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Summary. We discuss conditions of absence of arbitrage in the classical sense (the
“true” NA property) for the model given by a family of continuous value processes.
In particular, we obtain a criterion for the NA property in a market model with
countably many securities with continuous price processes. This result generalizes
the well-known criteria due to Levental–Skorohod and Delbaen–Schachermayer.

1 Introduction

In the paper [7] Levental and Skorohod proved a criterion for the absence
of arbitrage in a model of frictionless financial market with diffusion price
processes. In the publication [2] Delbaen and Schachermayer suggested a nec-
essary condition for the absence of arbitrage in a more general model where
the price process is a continuous Rd-valued semimartingale S: if the prop-
erty NA holds then there is a probability measure Q ¿ P such that S is a
local martingale with respect to Q. We analyze their proof and show that
the arguments allow to conclude that there exists Q with an extra property:
Q|F0 ∼ P |F0. Now let σ runs the set of all stopping times. Since the NA
property of S implies the NA property for each process I]σ,∞] ·S, this implies
the existence of local martingale measures σQ ¿ P for the processes I]σ,∞] ·S
such that σQ|Fσ ∼ P |Fσ. It turns out that this property is a necessary and
sufficient condition for NA, cf. with [9].

In this note we establish a necessary condition for the absence of arbi-
trage in the framework where the model is given by a set of value processes
and the price process even is not specified and the concept of the absolutely
continuous martingale measure is replaced by that of absolutely continuous
separating measure (ACSM). For the model with a continuous price process
S the latter is a local martingale measure. We use intensively ideas of Del-
baen and Schachermayer. In particular, we deduce the existence of ACSM
from a suitable criterion for the NFLVR property. In contrast to [2], we use
the fundamental theorem from [5] (a ramification of the corresponding result
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from [1]) and make explicit the notion of supermartingale density as a su-
permartingale Y ≥ 0 such that Y X + Y is supermartingale for every value
process X ≥ −1. The suggested approach allows us to avoid vector integrals
and work exclusively with scalar processes and standard facts of stochastic
calculus.

As usual, the difficult part is “NA ⇒...”. For this we use Theorem 4 in-
volving “technical” hypotheses. One of them, H, requires the existence of a
supermartingale density Y and a process X̄ ≥ −1 coinciding locally, up to the
explosion time, with value processes and exploding on the set where Y hits
zero. For the model generated by a scalar continuous semimartingale S the
absence of immediate arbitrage (a property which is weaker than NA) implies
H (with X̄ = Y −1− 1). This can be easily verified following the same lines as
in [2] (for the reader’s convenience we provide a proof of Theorem 5 which is
version of Theorem 3.7 from [2]).

The passage to the multidimensional case reveals an advantage to formu-
late the conditions of Theorem 4 in terms of value processes. If the latter are
generated by a finite or countable family of scalar continuous semimartingales
{Si} with orthogonal martingale components, then a required supermartin-
gale density can be assembled from the semimartingale densities constructed
individually for each Si. An orthogonalization procedure reduces the general
case to the considered above. In this way we obtain a NA criterion for the
model spanned by countably many securities. This result seems to be of inter-
est for bond market models where the prices of zero coupon bonds are driven
by countably many Wiener processes.

Notice that in our definition the set of value processes corresponding to the
family {Si} is the closed linear space generated by the integrals with respect
to each Si. That is why we are not concerned by the particular structure of
this space, i.e., by the question whether this is the space of vector integrals.
The positive answer to this question is well-known for stock markets but for
bond markets (with a continuum of securities) a suitable integration theory
is still not available.

2 Preliminaries and general results

In our setting a stochastic basis (Ω,F ,F, P ) satisfying the usual conditions
as well as a finite time horizon T are fixed. For the notational convenience we
extend the filtration and all processes stationary after the date T .

To work comfortably within the standard framework of stochastic calculus
under a measure P̃ ¿ P we shall consider the “customized” stochastic basis
(Ω, F̃ , F̃, P ) where F̃ which is a P̃ -completion of F and the filtration F̃ is
formed by the σ-algebras F̃t generated by Ft and the P̃ -null sets. For any
ξ ∈ F̃t there is ξ′ ∈ Ft different from ξ only on a P̃ -null set. With this
remark the right-continuity of the new filtration is obvious. The processes
ξI[t,∞[ and ξ′I[t,∞[ coincide P̃ -a.s. The monotone class argument implies that
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for any F̃-predictable process H there exists a F-predictable process H ′ which
is P̃ -indistinguishable from H, see details in [4].

