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Abstract

This paper proposes an efficient model for the term structure of interest rates
when the interest rate takes very small values. We make the following choices: (i)
we model the short-term interest rate, (ii) we assume that once the interest rate
reaches zero, it stays there and we have to wait for a random time until the rate is
reinitialized to a (possibly random) strictly positive value. This setting ensures that
all term rates are strictly positive.

Our objective is to provide a simple method to price zero-coupon bonds. A basic
statistical study of the data at hand indeed suggests a switch to a different mode of
behavior when we get to a low level of interest rates. We introduce a variable for the
time already spent at 0 (during the last stay) and derive the pricing equation for the
bond. We then solve this partial integro-differential equation (PIDE) on its entire
domain using a finite difference method (Cranck-Nicholson scheme), a method of
characteristics and a fixed point algorithm. Resulting yield curves can exhibit many
different shapes, including the S shape observed on the recent Japanese market.
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1 Introduction

Many attempts have been made to model the term structure of interest rates since the
second half of the 1970s. However no model has managed to capture all the characteristics
of the qualitative behavior of interest rates, and no model has proved superior to all the
others on every point of comparison. Moreover, empirical studies (e.g. Sun, 2003) suggest
that the qualitative behavior may be very different depending on the country and period
of time. Our aim here is to propose an adequate model for the current Japanese short

rate.
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Figure 1: 1-month LIBOR in yen between November 1989 and April 2004 (3,644 daily obser-

vations). The stairs are the official lending rates from the Bank of Japan.

One of the striking specificities of the Japanese short rate is that it went from a period
of oscillations in relatively high levels until 1995, to a period of near-zero rates since 1995.
The switch between these two regimes is well-pronounced (see Figure 1) and, as we will
explain in the next few paragraphs, this continuing near-zero regime is actually quite
challenging to model: the existing ones do not capture such a feature.

First, we notice that all Gaussian interest rate models since the one of Vasicek! (1977)

Vagitek (1977) assumed that the short rate process r; evolves according to the dynamics
th = K?[H*T't]dt+O'Wt, (1)

where 0 is the long-term mean, x the speed of convergence to the mean, o the volatility and W, a standard



allow negative rates. This could appear not too problematic when the interest rate was
high enough, especially with a strong mean-reverting drift, since then the probability of
negative rates in the future was small. But even so, as shown in Rogers (1996), some
derivatives’ prices are extremely sensitive to the possibility of negative interest rates, and
especially in the current situation this may greatly impair our computation of bonds and
derivatives’ prices in the Japanese market.

Several attempts have been made to solve the problem of possible negative rates. First,
other (non-Gaussian) processes have been considered, implying different distributions for
the short rate r; non-central x* (Cox, Ingersoll and Ross, 1985) and lognormal (Dothan,
1978; Black and Karasinski, 1991). Second, the drift term has been set to be non-linear as
in Ait-Sahalia (1996); it would depend on the interest rate and tend to infinity as the rate
tends to 0. Third, Goldstein and Keirstead (1997) tried to set a special boundary condition
at 0, reflecting or absorbing. Fourth, instead of modelling the short rate, Flesaker and
Hughston (1996) proposed to model directly the bond price, and showed that they actually
consider a class of positive HIM models (see also Cairns, 2004). At last, Black (1995)
introduced the idea of considering interest rates as options.?

However, none of these solutions is perfect:

(a) Non-central y? distributions are not as widely used in finance as normal distribu-
tions, and parameters have to satisfy certain conditions (the Feller condition) to ensure
that 0 is unattainable and to grant that the short rate remains positive. Lognormal distri-
butions also have a weakness; their fat tail induces the explosion of the bank account, and
so prices can only be computed using trees in practice (thus truncating the tail). More-
over, in both cases (x* and lognormal distributions), the absolute volatility vanishes as
the rate approaches zero, and the mean-reverting drift, left without opposing force, pulls
the rate back up, making the occurence of sustained periods of near-zero interet rates

very improbable.> Even the popular market model of Brace et al. (1997), which is based

Brownian motion. The parameters 6, x and o are constant or deterministic.
2Black’s idea was that the rate cannot become negative because if it does, investors can just invest in

currency. The interest rate would thus be the positive part of, say, an Ornstein-Uhlenbeck process, like

in the Vagi¢ek model. The original Gaussian process is then called the shadow interest rate.
3This is a direct consequence of the dynamics of the short rate. Under the CIR model (Cox et al.,

1985) the short rate has the following dynamics:

dry = k[0 — 7]dt + o/ W,
and under the BK model (Black and Karasinski, 1991):

dlnr; = k[0 — Inry]dt + oWe,

where 0, k, o and W; are defined as in (1).



on a lognormal assumption for the dynamics of the forward rates, cannot satisfactorily
render the possibility of long periods of near zero short-rate.

(b)Non-linear drifts have been shown to be only a feature of daily data rather than
weekly or monthly data (see Jones, 2003) and less essential in the modelling choices than
stochastic volatility (see Sun, 2003).

(c) Reflecting or absorbing boundary conditions in 0 lead to closed-form solutions for
bond prices, but are really not justifiable economically.

(d) The Flesaker and Hughston model can reproduce sustained periods of both high
and low interest rates (see Cairns, 2004), but is driven by unobservable state variables
and the fact that it is not a direct representation of the short-rate makes it more difficult
to apprehend in practice. Moreover, once again, 0 is unattainable by the short rate.

