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Abstract. This note is a natural complement to our previous work where we studied
no-arbitrage criteria for markets with efficient friction. We discuss, in our general
geometric framework, the recent result of Walter Schachermayer on a necessary
and sufficient condition for the existence of strictly consistent price systems and
give its quick proof.
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1 Introduction

A theorem by Harrison and Pliska says that in a model of frictionless market with
finite discrete time and finite Ω (i.e., finite number of states of the nature) the absence
of arbitrage is equivalent to the existence of an equivalent probability measure under
which all price processes are martingales. It was discovered by Dalang, Morton, and
Willinger that it remains true even without the assumption that Ω is finite. These
two theorems triggered a remarkable development referred to as Arbitrage Theory
or Fundamental Theorem of Asset Pricing. The interested reader can find relevant
information, e.g., in a survey paper [4] containing an extended bibliography.

Our specific interests here are results relevant to market models with propor-
tional transaction costs. Without any doubt, the first serious work in this direction
was the paper [2] by Jouini and Kallal who considered an original model based on
a bid-ask spread. More traditional approach covering the case of foreign exchange
has been developed in a series of articles [3,1,5,7,4], and, at last, [6].
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It leads to the following general conclusions:

– in the model with a reference asset (numéraire) portfolios can be expressed
either in relative values or in physical quantities;

– the hypothesis of existence of the numéraire is not necessary: in the model of
pure exchange portfolios are expressed in physical quantities;

– a framework of controlled linear difference equation with (polyhedral) convex
constraints covers both kind of models;

– the quality of agents’ results can be evaluated using partial orderings in Rd,
e.g., those induced by solvency cones;

– the natural analogs of densities of absolute continuous martingale measures are
“consistent price systems” i.e., processes evolving in positive duals to solvency
cones while the analogs of densities of equivalent martingale measures seem
to be “strictly consistent price systems”, i.e., processes evolving in the relative
interior of the latter.

The situation of a model with finite Ω was analyzed in details in the paper
[7] (see also [4] for some improvements) where criteria for two definitions of no-
arbitrage were proved (both coinciding with the Harrison-Pliska theorem for the
model with zero transaction costs).

In our paper [6] it was shown that for the model with efficient friction (i.e.,
non-empty interiors of the positive duals to the solvency cones) the existence of
strictly consistent price system is equivalent to the strict no-arbitrage conditions
for the whole interval (NAs). There is an important case studied in [10] where
this criterion still holds without assuming the efficient friction. The result of [10]
covers models with constant proportional transaction costs Λ and coincides with
the Dalang-Morton-Willinger theorem when Λ = 0.

In the recent preprint [12], Walter Schachermayer proved that the existence of
strictly consistent price system (we adopt here his terminology) is equivalent to the
newly introduced “robust no-arbitrage property” ensuring the closedness of the set
of hedgeable claims. He provided an example showing that NAs does not guarantee
this closedness and, hence, does not coincide with NAr. The framework of [12] is
that of a barter market (i.e., of pure exchange) based on bid-ask matrices but, as it
is explained in [12], this is just a matter of language: this class of models coincides
with that of currency market (any adapted process evolving in the relative interior
of the duals to the solvency cones can be chosen as the price process). However,
there are models interesting from the financial point of view having polyhedral
solvency cones but not of this class. As examples may serve the model of stock
market where the transactions charge the market account, see [9], certain models
with homogeneous constraints etc.

In this note we give a synthesis and comparison of available results on no-
arbitrage criteria in discrete time using advantages of the more general geometric
setting of [6] to give quick proofs.
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2 Main results

We shall use the notations and the framework of [6].
Recall that a sequence of set-valued mappings G = (Gt) is a C-valued process

if there is a countable sequence of adapted Rd-valued processes Xn = (Xn
t ) such

that for every t and ω only a finite but non-zero number of Xn
t (ω) is different

from zero and Gt(ω) := cone {Xn
t (ω), n ∈ N} (i.e., Gt(ω) is a polyhedral cone

generated by the finite set {Xn
t (ω), n ∈ N}).

Let G and G̃ be closed cones. We say that G is dominated by G̃ if G\G0 ⊆ ri G̃
where G0 is the linear space G ∩ (−G). We extend this notion in the obvious way
to C-valued processes. It can be formulated in terms of the dual cones because
G\G0 ⊆ ri G̃ iff G̃∗\G̃∗0 ⊆ riG∗. In particular, if G has an interior, G\G0 ⊆ int G̃
iff G̃∗ \ {0} ⊆ riG∗.

