹ Laboratoire de Mathématiques, Université de Franche-Comté, 16 Route de Gray, 25030 Besançon, cedex, France
- ² Central Economics and Mathematics Institute, Moscow, Russia e-mails: {youri.kabanov}{christophe.stricker}@univ-fcomte.fr

The date of receipt and acceptance will be inserted by the editor

Abstract In this note we discuss a result of Guasoni, Rásonyi, and Schachermayer on the existence of martingale selectors for a class of continuous cone-valued processes. The setting includes that arising in models of financial markets with transaction costs.

Key words: cone-valued process, martingale selector, transaction costs, Dalang–Morton–Willinger theorem, consistent price system.

AMS (1991) Subject Classification: 60G44

1 Introduction

Let *C* be a cone in \mathbf{R}^d containing the vector $\mathbf{1} = (1, ..., 1)$ in its interior. Let $S = (S_t)_{t \in [0,1]}$ be a \mathbf{R}^d -valued continuous adapted process with strictly positive components defined on a stochastic basis $(\Omega, \mathcal{F}, \mathbf{F}, P)$. The random diagonal operators $\Sigma_t : (x^1, ..., x^d) \mapsto (S_t^1 x^1, ..., S_t^d x^d)$ define the conevalued adapted process $\Sigma C = (\Sigma_t C)_{t \in [0,1]}$. The question is: when is the set $\mathcal{M}_0^1(\Sigma C \setminus \{0\})$ non-empty? That is, when does there exist an \mathbf{R}^d -valued martingale M with $M_t(\omega) \in \Sigma_t(\omega) C \setminus \{0\}$ for all ω and t?

This type of martingale selection problem arises in models of financial markets with constant proportional transaction costs where S is the price process and $C = K^*$, the dual of the solvency cone K (the investor positions are measured in units of a numéraire). In "canonical" notations $\Sigma_t C$ is just \hat{K}_t^* where \hat{K}_t is the solvency cone (random because of price movements) when the investor positions are measured in "physical" units. In the theory of markets with transaction costs the martingales evolving in $\hat{K}^* \setminus \{0\}$ play

the role of (densities of) martingale measures, see [4], [5], [6] etc. They are called consistent price systems, [8].

To formulate the result we introduce the following hypotheses.

If τ and σ are two stopping times with values in [0, 1] such that $\sigma \geq \tau$, let $A_{\tau,\sigma}$ denote the (random) topological support of the regular conditional distribution $P_{\tau,\sigma}(dx,\omega)$ of $S_{\sigma} - S_{\tau}$ with respect to \mathcal{F}_{τ} .

H₁: $0 \in \text{ri conv} A_{\tau,\sigma}$ a.s. on $\{\tau < 1\}$ for all stopping times τ and σ such that $\sigma \geq \tau$ (ri means: relative interior).

H₂: $P(\sup_{\tau \leq r \leq 1} |S_r - S_\tau| \leq \varepsilon |\mathcal{F}_\tau) > 0$ a.s. on $\{\tau < 1\}$ for all $\varepsilon > 0$ and all stopping times τ .

Theorem 1 Assume that \mathbf{H}_1 and \mathbf{H}_2 hold. Then $\mathcal{M}_0^1(\Sigma C \setminus \{0\}) \neq \emptyset$.

This note can be viewed as a seminar comment to the interesting recent paper [3], where the authors suggested a sufficient condition for the non-emptiness of $\mathcal{M}_0^1(\Sigma C \setminus \{0\})$. Though our formulation sounds slightly more general (as we prefer the Levental–Skorohod type condition, [7]), the arguments follow the same lines. We only take a shortcut, in the proof of the key lemma (interesting on its own), by directly using the Dalang–Morton– Willinger (DMW) theorem, [1], [2], instead of repeating a part of its proof (cf. Lemma 3.3 in [3]).

2 Key Lemma

Let $X = (X_n)_{n\geq 0}$ be an \mathbf{R}^d -valued discrete-time adapted process on a stochastic basis $(\Omega, \mathcal{F}, \mathbf{G} = (\mathcal{G}_n), P)$. Put $\xi_n = \Delta X_n, \Gamma_n := \{\xi_n = 0\}.$

Lemma 1 Suppose that the following conditions hold:

- (i) for each finite N the process $(X_n)_{n \leq N}$ has the NA-property;
- (*ii*) $I_{\Gamma_n} \uparrow 1$ a.s.;

(iii) $E(I_{\Gamma_n}|\mathcal{G}_{n-1}) > 0$ a.s. on Γ_{n-1}^c for each $n \ge 1$.