(e) Black’s idea of interest rates as options has been recently developed by Gorovoi
and Linetsky (2004) who provided analytical expressions for both bond prices and bond
options prices. Nevertheless, this implies a rate that stays exactly at 0 for a long time
(with a zero volatility). Also, the shadow interest rate is by definition unobservable in the
O-interest rate state. It can then only be estimated through the current yield curve. In
2002, from actual bond prices, this shadow interest rate was estimated to be —5%, which
is hard to reconciliate with any standard economic indicator.*

After an exploratory analysis of the data at hand, we conclude that the Japanese
interest rate experiences two regimes. Up to 1995 or so, we observe a strong correlation
with economic indicators like the consumer price index (CPI), the inflation rate and the
dollar/yen exchange rate. After that, the short rate fell consistently below 1% and it did
no longer exhibit correlation with such economic indicators, as if there had been a break
in regime. However, it seems that there is no reason to believe that the second regime is
a perpetual one.

Our idea is to use a process with two different regimes for the short rate. While being
strictly positive, the short rate is assumed to follow the Vasicek model with linear mean-
reverting drift. When the rate reaches 0, a new regime is set; the rate stays at zero for a
random time and then jumps to a strictly (possibly random) positive value and switches
back to the usual VaSic¢ek regime. In the Feller classification of boundaries for diffusions,
0 would be a regular sticky boundary (see for example Karlin and Taylor, 1981), but note
that our process is actually not a diffusion in the strict sense, since its paths are not
continuous in general.

This idea of regime switching has already been explored recently by e.g. Gray (1996),
Hansen and Poulsen (2000) and Bansal and Zhou (2002). These models typically assume

4For example, at that time, the inflation rate (deflation actually) was never below —1%.



that the spot-rate process can shift randomly between two or more regimes, typically a
high-mean high-volatility regime and a low-mean low-volatility regime. Although these
models can technically reproduce sustained periods of near-zero interest rates, they still
suffer from the possible flaws of the spot-rate model they are based on (e.g. non-positivity
in the case of the Vasicek model), and they are often hard to calibrate to the current yield
curve.

To draw a link between the model exposed here and all the previous ones, we may look
at the asymptotic behavior of our model. When the time spent in 0 tends to infinity, the
model is similar to the one with absorbing state in 0. Alternatively, if the time spent in
0 tends to zero, and the jump size is very small, we are close to the model with reflecting
condition in zero. Also, Black’s model with no drift (the shadow rate is a martingale)
can be embedded in our model if we set the time of jumps to be normal inverse Gaussian
(NIG) distributed, and the jump size to be very small.

Recently, Marumo et al. (2003), from Bank of Japan, proposed the following dynamics
for the short rate:

dr] = lusny (k[0 — ridt + cWy),

where W, is a standard Brownian motion, 7 > 0 is a random stopping time, and 6, k
and o are constant. This means that the short rate is initially 0 and, at a future random
time, the short-rate will be reinitialized at a random value and from then on will follow
the dynamics of an Ornstein—Uhlenbeck process forever. The authors argue that the Zero
Interest Rate Policy (ZIRP) is transitory and that the Bank of Japan can and will put an
end to it at its convenience. Of course this setting does not ensure positivity of the short
rate at all. Our model can be seen as an extension of this work to the case when other
ZIRPs happen in the future.

The rest of this paper is organized as follows. We examine shortly some data from the
Japanese economy in Section 2 to further motivate our setting. In Section 3 we introduce
our model and derive the pricing equation for zero-coupon bonds. An algorithm to solve
this equation is explained in Section 4. Examples of yield curves are given in Section 5.
Section 6 extends the model to introduce another state variable while the short rate is

sleeping in 0. Section 7 concludes the article.



2 A Quick Look at Historical Data

We used data from several sources. For the short rate, we used the 1-month LIBOR
rate in yens.® The LIBOR rate is determined once every day in London by averaging the
results of a telephone poll of major banks. We had a total of 3, 644 daily observations. We
also used the CPI index (monthly data) and the official central bank rate (CBRATE) for
loans to affiliated banks (data available since 1970, and provided by the Bank of Japan).
Finally, we obtained the yen-dollar exchange rate (FXRATE) from the web site of the US

Federal Reserve in Saint-Louis (see Figure 2).
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Figure 2: Exchange rate in yen per dollar in the period November 1989 to April 2004
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Figure 3: CPI since November 1989 in Japan (Base: 100 in January 2000)

5This is a questionable choice; it is not exactly the short rate, it has some counterparty risk in
it (leading to probable presence of outliers, after large corporate bankruptcies for example), it is not
directly related to the yields of Japanese Government Bonds (JGBs) which is the object we want to

study, and -last but not least- it has a relatively short history (we only had the data since November
1989).
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Figure 4: Monthly inflation rate compounded annually over the past month and over the past

year since November 1989

First, to get series of the same length, we truncated the data to keep only the informa-
tion in the period between November 1989 and April 2004. We also had to make the data
match when on a national holiday. From the CPI index, we computed the monthly (com-
pounded annually) and yearly inflation rates (respectively INFMONTH and INFYEAR),
and we transferred all these monthly data to a "daily" format, assuming the rates were
constant for the full month (see Figures 3 and 4).

We first computed the summary of the obtained data (see Table 1), and the correlations
between variables (see Table 2). Since the data set seems to be split in two, we decided
to consider a first set of data until the first time we get below 1% interest rate, the rest
of the data being considered as a second set of data. Sample correlation results for the

two data sets can be found in Tables 3 and 4.