Let G be a C-valued process, At(G) := − ∑t
s=0 L0(Gs,Fs).

We say that G satisfies:

– the weak no-arbitrage property (in brief: NAw) if

At(G) ∩ L0(Gt,Ft) ⊆ L0(∂Gt,Ft) ∀ t ≤ T ;

– the strict no-arbitrage property NAs if

At(G) ∩ L0(Gt,Ft) ⊆ L0(G0
t ,Ft) ∀ t ≤ T ;

– the robust no-arbitrage property NAr if G is dominated by G̃ satisfying NAw.

It is an easy exercise to check that if G dominates the constant process Rd
+ then

NAw holds iff AT (G) ∩ L0(Rd
+) = {0} (see [4]).

We introduce the following conditions:

(a) G satisfies the NAs-property;
(a’) G satisfies the NAr-property;
(b) there is a martingale Z such that Zs ∈ L∞(riG∗

s,Fs) for each s ≤ T .
(c) for each t ≤ T there is a martingale Zt such that Zt

s ∈ L∞(G∗
s,Fs) for each

s ≤ t and Zt
t ∈ L∞(riG∗

s,Fs).

Theorem 1 Assume that G dominates Rd
+. Then (a′) ⇔ (b).

Theorem 2 Assume that L0(G0
s,Fs−1) ⊆ L0(G0

s−1,Fs−1) for all s ≤ T . Then
(a) ⇔ (b).

Theorem 3 Assume that G0 = {0}. Then (a) ⇔ (b) ⇔ (c).

Remarks 1. By esthetic reasons we formulate the results as equivalences. In fact,
the implications (b) ⇒ (a′) and (b) ⇒ (a) hold without extra assumptions, see
Lemma 6. One can check also that (c) ⇒ (a).

2. Theorem 1 generalizes the criterion established in [12] for a parametric model
of pure exchange (barter) market given by the bid-ask matrix process Π = (πij),
see [4], Remark 3.9. Its hypothesis can be slightly relaxed by demanding that G
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dominates an increasing C-valued process H such that all Ht have non-empty
interiors. In the financial context of [12] a martingale Z satisfying (b) is called the
strictly consistent price system.

3. Theorem 2 due to Irina Penner [10] is a direct (and beautiful) generalization
of the equivalence (a) ⇔ (b) of Theorem 3 from our paper [6]: the assumption
holds trivially for proper cones Gt (notice also that in this case G∗

t has an interior
and NAs means simply that At(G) ∩ L0(Gt,Ft) = {0} for all t ≤ T ). The
hypothesis of Theorem 2 looks abstract but it is fulfilled in the important case of
the model with constant transaction costs when NAs holds, see Proposition 1 also
due to Irina Penner.

4. In financial applications, i.e., for models of security markets with transaction
costs, Gt is either the solvency cone in the “physical units domain” (that is G = K̂
in terminology of [4], [6] etc.) or the solvency cone Kt in the “value domain” (with
At(K) defined as the set of hedgeable claims).

5. For finite Ω the condition (c) is equivalent to NAs if G dominates Rd
+, see

[7]; its role in the general case remains an open question. The following simple
example shows that even in the case of Ω consisting of two elementary events
ω1, ω2 having equal probabilities the condition (c) is weaker than (b) and, hence,
NAs is weaker than NAr! Indeed, let F0 be trivial, F1 = F2 = F . Take now
G∗

0 = G∗
2 = cone {e1+e2} and let G∗

1(ω1) = cone {e1+e2, e1+2e2}, G∗
1(ω2) =

cone {e1 + e2, 2e1 + e2}. Clearly, one can find martingales Zt, t ≤ 2, satisfying
(c) but there is no one for which (b) holds.

6. In [12] Schachermayer gave a delicate example of a financial market for
which NAs holds but NAr not. In fact, his example provides a negative answer to
the question whether NAs implies the closedness of the set of headgeable claims
AT (G)

Surprisingly, in the case of a financial market model for which the subspace
Ft = Kt ∩ (−Kt) is constant over time (e.g., the transaction costs are constant)
the properties NAr and NAs coincide.

Indeed, let Gt = φtKt where K is a C-valued process dominating Rd
+,

φt(ω) : (x1, ..., xd) �→ (x1/S1
t (ω), ..., xd/Sd

t (ω)),

Si
t are strictly positive Ft-measurable random variables.

For J ⊆ {1, ..., d} we put 1J :=
∑

i∈J ei where {ei} is the canonical basis in
Rd.