We denote by S = S(P ) the linear space of scalar semimartingales starting
from zero equipped with the Emery topology, generated, e.g., by the quasi-
norm D(X) = supH E|H · XT | ∧ 1 where sup is taken over all predictable
processes H with |H| ≤ 1.

Let X ⊆ S be a convex set of bounded from below semimartingales stable
under the concatenation in the following sense: for any X1, X2 ∈ X and any
bounded predictable processes H1, H2 with H1H2 = 0, the sum of stochastic
integrals H1 ·X1+H2 ·X2, if bounded from below, belongs to X . Obviously, X
is a cone. For any X ∈ X and any stopping time τ the process Xτ = I[0,τ ] ·X
belongs to X .

In the context of financial modeling the elements of X are interpreted as
value processes; those for which 0 ≤ XT 6= 0 are called arbitrage opportunities.
Let X a := {X ∈ X : X ≥ −a}. We introduce the sets of attainable “gains”
or “results” R := {XT : X ∈ X} and Ra := {XT : X ∈ X a} and define
also C := (R − L0

+) ∩ L∞, the set of claims hedgeable from the zero initial
endowment.

The NA property of X means that R ∩ L0
+ = {0} (or C ∩ L∞+ = {0}).

A stronger property, NFLVR (no free lunch with vanishing risk), means that
C̄ ∩L∞+ = {0} where C̄ is the norm closure of C in L∞. There is the following
simple assertion relating them (Lemma 2.2 in [5] which proof is the same as
of the corresponding result in [1]).

Lemma 1 NFLVR holds iff NA holds and R1 is bounded in L0.

Remark 1. Note that R0 is a cone in R1. If R1 is bounded in L0, then nec-
essarily R0 = {0} and for any arbitrage opportunity X ′ there are t < T and
ε > 0 such that the set Γ := {X ′

t ≤ −ε} is non-null. In this case the process
X := IΓ×]t,∞[ ·X ′ is an arbitrage opportunity with

{XT > 0} = {XT ≥ ε} = Γ ∈ Ft.

We say that X admits an equivalent separating measure (briefly: the ESM
property holds) if there exists P̃ ∼ P such that ẼXT ≤ 0 for all X ∈ X .

Now we recall also one of the central (and difficult) results of the theory in
the abstract formulation of [5], Th. 1.1 and 1.2 (cf. with that of the original
paper [1] where the value processes are stochastic integrals).

Theorem 2 Suppose that X 1 is closed in S. Then NFLVR holds iff ESM
holds.

We say that a supermartingale Y ≥ 0 with EY0 = 1 is a supermartingale
density if Y (X + 1) is a supermartingale for each X ∈ X 1.

The following statement indicates that criteria for the NA property can
be obtained from those for the NFLVR.
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Lemma 3 Let Y be a supermartingale density such that YT > 0 P̃ -a.s. where
P̃ ¿ P . Then the set R1 is bounded in L0(P̃ ).

Proof. Let X ∈ X 1. Since EY (X + 1) ≤ 1, the set

YT R1 := {YT XT : X ∈ X 1}

is bounded in L1(P ), hence, it is bounded in L0(P ). The absolute continuous
change of measure as well as the multiplication by a finite random variable
preserve the boundedness in probability. Thus, the set R1 = Y −1

T (YT R1) is
bounded in L0(P̃ ). 2

We need the following condition.
H. There exist a supermartingale density Y and a càdlàg process X̄ with

values in [−1,∞], having ∞ as an absorbing state, and such that X̄θn ∈ X 1

for every stopping time θn := inf{t : X̄t ≥ n} and {X̄T < ∞} ⊆ {YT > 0}
a.s.

Theorem 4 Suppose that X 1 is closed in S and the hypothesis H is satisfied.
If NA holds then there exists an ACSM Q such that Q|F0 ∼ P |F0.

Proof. Clearly, c := P (X̄T < ∞) > 0 (otherwise X̄θ1 violates NA) and we can
define the martingale Zt := c−1E(I{X̄T <∞}|Ft) and the probability measure
P̃ := ZT P , the trace of P on {X̄T < ∞}.