CBRATE FXRATE CPI INFMoNTH INFYEAR LIBOR

Minimum 0.100 81.12 90.0 -0.0822 -0.0099 0.0375
1st Qu. 0.500 107.59 97.5 -0.0122 -0.0020 0.0912
Median 0.500 118.76 98.3 0.0000 0.0020 0.5585
Mean 1.611 118.58 97.8 0.0061 0.0070 2.0626
3rd Qu. 2.500 127.55 99.8 0.0248 0.0203 3.2500
Maximum 6.000 159.90  101.1 0.2576 0.0331 8.6850

Table 1: Summary of the data

During the first period, we observe that all the variables, except the monthly inflation,
are strongly correlated; but during the second period (interest rates near zero) we can
hardly notice any correlation (even the correlation between the LIBOR and the central

bank rate is merely 74%). Note that the correlation between CPI (which is an index, and

7



CBRATE FXRATE CPI INFMoONTH INFYEAR LIBOR
CBRATE 1 0.493  -0.843 0.251 0.839 0.990
FXRATE 0.493 1 -0.541 0.174 0.479 0.532
CPI -0.843 -0.541 1 -0.159 -0.664 -0.887
INFMoONTH 0.251 0.174 -0.159 1 0.307 0.260
INFYEAR 0.839 0.479 -0.664 0.307 1 0.846
LIBOR 0.990 0.532 -0.887 0.260 0.846 1

Table 2: Correlation between variables during the whole period

CBRATE FXRATE CPI INFMONTH INFYEAR LIBOR
CBRATE 1 0.835 -0.787 0.257 0.895 0.973
FXRATE 0.835 1 -0.895 0.248 0.889 0.890
CPI -0.787 -0.895 1 -0.183 -0.800 -0.886
INFMONTH 0.257 0.248 -0.183 1 0.256 0.281
INFYEAR 0.895 0.889 -0.800 0.256 1 0.905
LIBOR 0.973 0.890 -0.886 0.281 0.905 1

Table 3: Correlation between variables from November 1989 to July 6, 1995

CBRATE FXRATE CPI INFMONTH INFYEAR LIBOR
CBRATE 1 -0.338  0.491 0.073 0.429 0.740
FXRATE -0.338 1 0.242 0.059 0.041 -0.071
CPI 0.491 0.242 1 0.188 0.441 0.256
INFMONTH 0.073 0.059 0.188 1 0.233 0.093
INFYEAR 0.429 0.041 0.441 0.233 1 0.569
LIBOR 0.740 -0.071  0.256 0.093 0.569 1

Table 4: Correlation between variables after July 7, 1995



has the dimension of a price) and the LIBOR rate (which is a rate) is probably due to
a pure coincidence. It could be the case for other correlations too. Also, note that we
did not consider lags, here. Maybe the correlation between the monthly inflation and the
LIBOR rate would be stronger if we considered the inflation rate a few months ago, since
anyway the exact value of the inflation over a given month is only known a few months
later by the market participants.

From these observations, it seems plausible to draw two conclusions:

e There is no evidence of the necessity to use a multifactor model. Even if we introduce
an exogenous factor in the short rate model in the first period, it will not bring much
since, due to the strong correlation, the short rate would essentially be equal to that
exogenous factor, with just some kind of constant multiplicative factor. At least we
can say that from these data, we cannot use inflation or foreign exchange rate as

factors of a multifactor model.®

e There seems to be more than a "visible" break in the data when the short rate
approaches zero. The LIBOR rate just looks like it is not obeying any rule any
more (it is not even closely following the fluctuations of the central bank’s interest

rate).

In the next section, we try to associate some mathematical properties to these some-

what qualitative observations, and we introduce our model.

3 The Model

3.1 Basic Setting

We work in a filtered probability space (2, F,F = (F;)i>0, P). We assume that the spot
rate (r;);>0 is a process evolving in [0, 00) which has two modes of behavior; when it is
strictly positive, it behaves as an Ornstein-Uhlenbeck (OU) process’, and when it reaches
0 it stays there for some time, the probability to get out of 0 at time ¢ depending on Z;,
the time already spent at 0 (during the last stay). The “clock" process (Z;);>o will be

6Note that we did not consider the correlation between longer maturity rates and macroeconomic
factors. It still seems plausible that even during zero-interest rate periods, the inflation or foreign exchange
rates have a large impact on long-term interest rates, and therefore multifactor models can certainly give
a more realistic evolution of the whole yield curve. However, in this paper we chose to focus on the

impact of the short rates on the whole yield curve.
"This process can be a general diffusion as long as we can employ a numerical technique similar to

the one we use here.



called latency. We assume that P is a martingale measure® and the dynamics of (r;, Z;)

is as follows:

{ dre = lp,_sopk(0 —r)dt + ocdWy + 14, —ydJy, 1o =T,

_ 2
dZt = 1{7’t7:0}[dt - Zt 4 ZO = Z7 ( )

a7l

where (J;) is a pure-jump increasing process whose characteristics depend on the latency
(Zy), 0 is the long term mean like in the standard Vasi¢ek model, x is the speed or rate
of reversion to the mean, o is the volatility and (1/;) is the standard Brownian motion.
We assume that k, 0, o, 7, and Z are positive constants (at least for now). We add the
additional requirement that at least one of ¥ and Z is null. We also assume that the

processes (IW;) and (J;) are independent. Finally, it is understood that the notation

dJ
"ld |
stands for Z;_ 15,25, 3.