Then there exists a probability $Q \sim P$ such that X is a Q-martingale bounded in $L^2(Q)$.

Proof. By the DMW theorem condition (i) is equivalent to the NA-property for each one-step model: the relation $\gamma \xi_n \geq 0$ with $\gamma \in L^0(\mathbf{R}^d, \mathcal{G}_{n-1})$ may hold only if $\gamma \xi_n = 0$. The same theorem asserts that each ξ_n admits an equivalent martingale measure which can be chosen to ensure the integrability of any fixed finite random variable, e.g., $|\xi_n|^2$. In terms of densities this means that there exist \mathcal{G}_n -measurable random variables $\bar{\alpha}_n > 0$ such with $E(\bar{\alpha}_n \xi_n | \mathcal{G}_{n-1}) = 0$ and $c_n := E(\bar{\alpha}_n | \xi_n |^2 | \mathcal{G}_{n-1}) < \infty$. Normalizing, we can add to this the property $E(\bar{\alpha}_n | \mathcal{G}_{n-1}) = 1$.

We define a \mathcal{G}_n -measurable random variable $\alpha_n > 0$ by the formula

$$\alpha_n = I_{\Gamma_{n-1}} + \left[\frac{(1-\delta_n)I_{\Gamma_n}}{E(I_{\Gamma_n}|\mathcal{G}_{n-1})} + \frac{\delta_n\bar{\alpha}_nI_{\Gamma_n^c}}{E(\bar{\alpha}_nI_{\Gamma_n^c}|\mathcal{G}_{n-1})}\right]I_{\Gamma_{n-1}^c\cap A_n} + I_{\Gamma_{n-1}^c\cap A_n^c},$$

On Martingale Selectors of Cone-Valued Processes

where $A_n := \{E(\bar{\alpha}_n I_{\Gamma_n^c} | \mathcal{G}_{n-1}) > 0\}$ and $\delta_n := 2^{-n} E(\bar{\alpha}_n I_{\Gamma_n^c} | \mathcal{G}_{n-1})/(1+c_n)$. Clearly, $E(\alpha_n | \mathcal{G}_{n-1}) = 1$. Noting that $\bar{\alpha}_n I_{\Gamma_n^c} I_{A_n^c} = 0$ (a.s.), we obtain that $E(\alpha_n \xi_n^2 | \mathcal{G}_{n-1}) \le 2^{-n}$ and $E(\alpha_n \xi_n | \mathcal{G}_{n-1}) = 0$.

The process $Z_n := \alpha_1 \dots \alpha_n$ is a martingale. It converges stationarily a.s. to a random variable $Z_{\infty} > 0$ with $EZ_{\infty} \leq 1$. Since $I_{\Gamma_n} \uparrow 1$ (a.s.) and $Z_{\infty}I_{\Gamma_n} = Z_nI_{\Gamma_n}$,

$$EZ_{\infty} = E \lim_{n} Z_{\infty} I_{\Gamma_n} = \lim_{n} EZ_{\infty} I_{\Gamma_n} = \lim_{n} EZ_n I_{\Gamma_n} = 1 - \lim_{n} EZ_n I_{\Gamma_n^c}.$$

It follows that $EZ_{\infty} = 1$ (i.e. (Z_n) is uniformly integrable martingale). Indeed, $E(\alpha_k I_{\Gamma_k^c} | \mathcal{G}_{k-1} \leq 2^{-k} \text{ and, hence,}$

$$EI_{\Gamma_n^c} Z_n = E \prod_{k \le n} \alpha_k I_{\Gamma_k^c} \le \prod_{k \le n} 2^{-k} \to 0$$

Thus, $Q := Z_{\infty}P$ is a probability measure under which X is a martingale. At last,

$$E_Q X_n^2 = \sum_{k \le n} E Z_k \xi_k^2 \le \sum_{k \le n} 2^{-k} \le 1,$$

i.e. X_n belongs to the unit ball of $L^2(Q)$. \Box

Remark. The condition (iii) cannot be omitted. Indeed, let X be the symmetric random walk starting from zero and stopped at the moment when it arrives to unit. It is already a martingale and the condition (ii) holds. Since $X_{\infty} = 1$ a.s., the process X cannot be a uniformly integrable martingale with respect to some $Q \sim P$.