Proposition 1 Suppose that there is a partition J1,...,J1 of {1, ..., d} such that
F⊥

t = span {1J1 ...,1Jl
}. If G satisfies NAw-property, then the assumption of

Theorem 2 is fulfilled.

Proof If the claim fails, there is ξ ∈ L0(G0
s,Fs−1) such that {ξ /∈ G0

s−1} is a
non-null set. Without loss of generality we may assume that ξ is equal to zero
outside it. Necessarily, some set {φ−1

s−1ξ1Jk

= 0} is non-null. We may assume that

{φ−1
s−1ξ1Jk

> 0}, the random variable ξ is zero outside this set and, moreover, all
components of ξ vanish except those corresponding to Jk. Notice that Jk is not
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a singleton because φs and φs−1 are diagonal operators. Take i0 ∈ Jk such that
ξi0 > 0 and consider ξ′ different of ξ only by the i0th component

ξ′i0 := − 1
Si0

s−1

∑
i∈Jk\{i0}

ξiSi
s−1.

Clearly, ξ′ ∈ L0(G0
s−1,Fs−1) and ξ − ξ′ = h where h is equal to zero except the

nontrivial component hi0 ≥ 0. This violates NAw property. �

According to [1], in a specific financial context, where Kt is the solvency cones

in values (generated by the matrix of transaction costs coefficients Λt) and S is the
price process, the linear space F⊥

t is always the linear span of the random vectors
1J1(t)...,1Jl(t) where Ji(t) are the classes of “equivalent” assets (i.e., the assets
which can be converted one into another without transaction costs). Of course, in
the case of constant transaction costs these vectors do not evolve in time.

3 Proofs

Let Ns be a closed convex cone in L0(Rd,Fs) stable under multiplication by the
elements of L0(R+,Fs), and let N0

s := Ns ∩ (−Ns), At :=
∑t

s=0 Ns.
We introduce the following conditions:
(i) AT ∩ (−Nt) ⊆ N0

t for every t = 0, ..., T ;
(ii) At−1 ∩ (−Nt) ⊆ N0

t for every t = 1, ..., T ;
(iii) the relation

∑T
s=0 ξs = 0 with ξs ∈ Ns implies that all ξs ∈ N0

s .

Lemma 1 (iii) ⇒ (i).

Proof Suppose that
∑T

s=0 ζs = −η where ζs ∈ Ns and η ∈ Nt. In virtue of (iii)
we have that ξt := ζt + η is an element of N0

t . Thus, η = ξt − ζt is in −Nt, i.e.,
η ∈ N0

t . �

Remark Trivially, (i) ⇒ (ii). In general, the implication (ii) ⇒ (iii) may fail and
this is the difference with the situation considered in [6]: if all N0

s = {0}, these
three properties are equivalent.

Lemma 2 If (iii) holds then AT = ĀT and hence AT ∩L1(P̃ ) is closed in L1(P̃ )
for every P̃ ∼ P .

Proof We proceed by induction. For T = 0 there is nothing to prove. Suppose that
the claim holds up to T − 1 periods. Let

∑T
s=0 ξn

s → ξ a.s. where ξn
s ∈ Ns. The

question is whether ξ =
∑T

s=0 ξs with ξs ∈ Ns. Useful observation: if Ωi ∈ F0,
i ≤ N , form a partition of Ω, we can argue separately with each part as it were the
whole Ω, find appropriate representations and “assemble” ξs from N pieces (the
formal description is obvious).

The case Ω = {lim inf |ξn
0 | < ∞} is simple: by Lemmas 1 and 2 from [6] we

may assume that ξn
0 converge to ξ0 ∈ N0 and, hence,

∑T
s=1 ξn

s converge a.s. to a
random variable ζ which is in

∑T
s=1 Ns by the induction hypothesis.
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In the case Ω = {lim inf |ξn
0 | = ∞} we put ξ̃n

s := ξn
s /|ξn

0 | (with the convention
0/0 = 0). As |ξ̃n

0 | ≤ 1, we again may assume that ξ̃n
0 converge to some ξ̃0 ∈ N0.

Then
∑T

s=1 ξ̃n
s converge a.s. to a random variable which can be represented by the

induction hypothesis as
∑T

s=1 ξ̃s where ξ̃s ∈ Ns. Since ξ/|ξn
0 | → 0 a.s., the limit

of the whole normalized sum is zero, i.e.,
∑T

s=0 ξ̃s = 0. By the assumption all
ξ̃s ∈ N0

s . Since |ξ̃0| = 1 there are disjoint sets Γi ∈ F0 such that Ω = ∪d
i=1Γi and

Γi ⊆ {ξ̃i
0 
= 0}.