We can observe from the above formula that, indeed, as long as the short rate remains
strictly positive, it evolves as an OU process (that is, as the standard Vagi¢ek model).
After hitting 0, the process r "sleeps" there and the latency Z; starts increasing at the unit
time-rate until a jump of the process J arrives. At the time of the jump, the process Z
falls to zero and remains there while the short rate process is reinitialized at the (positive)
value of the jump.

Of course, this setting implies that the short rate process evolves in the domain®
[0,00). We may call the endpoint 0 a sticky barrier following the denomination of Karlin
and Taylor (1981). In general, (r;) alone is not a Markov process since the probability to
get out of zero depends on the time already spent in 0. But the couple (7, Z;) has the
Markov property.

8The assumption that P is already an equivalent martingale measure (EMM) implies certain sim-
plifications. If we start from the real world measure, then we will need to make a change of measure
to formulate our pricing equation in an EMM. Because of the presence of jumps with possibly infinite
number of sizes, there might be an infinite number of EMMs. So we would have to specify a way to find
one EMM, possibly discuss about the choice of the optimal EMM (e.g., minimum entropy martingale
measure), and the definition of no-arbitrage in this market. We do not consider this aspect of the dis-
cussion here. For an example of selection of EMM in the case of geometric Lévy processes, see Miyahara

and Fujiwara (2003).
9Note that we could choose to place the endpoint at any rate € instead of 0 and let the short rate

evolve in the domain [e,00). This would not change the conclusions of this argument, but it would add
one more eh term in equation (8) and would make the subsequent expressions of the bond price more
complicated. To keep this paper as clear and concise as possible, as well as because economically 0 seems

like the only floor that every agent would agree on for the short rate, we chose to fix the endpoint at 0.

10



Because we consider that the time already spent in 0 influences the intensity of the
jumps, we are not limited to strictly memoryless (i.e. exponential) distributions for the
interarrival times. This is needed because, as we will see later in the section about
numerical applications, exponential distributions do not seem to be able to lead to S-
shaped yield curves while the Japanese bond market exhibits such shapes. Let us define

the jump intensity (or hazard rate) A\,(Z;) such that

t
Nt — / )\s(ZS)dS
0

is a martingale with respect to the filtration (F;);>, where V; is the number of jumps up
to time t.
Note that in this general setting the jump size is random, but we may simplify this

by fixing a constant jump size Jy. If the jump size is random, then we have

N t [e’s)
Jp = ZUi = /0 /0 xp(dx,ds),
i=1

where (U;);>1 are random variables representing the jump sizes, p(dz, ds) is the measure

of jumps and its compensator v(dz, ds) is defined by
v(dz,ds) := \s(Zs)G(Zs, dx)ds.

Here we assume that the probability distribution function of jump sizes is G(Zs, dx). In
the case when G(Zs,dx) = G(dz) the jump process considered is just compound renewal
process.

To guarantee the existence of the measure p(dz,ds), we must check that the jump
process (J;) does not have an explosive behavior. It is the case when A\ does not depend
on s and the arrival times of jumps form a renewal process which has always non-explosive
realizations (see, for example, Last and Brandt, 1995, p. 9). Hereafter, we will assume
that it is indeed the case.

3.2 Bond Prices

We are interested in computing the current price P(7, Z,T) of a zero coupon bond ma-

turing at time 7'. This price is given by
P(F,Z,T) = Ele” o "% |ry = 7, Zy = Z]. (3)

Note that because (r, Z) is time-homogeneous, P(r;, Z;, T — t) is the price at time ¢ of a

zero coupon bond maturing at 7.

11



Now we want to establish the Feynman—Kac representation (or backward Kolmogorov
equation) associated with (3). To do that, let us recall that the It6 formula with jumps
applied to r (see, for example, Duffie, 2001, p.348) is given by

1) = S0+ [ Foodng [ 160 sads
+ Z [f(rs) - .f(rs—) - f,(rs—)(rs - Ts—)]

0<s<t

— f(ro)—l—/o f’(rs_)drs+%/0 f(rs)o* 1, soyds

T / / Fra 4 2) = f(ra) — F(re )21 rr—oypi(de, ds)

for any f : R — R twice continuously differentiable.
Now we can derive the term structure equation as in, for instance, Bjork (1998). We
assume that there are bonds for several maturities in the market. The price at time ¢ of

the discount bond maturing at time T' (7-bond, for short) can be rewritten as
P(T‘t, Zt; T — t) = fT(t, Tt, Zt)a

where we assume that f is a smooth function of its 3 variables, and 7" is considered as a
parameter.
From the It6 formula (slightly more general than that above), we get the following

price dynamics for the 7-bond:
dfT = O{T(t, Tt Zt)dt + / /}/T(t, Tt, Zt; CL‘))\(Zt)G(Zt, dl‘)dt ‘I— th,
0
where

t t 00
M= [ ZaaWer [ [T 2 o)l ds) - vide.ds))

