
The Dalang–Morton–Willinger Theorem Under
Delayed and Restricted Information

Yuri Kabanov1,2 and Christophe Stricker1
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Summary. We extend the classical no-arbitrage criteria to the case of a model
where the investor’s decisions are based on a partial information (e.g., because of
delay or round-off errors), that is the portfolio strategies are predictable with respect
to a subfiltration. Our main result is a ramification of the famous Dalang–Morton–
Willinger theorem: the model is arbitrage-free if and only if there exists an equivalent
probability measure P̃ such that the optional projection of the price process with
respect to P̃ is a P̃ -martingale.
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1. Introduction. The Dalang–Morton–Willinger theorem asserts, for the
standard discrete-time finite horizon model of security market, that there is
no arbitrage if and only if the price process is a martingale with respect to an
equivalent probability measure. This remarkable result sometimes is referred
to as the Fundamental Theorem of Arbitrage (or Asset) Pricing (FTAP) or
simply the First Fundamental Theorem, [5]. Its various aspects have been thor-
oughly investigated, the theorem has been augmented by additional equivalent
conditions and extended in many directions, see, e.g. [2].

In this note we deal with the same model modified in only one aspect:
the agent’s decision are based on a restricted information flow described by
a filtration which can be smaller than a filtration generated by the price
process. Apparently, such situations may arise if the information arrives with
a delay or based on quantified prices and so on. We show that there is no-
arbitrage under partial information iff there exists an equivalent probability
P̃ such that the optional projection with respect to P̃ is a P̃ -martingale.
Surprisingly, this natural generalization was not studied previously and there
is a certain explanation for this. Almost all available proofs use a reduction
to the one-period model. This reduction is possible because in the standard



212 Y. Kabanov and C. Stricker

setting, as was observed already in [1], the NA property is equivalent to the
absence of arbitrage on each step. Due to this, all efforts are concentrated to
construct a martingale density for the one-step model; proofs are accomplished
by assembling the required density process from the one-step densities using
the procedure suggested in [1]. Unfortunately, attempts to follow the same
strategy of proof for the partial information case cannot be fruitful: as we
show below, the equivalence between the “global” NA and the collection of
one-step NA properties fails in general. However, the proof of NA criteria given
in [3] and reproduced in [2] (to our knowledge, the unique one which does not
rely upon the reduction to the one-step model) works well and requires only
minor changes.

2. No-arbitrage criteria under delayed information. Let (Ω,G, P ) be
a probability space equipped with a filtration F = (Ft), t = 0, 1, . . . , T , with
FT ⊆ G. We are given a d-dimensional process S = (St) which is not neces-
sarily adapted. Let

RT := {ξ : ξ = H · ST , H ∈ P}
where P is the set of all predictable d-dimensional processes with respect to
F (i.e. Ht is Ft−1-measurable) and

H · ST :=
T∑
t=1

Ht∆St, ∆St := St − St−1.

Put AT := RT − L0
+; ĀT is the closure of AT in probability, L0

+ is the set
of non-negative random variables. In the context of mathematical finance the
process S describes the discounted price process of d assets. The assumption
that the strategy H is predictable with respect to a filtration F to which S
may not be adapted, covers, in particular, the situation where the investor has
no access to the full information contained in the price process (for instance,
he may observe the price process after some delay).

We formulate our main result in the same manner as in [3].

Theorem 1. The following conditions are equivalent:

(a) AT ∩ L0
+ = {0};

(b) AT ∩ L0
+ = {0} and AT = ĀT ;

(c) ĀT ∩ L0
+ = {0};

(d) there is a probability P̃ ∼ P with dP̃ /dP ∈ L∞ such that all St are
P̃ -integrable and Ẽ(St+1|Ft) = Ẽ(St|Ft) for t = 0, . . . , T − 1.

The last condition means that the (F, P̃ )-optional projection S̃ is an
(F , P̃ )-martingale (in discrete time S̃n = Ẽ(Sn|Fn) by definition).

Condition (a) is interpreted as the absence of arbitrage; it can be written
in the obviously equivalent form RT ∩L0

+ = {0} (or H ·ST � 0 ⇒ H ·ST = 0).
When S is adapted to F, (a) is equivalent to condition:

(a′) Ht∆St � 0 ⇒ Ht∆St = 0 for all t = 1, . . . , T .
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This is no longer true when S is not adapted. Consider the following simple
example where T = 2, F0 = F1 = {∅, Ω} but there is A ∈ G such that
0 < P (A) < 1. Put

∆S1 := IA − 1
2
IAc , ∆S2 := −1

2
IA + IAc .

There is no arbitrage on each of two steps but the constant process with
H1 = H2 = 1 is an arbitrage strategy for the two-step model.

3. Proof of Theorem 1. (a) ⇒ (b) For the sake of completeness and the
reader’s convenience we repeat the arguments from [3] which are based on the
following observation due to H.-J. Engelbert and H. von Weizsäcker (see [3]
for a proof).

Lemma 1. Let ηn ∈ L0(Rd) be such that lim inf |ηn| < ∞. Then there are
η̃k ∈ L0(Rd) such that for all ω the sequence of η̃k(ω) is a convergent subse-
quence of the sequence of ηn(ω).

To show that AT is closed we proceed by induction. Let T = 1. Suppose
that Hn1 ∆S1 − rn → ζ a.s. where Hn1 is F0-measurable and rn ∈ L0

+. It is
sufficient to find F0-measurable random variables H̃k1 which are a.s. convergent
and r̃k ∈ L0

+ such that H̃k1 ∆S1 − r̃k → ζ a.s.
Suppose that certain sets Ωi ∈ F0 form a finite partition of Ω. Obviously,

we may argue on each Ωi separately as on an autonomous measure space
(considering the restrictions of random variables and traces of σ-algebras).