Put ξ̄n
s =

∑d
i=1(ξ

n
s + βniξ̃s)IΓi

where βn = −ξni
0 /ξ̃i

0. Clearly, ξ̄n
s ∈ Ns and∑T

s=0 ξ̄n
s converge to ξ a.s. The situation is reproduced. It is instructive to represent

sequences ξn
0 and ξ̄n

0 as infinite dimensional matrices with d-dimensional columns.
Of course, every zero line of the first matrix remains zero line of the second one.
But the second matrix contains one more zero line (namely, the ith for ω ∈ Γi).
Thus, if the first matrix contains one non-zero line a.s., the proof is accomplished
(all ξ̄n

0 = 0 and we can use the induction hypothesis). If not, we repeat the whole
procedure with the sequence of processes (ξ̄n

s ) etc. �

Remark The above result (“key lemma”) generalizes Theorem 2 of [6] where the
hypothesis N0

s = {0} allows to stop the arguments earlier (the properties ξ̃s = 0
for all s and |ξ̃0| = 1 are not compatible). In the general case we can conclude only
that the “rank” of the sequence ξ̄n

0 is lower and we accomplish the proof in the same
way as in [8]. Notice that we opted here for a rather straightforward “algorithmic”
description of the Gauss-type elimination procedure rather than to develop a kind
of linear algebra with random coefficients as in [11] and [12].

The following assertion is a version of Lemma 5 in [6].

Lemma 3 Suppose that there is an Rd-valued martingale Z such that:
1) Zsξ ≤ 0 for every ξ ∈ Ns, s ≤ T ;
2) the equality Zsξ = 0 where ξ ∈ Ns holds iff ξ ∈ N0

s .
Then (iii) holds.

Proof Without loss of generality we assume that all random variables |ZT ||ξs| are
integrable. The trick is standard: we can always replace P by a measure P ′ ∼ P
under which they are integrable and Z by Z ′ = ρZ where ρt = E(dP̃ /dP ′/Ft)
choosing P̃ ∼ P ′ such that dP̃ /dP ′ is bounded and Z is a P̃ -martingale (such P̃
exists by the Dalang–Morton–Willinger theorem). With this integrability we obtain,
using the martingale property, the relation

∑T
s=0 EZsξs = 0 implying the result.

�

Remark The reference to the DMW theorem yields the shortest proof. A direct
proof using Lemma 4 from [6] is also simple and left as an exercise.

Lemma 4 Assume that (iii) holds. Then for any ζ ∈ Nt, t ≤ T , there is a bounded
Rd-valued martingale Zζ such that:

1) Zζ
s ξ ≤ 0 for any ξ ∈ Ns, s ≤ T ;

2) ζI{Zζ
t ζ=0} ∈ N0

t .

Proof Put A1
T := AT ∩L1, ZT := {η ∈ L∞(Rd,FT ) : Eηξ ≤ 0, ξ ∈ A1

T }. With
each η ∈ ZT we associate the martingale Zs := E(η|Fs). It satisfies 1): otherwise
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we would find ξ ∈ Ns ∩ L1 such that the set Γ := {Zsξ > 0} is of positive
probability and hence Eη(ξIΓ ) = EZs(ξIΓ ) > 0 contradicting the definition of
ZT . Let a := supη∈ZT

P (Ztζ < 0). There is η∗ = η∗(ζ) ∈ ZT such that for the

corresponding martingale Zζ we have a = P (Zζ
t ζ < 0). To see this, take ηn ∈ ZT

with ||ηn||∞ = 1 such that P (Zn
t ζ < 0) → a and put η∗ :=

∑
2−nηn.

If 2) fails, then, for c sufficiently large, −ζI{Zζ
t ζ=0, |ζ|≤c} does not belong to

N0
t and, being in (−Nt) ∩ L1, does not belong to the convex cone A1

T (Lemma 1)
closed in L1 (Lemma 2). By the Hahn–Banach theorem there is η ∈ L∞(Rd) such
that

Eηξ < −EηζI{Zζ
t ζ=0, |ζ|≤c} ∀ ξ ∈ A1

T .

It follows that Eηξ ≤ 0 ∀ ξ ∈ A1
T (i.e., η ∈ ZT ) and EηζI{Zζ

t ζ=0, |ζ|≤c} < 0.