0 0o Jo

and
1
aT(t7 r, Z) = ftT + 1{7">0} [/{(0 - r)frT + 50_2ij;] + 1{r:0}f§;
O-T(t7 T, Z) = ]-{7‘>0}O-fg—‘7
’VT(tv r, 2, l’) = 1{7“:0} [fT(ta z, O) - fT(t> 0, Z)]
Here the subscripts ¢ and r denote partial derivatives with respect to the first and second
variable respectively, and functions are evaluated at point (¢,7, Z) unless otherwise spe-
cified.
We now apply the It6 formula to e~ I rsds P(y,, 7, T —t) which should be a martingale

under our choice of the reference measure. We use the fact that
d(€_ f(f rsds) = —re” fot TSdsdt,

12



and we get by direct computation that
d(e™ ™ Pr, 2, T = 1)) = d(efore®) T 4 ¢~ forstoqs?
= —re fot Tstdet +e ](f TsdsdfT
= e h reds[—p, (T dt 4 df 7).
For e~ Jo rsds P(r,, Zy, T —t) to be a martingale, the dt-term obtained in the expression
above by substitution of the stochastic differential df? must be equal to zero. Thus,

we arrive to the conclusion that the function f7(¢,r, Z) satisfies the following partial

integro-differential equation:

1
—r [T+ [+ Loy [0 = 1) T + =0 f1] + Loy [

2
1o M2) [ (7 62,0) ~ £10.0.2)G(Z,dr) =0 (4)
0
with the associated boundary condition at T’
fAT,r,2)=1. (5)

Unfortunately, an analytical solution to the above equation (4)-(5) is difficult to ob-
tain. The difficulty lies in the fact that the domain of definition of the bond pricing

function is a non-standard one: the union of the two orthogonal semi-infinite rectangles
O,={tnr2): 0<t<T, r>0, Z=0}

and
O, ={(t,r,2): 0<t<T, r=0, Z>0}.
The bond price should be continuous and we shall try to find the function which is

continuous including the joint boundary
S={{t,r2): 0<t<T, r=0, Z=0}.

We can solve the equation independently on each of the two rectangles without imposing a
boundary condition on ¥ but match them here. We shall employ a finite difference method
on 01, the (exact) method of characteristics on ©,, and then a fixed point algorithm to
satisfy the continuity condition on X.

Note that at this stage we need to specify A\s(Z;) and give an explicit expression of it.

We shall assume in the next section that ) is of the form
Mz) =a+ Byt (6)

where o and 3 are positive constants, and 7y is a constant greater than 1. Jump interarrival
times are exponentially distributed if and only if A is constant (i.e. ¥ =1 or § =0). The
case a« = 0 corresponds to the Weibull distribution which was the one considered by

Marumo et al. (2003) and which is of a frequent use in many reliability applications.
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4 Using Finite Difference Methods

In this section we study the case when A is of the form given in (6) and there is only one
possible jump size J,. However, the same method can be used for any integrable function
A of Z and any discrete, finite spectrum of possible jump sizes.

From the form of equation (4) — (5), it seems natural to assume that f7 is of the form

fT(t7T7 Z) = 1{1">0}g(t7r) + ]-{T:O}h(t? Z)7

where g and h are solutions of the following equations (7) and (8) respectively:

—rg+g¢ + [H(Q — T)gr + %0'297’7’] = 0, (7)
g(T,r) =1,
and
ht+hz—)\(Z)h+)\(Z)g(t, J()) :O, (8)
MT,Z) =1,
with the additional matching condition
lim g(¢,7) = h(t,0). 9)

r—0

Equation (8) is simple to solve, provided we already know an expression for g(., Jy).

We can use the method of characteristics. First we introduce the dummy variable s and

we write
dh_dt,  dz,
ds ds ' ds 7
Next, we identify the coefficients of the above equation with those of equation (8). We
get
dt
- -1
ds ’
dz
— =1
ds ’
dh
T = M2 = N2yt ).

We also rewrite the boundary condition as

t(0,u) = T,
Z0,u) = u, u€][0,00),
h(0,u) = 1.
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From these equations, we can immediately get an expression for ¢t and Z, function of

(s,u), as follows:

t(s,u) = T+s, (10)
Z(s,u) = u-+s. (11)

The equation for A(s,u) becomes
dh
ds

which has the following solution:

s S AMu+v)g(T + v, Jo)
J3 AMu+z)dz [ )
h(s,u) = elo ( /0 NRRYCEmT dv+ K |,

= Mu+ s)h = Mu+8)g(T + s, Jo),

where K = K(T') is a constant that may only depend on the parameter 7" and can be
evaluated from the boundary condition. Since h(0,u) = 1, we conclude that K = 1.

Now we assume that \(Z) is of the form given in (6). Equation (4) becomes

s v—1
h(s,u) = eostBl(s+u)7—u7] (_ / [a + By(u+v)" (T + v, Jo) dv + 1) .
0

oo+ Bl(vru)T—u]

Note that we can get an expression of h function of the original variables (¢, Z). By

using (10) and (11), the change of variable w = v 4+ T" and after simplification, we obtain

eﬁZ7 1 T ea(T—w) )
bit.2) = o=y (e + || vzl 912 + 0= 0l o
t

calT—t) \ oB(Z+T—1 eB(Z+w—t)
(12)

Note that equation (12) implies that in the case § = 0, i.e. for the model with constant
A, the bond price tends to be constant (equal to 1) as A tends to 0 (i.e. when the average
time of stay at 0 tends to co).