The NA property implies that I{Z>0} ≥ I{X̄<∞}, i.e. Z does not hit zero
before the explosion of X̄. Indeed, in the opposite case

BN
t := {sup

s≤t
X̄s ≤ N, Zt = 0}

is not a null-set for some t < T and N < ∞. Since zero is the absorbing
point for Z, BN

t ⊆ {ZT = 0} = {X̄T = ∞} (a.s.). The process IBN
t ×]0,∞[ · X̄,

bounded from below by −N − 1, is nontrivial only on BN
t where it explodes.

This violates the NA.
In particular, Zθn > 0, i.e. P̃ |Fθn ∼ P |Fθn . Since P̃ (X̄T < ∞) = 1, the

assumed existence of a supermartingale density ensures the boundedness of
R1 in L0(P̃ ).

Let X̃ 1 be the closure of X 1 in S(P̃ ) and let X̃ := cone X̃ 1. Recall that the
elements of S(P̃ ), a space over the stochastic basis (Ω, F̃ , F̃, P̃ ), are, in fact,
not processes but classes of equivalence. Notice that for any X̃ ∈ X̃ 1 there is
a process X such that Xθn ∈ X 1 and X̃θn = Xθn P̃ -a.s. for every n.

One can verify that X̃ is stable under concatenation.
From the definition of the Emery topology it follows that the set R̃1 formed

by the terminal values of processes from X̃ 1 is a part of the closure of R1 in
L0(P̃ ) and, hence, R̃1 is bounded in this space.

If the set X̃ does not satisfy NA under P̃ , we can find, according to Remark
1, a process X = IΓ×]t,T ] ·X ∈ X̃ 1 such that the set Γ ∈ F̃t, P̃ (Γ ) > 0, and
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{XT ≥ ε} = Γ P̃ -a.s. Choosing appropriate representatives we may assume
without loss of generality that Γ ∈ Ft and Xθn ∈ X 1 for every n. On the
stochastic interval [0, θ| the process X̄ε := H · X̄ with

H := (ε/2)(2 + X̄t)−1IΓ×]t,T [

is well-defined. On [0, θ| the process X + X̄ε ≥ −1− ε/2; at θ it explodes to
infinity in a continuous way on the set Γ ∩ {θ ≤ T} and has a finite positive
limit bigger than ε/2 on the set Γ ∩{θ > T}. Since P (Γ ) > 0, an appropriate
stopping yields a process in X which is an arbitrage opportunity. The obtained
contradiction shows that X̃ under P̃ satisfies NA and, by virtue of Lemma 1,
also the property NFLVR.

The result follows because by Theorem 2 there exists a measure Q ∼ P̃
separating K̃ and L0

+(P̃ ). 2

3 Semimartingales with the structure property

By definition, the structure property of X ∈ S means that X = M + h · 〈M〉
where M ∈M2

loc and h is a predictable process such that |h| · 〈M〉T < ∞.
The next result is a version of Theorem 3.7 from [2] and its proof is given

for the reader’s convenience.

Theorem 5 Let X be a continuous semimartingale with the structure prop-
erty. Then there exists an integrand H such that H ·X ≥ 0 and

{H ·Xt > 0 ∀t ∈]0, T ]} = {h2 · 〈M〉0+ = ∞}.
Proof. Without loss of generality we may assume that Γ := {h2 · 〈M〉0+ = ∞}
is of full measure (replacing, if necessary, P by its trace on Γ ). With this
assumption the main ingredient of the proof is the following assertion:

Lemma 6 Suppose that h2 · 〈M〉0+ = ∞ a.s. Then for any ε > 0, η ∈]0, 1]
there exist δ > 0 arbitrarily close to zero and a bounded integrand H = HI]δ,ε]

such that
(i) H ·X ≥ −1;
(ii) |Hh| · 〈M〉T + H2 · 〈M〉T < 3;
(iii) P (H ·XT ≤ 1) ≤ η.

Proof. Let R = 32/η. Since h2 · 〈M〉0+ = ∞, for sufficiently small δ

P (h2I]δ,ε]I{|h|≤1/δ} · 〈M〉T ≥ R) ≥ 1− η/2.

Let
τ := inf{t ≥ 0 : h2I]δ,ε]I{|h|≤1/δ} · 〈M〉t ≥ R} ∧ ε.