Thus, for Z̃ corresponding to η̃ := η∗ + η we have

P (Z̃tζ < 0) > P (Zζ
t ζ < 0) = a.

This contradiction shows that 2) holds. �

Corollary 1 Assume that (iii) holds. Let Γ be a countable set, Γ ⊆ ∪s≤T Ns.
Then there is a bounded Rd-valued martingale Z such that:

1) Zsξ ≤ 0 for any ξ ∈ Ns, s ≤ T ;
2′) ζI{Zsζ=0} ∈ N0

s for all ζ ∈ Γ , s ≤ T .

Proof One can take as Z any (countable) convex combination with strictly positive
coefficients of all elements of the family {Zζ}ζ∈Γ with |Zζ

T | ≤ 1. �

From now on we shall examine the case where Nt = −L0(Gt,Ft) and, hence,

N0
t = L0(G0

t ,Ft) and At = At(−G). Due to the specific structure in the above
corollary a countable subset Γ can be replaced by the whole set ∪s≤T Ns and hence
the claimed properties mean simply that Zs ∈ L0(riG∗

s,Fs), s ≤ T .

Lemma 5 If G dominates Rd
+ and satisfies NAr-property, then (iii) holds.

Proof Let G̃ dominates G and AT (G̃) ∩ L0(Rd
+,FT ) = {0}. Assume that in the

identity
∑T

s=0 ξs = 0 where ξs ∈ L0(−Gs,Fs), a random variable ξt does not
belong to L0(G0

t ,Ft). This means that ξt(ω) ∈ int (−G̃t(ω)) on a set B of positive
probability. It follows that there is a random variable ε ∈ L0(Rd

+,Ft) strictly
positive on B such that ξt+ε is still in L0(−G̃t,Ft). The nontrivial random variable
ε =

∑T
s=0 ξ′

s where ξ′
s := ξs, s 
= t, ξ′

t := ξt + ε, being in AT (G̃) ∩ L0(Rd
+,FT ),

violates NAw-property of G̃. �

Lemma 6 If there is a martingale Z such that Zs ∈ L∞(riG∗

s,Fs) for each s ≤ T ,
then NAr and NAs hold.

Proof Notice that G̃t(ω) = (R+Zt(ω))∗ is a cone (half-space, in fact) with the
interior containing Gt(ω) \ G0

t (ω). In virtue of Lemma 3 (applied with G̃) the
process G̃ satisfies the property NAw.
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The property NAs (for G) follows from Lemmas 3 and 1. �

Theorem 1 follows from the above results in an obvious way.

Remark The reader may observe that the novelty with respect to [6] is in Lemmas
5 and 6 based on the enlightening idea of Schachermayer.

The proof of Theorem 2 needs only one change: Lemma 5 has to be replaced
by the following one.

Lemma 7 Suppose that a C-valued process G satisfies NAs property. If

L0(G0
s,Fs−1) ⊆ L0(G0

s−1,Fs−1) ∀ s ≤ T,

then the condition (iii) holds.

Proof This can be shown by induction starting trivially and with an easy step. The
equality

∑T−1
s=0 ξs = −ξT implies that ξT is FT−1-measurable and, in virtue of

NAs-property, belongs to L0(G0
T ,FT ). By the assumed inclusion ξT belongs also

to L0(G0
T−1,FT−1) and can be combined with ξT−1, reducing the sum to T − 1

terms which are elements of L0(G0
s,Fs) (the induction hypothesis). In particular,

ξT−1 + ξT belongs to L0(G0
T−1,FT−1) as well as both summands. �


Of course, the lemma remains true for arbitrary sequence of random cones
G = (Gs).

Final remarks 1. Theorems 1 and 2 can be augmented by equivalent “neighbor”
conditions (e.g., in the spirit of Theorem 1 in [6]). In particular, as it was observed
in [12], one can replace in (b) the boundedness of Z by the seemingly weaker
property that |ZT | ≤ ξ where ξ is a given r.v. with values in ]0, 1]. In fact, starting
with an arbitrary Z, we can “improve” its qualities. Indeed, consider the probability
P ′ = ρ′

T P where ρ′
t := cE(ξ(1 + |ZT |)−1|Ft). By the DMW theorem there is a

bounded P ′-martingale ρ > 0 such that ρZ is a P ′-martingale. Then c−1ρρ′Z is a
needed “better” martingale.

2. The hedging result in [6] (Theorem 4) was established assuming that the
cones Gt are proper. Its hypothesis can be replaced by the “major” condition (b)
(always implying the closedness of AT ) without changes in the proof.
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