We want to use a finite difference method to solve (7). We define a mesh (g7 )o<; j<n
such that for all 7, j

gzj - 95—1 = ot

and

gzj - gg_l - 57",

where Not = T and 7 is chosen such that J,/(d0r) = P is an integer, with M sufficiently
larger than P. We can then rewrite equation (8) using some finite difference approximation
instead of the derivatives, and try to solve it backward in time, starting from the boundary

condition
gy = 1.

The algorithm can be written as follows:
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1. Take an arbitrary boundary condition at r = 0;

2. Use a finite difference method to find g on the nodes of our mesh using the lower
boundary condition given in Step 1 at r = 0, as well as the usual boundary condition
at t =T,

3. Use the values found at Step 2 for g(., Jy) to find h using the formula (12);
4. Pick h(.,0) as our new lower boundary condition at r = 0;
5. Go back to Step 2.

We tried to use an explicit finite difference method, but it almost always leads to
explosion. Using an implicit or a Crank-Nicholson finite difference scheme, we observed

convergence of the algorithm with reasonably small d¢ and dr.

5 Obtained Yield Curves

In this section we tried to solve for the bond price on the whole domain using the algorithm
of the previous section. We chose the model parameters close to the ones found by Gorovoi
and Linetsky (2004) when fitting their model of interest rates as option. Namely, we set
0 =0.03, c =0.02 and k = 0.2. We computed the bond prices over a horizon of 30 years,
using a time-step 0t of 1 month (360 time-steps). We chose a unique jump size Jy of
0.005 which seems realistic when we look at the recent central bank’s interest rate policy.
However the size of the jump proved to have a considerable impact on the long-term
asymptotic value of the yield, with smaller jump sizes bringing lower long-term yields, as
we might expect.'® We used a rate-step o7 of 0.001 (hence Jy = 50r). It seems optimal to
use a jump size that is a multiple of the rate-step, so we do not have to use interpolation
to compute the bond price g(., Jy) at the jump size. Finally, concerning the fixed point
algorithm, we used initial bond prices h(.,0) so that the yield curve was a straight line
from 0% to 1% initially, and we ran 30 iterations of the algorithm (Steps 2-5).

Figure 5 shows the convergence of the algorithm when we considered a constant A = 0.5
(average stay at 0 of 2 years). We can see the successive yield curves that we obtain with
an initial short rate of 0. The speed of convergence seems relatively fast, except for
longer maturities. In that case, in bond price term, we are far away from the ezact final

boundary condition of ¢g(7T',.) = 1 and it takes time for the information to come back

10The smaller the jump size, the faster we expect the short rate to go back to zero after going out of
it. As a result, the quantity Jy may affect the price of interest rate derivatives. See Rinaz (2006) for a

detailed discussion of the impact of each model parameter on bond prices.
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to the line ¢ = 0. This means that the longer-term yields take more time to converge
than shorter-term yields. We always observed convergence starting from different initial
conditions, but a judicious choice of initial condition, not too far from the exact yield
curve, is essential to get closer to the solution in fewer steps.

The various shapes of the yield curves for different initial short rates are presented
in Figure 6. Figure 7 is the solution for the yield curve on the half-plane of positive r.
Note that, in the exponential case, no matter how we choose the value of A\, the obtained
yield curve at zero is always concave, with no prolonged period of zero yield. This does
not agree with the observation of the current Japanese yield curve, which is S-shaped
with all yields for about the next 2 years equal to zero. This inadequacy of our model
is due to the shape of the probability function of the exponential distribution, which is
strictly positive at ¢ = 0+ so that the probability that we get a jump immediately is
always strictly positive. To reconcile our model with the observed yield curves, we need

to consider other distributions for the interarrival times of jumps.

0.014 ‘ ‘ —
Yield curve after 30 iterations e
—_—
/é///;:j;ﬂﬂl |
0.012 — -
= -
0.01 — -
//// )///~//’#r,/:////////
o 0:008 S - |
2 _— I
p S —
0.006 > — -
0.004 _— .
Initial assumption for the yield curve
0.002 2
0 | |

| | | | |
50 100 150 200 250 300 350
Month

Figure 5: Successive yield curves starting from a current short rate of zero (and Z = 0) and
obtained through the fixed point algorithm when the interarrival times of jumps are exponentially

distributed (A = 0.5) (the solution is the curve on the top)

The results in the case of a linear hazard rate (&« = 0 and 7 = 2) are presented in
Figures 8 and 9. We chose a small value, namely 0.025, for coefficient 3, so that after
one year spent in zero, \ is still 0.05 (ten times smaller than the constant A\ of the first
case). In this case, the probability density function for the interarrival times of jumps

starts from zero and remains small for some time, so we do observe a prolonged zero-yield

17



Yield curve when the initial short rate is 0.04

0.03

0.025

Yield

0.02

0.015F

0.01

Yield curve when the initial short rate is 0

| | | | | |
50 100 150 200 250 300 350
Month

Figure 6: Yield curves obtained after 30 iterations of the algorithm for different initial values

of r when the interarrival times of jumps are exponentially distributed (A = 0.5)

0.03
0.025

0.02

Yield
\

0.015
0.01

0.005 |

0.030

150 0.010

Month Initial short rate

Figure 7: Surface formed by the yield curves for r between 0 and 3% when the jumps are
exponentially distributed (A = 0.5)
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period of about a year (see Figure 8) and the curve is S-shaped (convex, then concave),
with an inflexion point around 100 months. The long-term asymptotic value of the yield
is still quite high (1% compared with an asymptotic value of 2% when A = 0.5). The
convergence seems faster than that in the exponential case, but maybe it is due to the

different shape of the yield curve.