For the integrand H̃ := 2R−1hI]δ,τ ]I{|h|≤1/δ} we have that |H̃h| · 〈M〉T ≤ 2
with P (|H̃h| · 〈M〉T < 2) ≤ η/2. Also,



6 Yuri Kabanov and Christophe Stricker

H̃2 · 〈M〉T ≤ 4R−1 < 1

and, by the Chebyshev and Doob inequalities,

P (sup
s≤T

|H̃ ·Ms| ≥ 1) ≤ 4E(H̃ ·MT )2 = 4EH̃2 · 〈M〉T ≤ 16R−1 ≤ η/2.

Thus, P (τ1 ≤ T ) ≤ η/2 for the stopping time τ1 := inf{t ≥ 0 : H̃ ·Mt ≤ −1}.
The integrand H := H̃I[0,τ1] obviously meets the requirements (i) and (ii). At
last, because of the inclusion {H ·XT ≤ 1, τ1 > T} ⊆ {|Hh| · 〈M〉T < 2}, we
obtain that

P (H ·XT ≤ 1) = P (H ·XT ≤ 1, τ1 ≤ T )+P (H ·XT ≤ 1, τ1 > T ) ≤ η/2+η/2

and (iii) holds. 2

Using this lemma, we construct, starting, e.g., with ε0 = T , a sequence of
positive numbers εn ↓ 0 and a sequence of integrands Hn = HnI]εn+1,εn] such
that the conditions (i) – (iii) hold with ηn = 2−n. The properties (i) and (ii)
ensure that the process G :=

∑
n 3−nHn is integrable and G ·X is bounded

from below. By the Borel–Cantelli lemma for every ω outside a null set there
is n0(ω) such that Hk · Xεk

(ω) > 1 for all k > n0(ω). For t ∈]εn+1, εn] and
any n > n0(ω) we have

G·Xt(ω) =
∑

k>n

3−kHk ·Xεk
(ω)+3−nHn ·Xt(ω) ≥

∑

k>n

3−k−3−n =
1
2
3−n > 0.

Thus, σ := inf{t > 0 : G ·Xt = 0} > 0 a.s. It follows that for the integrand
H :=

∑
2−nI[0,σ∧n−1]G the process H ·X is strictly positive on ]0, T ]. 2

4 Models based on a continuous price process

Let S be a continuous Rd-valued semimartingale, L(S) be the set of pre-
dictable processes integrable with respect to S, and A be the set of integrands
H for which the process H · S is bounded from below.

We consider the model where X = X (S) := {H · S : H ∈ A}. Mémin’s
theorem [8] says that {H · S, H ∈ L(S)} is a closed subspace of S. It follows
immediately that X 1 is also closed.

First, we look at the case d = 1. Replacing, if necessary, the generating
process by a suitable integral, we may assume without loss of generality that S
is a bounded continuous semimartingale starting from zero (hence, an element
of X ) and even that in its canonical decomposition S = M +A the martingale
M and total variation of the predictable process A are both bounded.

Recall the following simple fact:

Lemma 7 Suppose that R0 = {0}. Then S = M + A with A = h · 〈M〉.
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Proof. If the claim fails, we can find, using the Lebesgue decomposition, a
predictable process H = H2 for which H · 〈M〉 = 0 and H · VarAT 6= 0. Let
the process G be defined as the sign of the (predictable) process dA/dVarA.
Since (GH) · S = H · VarA, we obtain a contradiction with the assumption
that R0 = {0}. 2

The assumption R0 = {0} (no immediate arbitrage in the terminology of
[2]) implies, by Theorem 5, that h2 · 〈M〉0+ is finite as well as h2I]σ,∞[ · 〈M〉σ+

whatever is the stopping time σ (by the same theorem applied to the process
S.+σ − Sσ adapted to the shifted filtration (Ft+σ)). Put

τ := inf{t ≥ 0 : h2 · 〈M〉t = ∞},
τn := inf{t ≥ 0 : h2 · 〈M〉t ≥ n}.

It follows that h2 · 〈M〉τ− = ∞ (a.s.) on the set {τ ≤ T} (i.e. no jump to
infinity). This allows us to define the process

Y := e−h·M−(1/2)h2·〈M〉I[0,τ [.