3 Martingale Selection Theorem: Proof

Fix $\theta > 1$. Define the sequence of stopping times, $\tau_0 = 0$,

$$\tau_n := \inf\{t \ge \tau_{n-1} : \max_{i \le d} |\ln S_t^i - \ln S_{\tau_{n-1}}^i| \ge \ln \theta\} \land 1, \qquad n \ge 1,$$

and the stopping time $\tau_t := \min\{\tau_n : \tau_n > t\}$ for $t \in [0, 1[$. Put also $\sigma_t := \max\{\tau_n : \tau_n \le t\}$ and $\nu := \max\{n : \tau_n < 1\}$. Since the ratios $S_t^i / S_{\sigma_t}^i$ and $S_{\tau_t}^i / S_{\sigma_t}^i$ take values in the interval $[\theta^{-1}, \theta]$, we have the bounds

$$\theta^{-2} \le S^i_{\tau_t} / S^i_t \le \theta^2, \qquad i \le d. \tag{1}$$

Set $X_n := S_{\tau_n} I_{\{\tau_n < 1\}} + S_{\tau_\nu} I_{\{\tau_n = 1\}}, \mathcal{G}_n := \mathcal{F}_{\tau_n}$. Suppose that the discretetime process $X = (X_n)$ satisfies the conditions of the lemma. Then X is a uniformly integrable Q-martingale with respect to some probability measure $Q = Z_{\infty} P$ equivalent to P. Consider the continuous-time martingale $\tilde{S}_t := E_Q(X_{\infty} | \mathcal{F}_t), t \in [0, 1]$. Since $\tilde{S}_{\tau_n} = X_n$ we have the inequalities

$$\theta^{-1} \leq \tilde{S}^i_{\tau_n} / S^i_{\tau_n} \leq \theta$$

where τ_n can be replaced by τ_t . Using this and the bounds (1) we get

$$\theta^{-3} \leq \tilde{S}^i_{\tau_t} / S^i_t \leq \theta^3$$

But $\tilde{S}_t^i/S_t^i = E_Q(\tilde{S}_{\tau_t}^i/S_t^i|\mathcal{F}_t)$ and, therefore, the ratios \tilde{S}_t^i/S_t^i take values in the interval $[\theta^{-3}, \theta^3]$. Thus, for θ sufficiently close to unit, the *Q*-martingale \tilde{S} evolves in $\Sigma C \setminus \{0\}$ and so does also the *P*-martingale $M := Z\tilde{S}$.

It remains to note that properties (i) and (iii) hold by virtue of \mathbf{H}_1 and \mathbf{H}_2 while (ii) is always fulfilled for continuous S. \Box

Remark. An important part of the paper [3] is devoted to the property of S called "conditional full support", implying \mathbf{H}_1 and \mathbf{H}_2 . This property is shown to hold for a wide class of continuous processes.

References

- Dalang R.C., Morton A., Willinger W. Equivalent martingale measures and no-arbitrage in stochastic securities market model. *Stochastics and Stochastic Reports*, **29** (1990), 185–201.
- Jacod J., Shiryaev A.N. Local martingales and the fundamental asset pricing theorem in the discrete-time case. *Finance and Stochastics*, 2 (1998), 3, 259– 273.
- 3. Guasoni P., Rásonyi M., Schachermayer W. Consistent price systems and face-lifting pricing under transaction costs. Preprint, 2007.
- Kabanov Yu.M. Hedging and liquidation under transaction costs in currency markets. *Finance and Stochastics*, 3 (1999), 2, 237–248.
- Kabanov, Yu.M., Stricker, Ch. The Harrison-Pliska arbitrage pricing theorem under transaction costs. J. Math. Economics, 35, 2001, 2, 185-196.
- Kabanov, Yu.M., Rásonyi M., Stricker, Ch. On a closedness of sums of convex cones in L⁰ and the robust no-arbitrage property. *Finance and Stochastics*, 7 (2003), 3, 403–411.
- Levental S., Skorohod A.V. On the possibility of hedging options in the presence of transaction costs. *The Annals of Applied Probability*, 7 (1997), 410–443.
- Schachermayer, W.: The Fundamental Theorem of Asset Pricing under proportional transaction costs in finite discrete time. *Mathematical Finance*, 14, 1 (2004), 19-48.