0.01
0.008} Initial assumption for the yield curve =
0.006~
o
Q
>.
0.004+
Yield curve after 30 iterations
0.002+ _
0

| | | | | |
50 100 150 200 250 300 350
Month

Figure 8: Successive yield curves starting from a current short rate of zero (and Z = 0) and
obtained through the fixed point algorithm when A is linear: A(z) = 0.05z (the solution is the

curve at the bottom)

When we look at the solution on the half-plane of positive Z (i.e. when the ZIRP has
been in place for some time), we see that the yield curve tends to evolve into the shape
obtained with a constant A as Z increases. It raises to make first the zero-yield period
disappear, then the inflexion point gets closer to zero and eventually disappears too (see
the dashed curves in Figure 9)

Using an affine A (namely, A(z) = 0.5 + 0.05z) we get an S-shaped yield curve, but
no initial period of zero-yield. This is due to the constant part of A which makes strictly
positive the probability that r, leaves zero immediately after reaching it. If we want to
be able to observe yield curves with all initial term yields equal to zero, we must not
consider hazard rate with constant terms. For v > 2 and a = 0, we obtained yield curve
shapes similar to the linear case, only with a more pronounced S-shape. Note that we
may use any (positive) hazard rate we want, plug it in formula (4) and obtain the yield

curve through the same algorithm.

6 Extension to a Stochastic Latency

Since Section 3, we have assumed that the latency Z increased linearly with time, and

that the time already spent in zero was the only determinant of the distribution of jump
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Figure 9: Yield curves obtained after 30 iterations of the algorithm for different initial values
of r (solid curves) and Z (dashed curves) when A(z) = 0.05z

times. Nevertheless this implies that the yield curve evolves somewhat linearly, in only
one way, during the zero interest rate period, as seen in Figure 9; yields for all terms are
always increasing for the whole duration of the ZIRP. Dynamically, this is not realistic;
even when the short-rate is sleeping at zero, the state of the economy is still changing and
information is still flowing in, thus the prospect of a return to strictly positive short rates
may become alternately imminent or distant, term yields may increase or decrease.

To model this economic uncertainty, we will now consider that the latency has a
diffusion component. Namely, we now consider that the dynamics of Z; are of the form

dJ,
dZt = ]'{7“t7:0} |:,uZdt + O'Zth - Zt_ m] i Z(] = Z,
t

where 1z and o, are constants and W, is the same process as the one in the dynamics

of r;. To make the distinction easier, in the rest of the paper we will call the process Z;
stochastic latency under these new modelling assumptions and linear latency under our
initial assumptions, although the latency was of course never fully deterministic.

Since Z can now become negative, we shall consider a hazard rate A of the form given
in formula (6), but with the additionnal restriction that (v — 1) is an even integer, so that
A(Z) is always positive.

Now the dynamics of the bond price become

dfT = ar(t,r, Z)dt + op(t,r, Z)dW,; +/ yr(t,r,z, Z)p(dx, dt),
0
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where

1 1
CYT(ZzTa Z) = ftT + 1{7“>0} [H(e - T)f;ﬂT + 502 7“7;] + 1{7"=0}[/1/Zf§ + éo'%ngL
op(t,r,Z) = 1{T>0}off + 1{,:0}02]“;,

yr(t,r, Z,x) = 1{r:0}[fT(t,x,0)—fT(t,O,Z)].

The new fL,-term correspond to the diffusion component of Z;. Its presence prevents us
from using the method of characteristics.
The PDE to solve on the r-halfplane is the same as in (7), but the PDE on the Z-plane

1S now

WMT,Z)=1 VZ. (13)

{ b+ pzhz + 505057 = NZ)h+N2)g(t, Jo) = 0,
This time we need to use a numerical method to solve (13) as well as (7).
Using the same fixed point algorithm as in Section 4, only replacing Step 3 by a finite
difference method to find h, we observed convergence for all parameters values we tried.
In all the graphs reported here, we used a time horizon of 30 years, § = 0.05, ¢ = 0.02,

k= 0.2, Jy = 0.005, ér = 0.0005, 5t = 30/500 and 67 = dt.

0.01

0.009 - b

0.008 |- b

0.007 b

0.006 - b

0.005

Yield

0.004

0.003

0.002 - i

0.001 b

0 | | | | | | | | |
3 6 9 12 15 18 21 24 27 30

Time (years)

Figure 10: Convergence of the fixed point algorithm. Successive yields at (r, Z) = (0,0) for 10
iterations of the algorithm when A(z) = 0.05 + 22 and (uz,0z) = (0,0.002).

Figure 10 shows that the convergence of the yield curve at the intersection of the

two planes is quite as fast as before, when the latency was simply increasing linearly
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Figure 11: Different yield curves obtained for different initial values of r in the case when
AMz) = 0.05 + 22 and (uz,07) = (0,0.002).

008

Figure 12: Yield curve surface in the r half-plane in the case when \(z) = 0.052% and (uz,07) =
0,2).
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with time and we had an exact solution on the Z-plane. Nevertheless, the computation
time to complete one iteration of the algorithm is almost doubled, since we must use the
Cranck—Nicholson method twice.

Figures 11 and 12 show that the shapes of the yield curves we obtain for different
initial values of r are about the same as in the previous model. Again we see that a

constant term in A(.) prevents us from observing a prolonged period of zero yield.