It follows from the law of large numbers for continuous local martingales
(see Remark 2 below) that {Yτ− = 0} = {h2 · 〈M〉τ = ∞} a.s., i.e. Y hits
zero not by a jump. For every stopping time τn the stochastic exponential
Y τn = E(−h ·Mτn) is a positive martingale and, hence, by the Fatou lemma,
Y τ = Y is a supermartingale. By the Ito formula

Y τn(H · Sτn) = Y τn · (H ·Mτn) + (H · Sτn) · Y τn

Thus, for any X ∈ X 1 the process Y τn(Xτn + 1) is a local martingale and,
again by the Fatou lemma, Y τ (Xτ + 1) = Y (X + 1) is a supermartingale.

At last, put X̄ = Y −1 − 1. Then {YT = 0} = {X̄T = ∞} and by the Ito
formula

X̄θn = I[0,θn]Y
−1h · S.

Summarizing, we come to the following:

Proposition 8 Suppose that R0 = {0}. Then the condition H holds.

Remark 2. If N ∈Mc
loc and c > 0, then

{ lim
t→∞

(Nt − c〈N〉t) → −∞} = {〈N〉∞ = ∞} a.s.,

see, e.g., [6], Lemma 6.5.6. The needed extension to the case where Nτn ∈Mc

and τn → τ can be proved in the same way.

Remark 3. Though we established the above proposition only for the case
d = 1, the extension of the arguments to the vector case when the com-
ponents Si = M i + Ai are such that 〈M i,M j〉 = 0, i 6= j, is obvious:
consider Y = E(−∑

i hi · M i). But without loss of generality we may al-
ways assume that S satisfies this property. It is sufficient to notice that
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X (S) = X (S̃) for some continuous semimartingale S̃ with orthogonal mar-
tingale components. This semimartingale can be constructed recursively.
Namely, suppose that the orthogonality holds up to the index n − 1. Let
Mn =

∑
i≤n−1 Hi ·M i + M̃n be the Kunita–Watanabe decomposition. One

can take S̃n = M̃n + An−∑
i≤n−1 Hi ·Ai. Of course, to ensure the existence

of Hi · Ai it may be necessary to replace first Sn by G · Sn with a suitable
integrand G taking values in ]0, 1]. This orthogonalization procedure works
well also for a countable family {Si}i∈N. Moreover, we can find bounded S̃i

such that
∑

i S̃i converges in S to a bounded semimartingale S̃.

Theorem 9 Suppose that X = X (S) where S is a continuous Rd-valued
semimartingale. Then the NA property holds iff for any stopping time σ there
exists a probability measure σQ ¿ P with σQ|Fσ ∼ P |Fσ such that the process
I]σ,∞] · S ∈Mc

loc(
σQ).

Proof. Necessity follows from Theorem 4 and Proposition 8 applied to the
process S.+σ − Sσ adapted to the shifted filtration (Ft+σ). As usual, the
sufficiency is almost obvious. Indeed, if the claim fails, there exists a bounded
process X ∈ X 1 such that for the stopping time σ := inf{t > 0 : Xt 6= 0} we
have P (σ < T ) > 0. But then σX := I]σ,∞] ·X is in Mc(σQ) or, equivalently,
σXZ is a martingale with respect to P . It starts from zero and hence is
zero. The density process Z of σQ with respect to P is equal to one at σ
and, being right-continuous, remains strictly positive on a certain stochastic
interval on which σX should be zero. This contradicts to the assumption that
P (σ < T ) > 0. 2

Remark 4. Let B be a Brownian motion, σ := inf{t ≥ 0 : Bt = −1}, and
Zt = 1 + Bt∧σ. Take St = Bt − Bt∧σ +

√
(t− σ)+. Then StZt = 0 and,

therefore, S ∈Mc
loc(P̃ ) where P̃ := ZT P . Nevertheless, according to Theorem

5 there is an immediate arbitrage at σ.

In virtue of Remark 3 we obtain in the same way the following

Theorem 10 Suppose that X consists of all processes bounded from below and
belonging to the closed linear subspace of S generated by X (Si), i ∈ N, where
Si are continuous semimartingales. Then the NA property holds iff for any
stopping time σ there exists a probability measure σQ ¿ P with the restriction
σQ|Fσ ∼ P |Fσ such that I]σ,∞] · Si ∈Mc

loc(
σQ) for every i ∈ N.
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