Let H1 := lim inf |Hn1 |. On the set Ω1 := {H1 < ∞} we can take, using
Lemma 1, F0-measurable H̃k1 such that H̃k1 (ω) is a convergent subsequence
of Hn1 (ω) for every ω; r̃k are defined correspondingly. Thus, if Ω1 is of full
measure, the goal is achieved.

On Ω2 := {H1 = ∞} we put Gn1 := Hn1 /|Hn1 | and hn1 := rn/|Hn1 | and
observe that Gn1∆S1 − hn1 → 0 a.s. By Lemma 1 we find F0-measurable G̃k1
such that G̃k1(ω) is a convergent subsequence of Gn1 (ω) for every ω. Denoting
the limit by G̃1, we obtain that G̃1∆S1 = h̃1 where h̃1 is non-negative, hence,
in virtue of (a), G̃1∆S1 = 0.

As G̃1(ω) �= 0, there exists a partition of Ω2 into d disjoint subsets Ωi2 ∈ F0

such that the ith coordinate G̃i1 �= 0 on Ωi2. Define H̄n1 := Hn1 − βnG̃1 where
βn := Hni1 /G̃i1 on Ωi2. Then H̄n1 ∆S1 = Hn1 ∆S1 on Ω2. As it was mentioned
above we may consider as isolated the set Ωi2 ∈ F0. The replacement of
the sequence (Hn1 ) by the (H̄n1 ) does not change the limits. Represent these
sequences as infinite matrices with infinitely many columns, Hn1 and H̄n1 ,
respectively. The difference is that in the second matrix the ith row is zero
and if the first matrix already has null rows, they remain null in the second
one. We restart the entire procedure on Ωi2 with the sequence H̄n1 such that
H̄ni1 = 0 for all n. Since at each step the number of zero lines increases, the
process stops after a finite number of steps. The induction step from T − 1
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to T can be done exactly in the same way, considering always the sequence
of (Hn1 ) to construct a partition of Ω and making the needed operations also
with (Hnt ) for t � 2: this is legitimate since they do not destroy measurability.

(b) ⇒ (c) Trivial.
(c) ⇒ (d) Notice that for any random variable η there is an equivalent

probability P ′ with bounded density such that η ∈ L1(P ′) (e.g., one can
take P ′ = CE−|η|P ). Property (c) (as well as (a) and (b)) is invariant under
equivalent change of probability. This consideration allows us to assume from
the very beginning that all St are integrable. The convex set A1

T := ĀT ∩ L1

is closed in L1 and hence satisfies the hypotheses of the well-known result due
to Kreps and Yan, [4], [6] (its proof can also be found in [3] or [2]).

Lemma 2. Let K ⊇ −L1
+ be a closed convex cone in L1 with K ∩L1

+ = {0}.
Then there is a probability P̃ ∼ P with dP̃ /dP ∈ L∞ such that Ẽ ξ � 0 for
all ξ ∈ K.

This lemma ensures the existence of P̃ ∼ P with bounded density and
such that Ẽ ξ � 0 for all ξ ∈ A1

T , in particular, for ξ = ±Ht∆St where Ht is
bounded and Ft−1-measurable. Thus, Ẽ(∆St|Ft−1) = 0.

(d) ⇒ (a) Let ξ ∈ AT ∩ L0
+, i.e. 0 � ξ � H · ST . As Ẽ(Ht∆St|Ft−1) = 0,

we obtain by conditioning that Ẽ H ·ST = 0. Thus, ξ = 0.

4. Optional projection. It may happen that the (F, P )-optional projection
of S does not satisfy our NA condition although S does. Indeed, consider
again the two-step model with F0 = F1 = {∅, Ω}. Let ∆S1, ∆S2 be indepen-
dent random variables uniformly distributed on [−1, 3]. Then E(∆Si|Fi) = 1
for i = 1, 2 but for any point (H1,H2) ∈ R2 different from the origin the
distribution of the random variable H1∆S1 + H2∆S2 charges both ]−∞, 0[
and ]0,∞[ and, therefore, S has the NA property with restricted information.

5. Comment on continuous-time models. The following example illus-
trates that in the continuous-time setting where t ∈ R+, the question of
absence of arbitrage under partial information can be posed even if the price
process is not a semimartingale.

Let B = (Bs) be a standard Brownian motion with respect to a filtration
(Ht) satisfying the usual conditions. Let F be the trivial filtration formed by
the σ-algebras Ft generated by the null sets from H∞.

Put φ(x) := π+arctanx, θ(t) := Et, and St :=
∫ t
0
φ(Bs) dBs+

∫ t
0
Bθ(s) ds.

Let G be any filtration satisfying the usual conditions for which the process S
is G-adapted. If the diameters of the partitions πn := {0 = t0 � . . . � tn = t}
converge to zero,

∑
πn

(Sti+1 − Sti)
2 → [S, S]t in probability. So the process

[S, S]t =
∫ t
0
φ2(Bs) ds is G-adapted. It follows that (Bt) is G-adapted and

hence also (Bθ(t)). Therefore, (Bt) cannot be a G-semimartingale. Thus, (St)
is not a G-semimartingale. Nevertheless, we can define the stochastic integral
h·St for any bounded Borel function and, moreover, for this integralE h·St = 0
and, hence, the F-optional projection of S is a martingale.



The DMW Theorem Under Delayed and Restricted Information 215

References

1. R.C. Dalang, A. Morton, W. Willinger: Equivalent martingale measures and no-
arbitrage in stochastic securities market model. Stochastics and Stochastic Re-
ports, 29, 185–201, (1990)

2. Yu.M. Kabanov: Arbitrage theory. In: J. Cvitanić, E. Joini, M. Musiela (eds.)
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