0.06

0.0
0.04
0.03)
0.02
0.01

0.06

004 —— s

=

0.06

004 ———

oRp—————————————

0
100

200 300 400 500
Figure 13: From left to right: yield curves at zero obtained for different initial values of Z,
yield curve surface in the Z-plane, yield curves obtained for different initial values of . The first
line of graphs corresponds to the case A(z) = 0.05 + 22 and (uz,0z) = (0,0.002), the second
line to the case A(z) = 22 and (uz,07) = (0,0.2) and the last line to the case A(z) = 0.0522 and

(nz,07) = (0,2) (all other parameters being the same).

Figure 13 compares the yield curves obtained in the r- and Z-planes for different values
of the parameters. We can observe (since A(.) is symmetric) that the yield surface on the
Z-plane is symmetric (see the central column of Figure 13). Therefore, without loss of
generality, we can only consider yield curves obtained for positive values of Z (see the first
column of Figure 13). As we might expect, when Z increases, the corresponding yield
curves converge to the yield curve starting at (r, Z) = (Jy,0) (here Jy = 0.005) since for

large values of Z an immediate jump occurs for sure.
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7 Example of calibration

In this section we are interested in the calibration of the “linear” latency model to bond
prices on the market. To simplify the notations, we regroup all the parameters into a

vector-valued parameter Y € RS and we assume that it is of the form
Y = (97 o, R, J07 ﬁa 7)7

where 3 and v are the parameters in the hazard rate A, namely \(z) = Byz(0~Y.
We are interested in solving the optimization problem
min Y (P(r,Z,T;,Y) — P(r, Z,T;))?, subject to l, <Y < u,, (14)

Y eRS
i€l

where P(r, Z,T;,Y) is the price of the zero-coupon bond maturing at 7; computed using
our model, and where the parameters are set to level Y, the terms r» and Z denote the
current short rate and latency respectively, and P(r, Z, T;) is the price of the zero-coupon
bond maturing at 7; observed on the market.

We used zero-coupon bond prices in the objective function, but traded JGBs are
actually coupon-bearing bonds. A bootstrap method is used to derive zero-coupon bond
prices from coupon-bond prices, or more frequently from a set of deposit rates and swap
rates. We estimated the model parameters using such bootstrapped prices of 20 zero-
coupon bonds maturing between 3 months and 10 years.

In this numerical example we used a trust region reflexive Newton algorithm to com-
pute the solution to Problem (14) . This algorithm is based on Coleman and Li (1996)
and is already implemented in Matlab as the function 1sqnonlin. We chose a constant
jump size Jy of 50 basis points, and fitted only the 5 remaining parameters in Y.

Table 5 reports the final parameters estimates that we obtained using different starting
points. The trust region algorithm requires the computation of the Jacobian of the ob-
jective function, so that estimating 5 parameters requires 6 function evaluations at every
iteration of the algorithm (in the case of forward differences). As we can see, the final
estimates may vary depending on the starting points, but 3 is always estimated as very
small and v as close to 2. This is due to the S-shape of the yield curve at that date.

Naturally, the computational time may vary greatly depending on the number of
iterations required to reach the termination criteria, the number of points used in the
finite difference algorithm, the plateform used for computation and the programming
language of implementation.

Figure (14) displays the yields of the 40 bonds that were used as well as the yield

curve implied by the model after calibration.
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Parameter starting final starting final starting final
point  estimates | point estimates | point  estimates

0 0.5 0.0581 0.03 0.1198 0.03 0.0479

o 0.02 0.0156 0.2 0.0137 0.02 0.0008

K 0.2 0.2400 0.2 0.0563 0.2 0.1126

6] 0.05 0.0868 0.05 0.0832 1 0.0821

~y 2 2.0770 2 2.7884 1 2.3706

# of Iterations 6 19 33

Residuals 7.0158e-6 3.0696e-5 9.6245e-6

Table 5: Parameter estimation on May 2, 2001, using 40 zero-coupon bonds maturing between

3 months and 10 years.

16

Yield

Maturity (years)

Figure 14: Fitted yield in the first case of Table 5. Solid lines: fitted bond prices and associated
yields in the first case of Table 5. The “star” marks represent the yields derived from discount
factors. The time-step used in the finite difference method is .025, so we have ten time steps

between each bond maturity date.
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8 Conclusion

We have introduced a new class of positive interest rate models and proposed a stable
numerical method to compute the bond price when the intensity of the compensator of
the jump interarrival times ); is a function of the latency Z;. First, Z, was considered
to be the time during which the short rate has been sitting at 0 (linear latency); then
it was considered to be an unobservable random process, characteristic of the latency or
imminence of the jump (stochastic latency).

Statistically, the yield curves obtained in the case of linear \ are satisfactory in the
sense that they exhibit sustained periods of zero yield (zero forward spot rate) as the
Japanese market does at the moment but more complex forms of the intensity A can be
considered as well.

Dynamically, we obtain better result with a stochastic latency, but have to pay a price
for it in terms of increased computational time.

The model calibration to current market prices seems a bit involved at the moment,
because we do not have a closed-form solution for the bond price, and is left for further
research. Qualitatively, we can say that the parameters having a strong influence on the
long-term yield are 6, Jy and A, while the only parameter having a noticeable influence
on the shape of the curve is A\, which gives us a hope that we can fit well the model to

any current yield curve of the shapes shown in Figures 6 and 9.
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