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and

Central Economics and Mathematics Institute
of the Russian Academy of Sciences, Moscow ∗

Stricker Ch.
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This note contains ramifications of results of Delbaen et al. (2002). As-
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sumption, that in the case of exponential utility the optimal portfolio process
is a martingale with respect to each local martingale measure with finite en-
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uniformly bounded portfolios.
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1 Prototype result

To explain the questions discussed in this note we start with the classical “toy” model
of financial market given by a finite probability space (Ω,F , P ) with a d-dimensional
discrete-time price process S = (St) adapted to a filtration (Ft), t = 0, 1, ..., T .
We consider the set R of final wealth of self-financing portfolios with zero initial
endowment, i.e. the collection of random variables H · ST :=

∑
t≤T Ht∆St where

Ht is Ft−1-measurable. Suppose that an investor maximizes the expectation of
exponential utility over R. We are interested in the value Jo of the maximization
problem

E(1− e−η) → max on R (1)

and, of course, in the structure of the optimal portfolio.

Let Z (resp. Ze) be the set of positive (resp., strictly positive) random variables
ξ with Eξ = 1 such that Eξη = 0 for all η ∈ R. Let Q and Qe be the corresponding
sets of probabilities Q := ξP .

The space of random variables L0 with the scalar product 〈ξ, η〉 = Eξη is a finite-
dimensional Euclidean space and the elements of Z can be interpreted as functionals
separating R and L0

+. This justifies the terminology “separating measures” for
probabilities from Q. For finite Ω the set Qe := {Q : Q = ξP, ξ ∈ Ze} is exactly
the set of equivalent martingale measures.

Assume that Z 6= ∅. Let J be the value of the minimization problem

Eξ ln ξ → min on Z. (2)

The set Z being compact, the minimum is attained; moreover, it is attained on
the element of Ze if the latter set is non-empty (see Proposition 3.1).

Proposition 1.1 Jo = 1− e−J .

Proof. We introduce the convex function U(x) := ex − 1. Its Fenchel conjugate

U∗(y) := sup
x

(yx− U(x)) =

{
y ln y − y + 1, y ≥ 0,
∞, y < 0.

Let consider the minimization problem

f(η) + g(η) → min on L0 (3)

where f(η) := EU(η) and g = δR, the indicator function (in the sense of convex
analysis) which is equal to zero on R and infinity on the complement. Clearly,
f ∗(ξ) = EU∗(ξ) and g∗ = δR◦ . In our case the polar R◦ is just R⊥, the subspace
orthogonal to R. The conditions of Fenchel’s theorem, see Aubin (1993) p. 38, are
obviously fulfilled. Thus, Jo coincides with the (attained) value of the dual problem

f ∗(−ξ) + g∗(ξ) → min on L0,
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i.e. Jo is equal to the minimum of f ∗ on the set R⊥ ∩ L0
+ = R+Z. Since

inf
ξ∈Z

inf
t≥0

E(tξ ln tξ − tξ + 1) = inf
ξ∈Z

(1− e−Eξ ln ξ) = 1− e−J ,

we get the result. 2

Remarks. 1. If Ze 6= ∅, Fenchel’s theorem ensures the existence of the solution to
the primal problem. This is not the case if Ze = ∅: there is an arbitrage strategy
Ha with ηa := Ha · ST ≥ 0 and ηa 6= 0. For any η ∈ R the value of the functional
in (1) on ηa + η is strictly larger than on η.

2. In the more interesting case of the utility function 1 − e−r(x+c−ζ), where c is
a constant (an initial endowment) and ζ is a random variable (a contingent claim),

sup
η∈R

E(1− e−r(η+c−ζ)) = 1− e−J ′ (4)

where
J ′ := min

ξ∈Z
(Eξ ln ξ + rc− rEξζ).

This is an easy corollary of Proposition 1.1: the passage to the equivalent probability
P ′ := ρP with ρ := e−r(c−ζ)/Ee−r(c−ζ) reduces the problem to the treated above.

3. The use of martingale measures, although common, is restricted to models
of frictionless market. It is clear from the proof, that the natural dual variables
are unnormalized densities. Their appropriate generalizations are indispensable in
models with transaction costs, see, e.g., Kabanov (1999) and Bouchard et al. (2001).

4. Proposition 1.1 can be easily extended to the situation where R is a closed
convex cone arising when there are convex constrains on portfolios.

2 Ramifications

So, for the “toy” model Proposition 1.1 is just an exercise on Fenchel’s theorem in its
simplest case but the general probability space and, especially, continuous-time mod-
els pose some mathematical problems. At the moment, there are two approaches to
obtain generalizations. The first one is to exploit further the convex duality, using,
e.g., more general versions of Fenchel’s theorem. This idea is developed in Bellini
and Frittelli (2000) where the class of strategies with value processes bounded from
below is considered, see, also Kramkov and Schachermayer (1999) and Kramkov and
Schachermayer (1999). The paper Delbaen et al. (2002) follows another approach
based on the following result which appeared in the thesis Rheinländer (1998). As-
sume that the price process S is a locally bounded semimartingale and that there
exists an equivalent local martingale measure with finite entropy. Then the optimal
density in (2) is of the form ξ = eJ−Ho·ST where the integral Ho · S is a true mar-
tingale with respect to the optimal measure P . This fact implies immediately that
Ho is the optimal strategy for (1), at least, in the class of strategies for which the

3



process H · S is a P -martingale, and ensures the corresponding duality relations.
The main results of Delbaen et al. (2002) are Theorems 2 and 3 asserting that un-
der a certain additional assumption (“reverse Hölder inequality”) the process Ho ·S
is a true martingale with respect to every local martingale measure Q with finite
entropy and that the optimal value in the primal problem can be attained on a
sequence of strategies with bounded value processes.

The aim of our note is to remove the additional hypothesis from these two the-
orems. We give complete proofs and recollect also, for future references, some basic
results in a slightly more general form than that needed for this purpose. In partic-
ular, we prove in the appendix a continuous-time version of Barron’s inequalities,
see Barron (1985).

We consider the standard continuous-time setting with a semimartingale price
process S given on a stochastic basis (Ω,F ,F = (Ft)t≤T , P ). Assume that S is
locally bounded. Let Z the set of local martingale densities which is closed in
this case. Assume also that Ze 6= ∅ and J < ∞. Thus, there exists ξ ∈ Ze solving
(2), see the next section. Put P = ξP .

Let A (resp., Ab ) be the set of all integrands such that the process H · S is a
P -martingale (resp., is bounded) and let R := {η : η = H · ST , H ∈ A}.
Theorem 2.1 (a) We have ξ = eJ−Ho·ST where Ho ∈ A,

Jo := sup
η∈R

E(1− e−η) = 1− e−J ,

and the supremum is attained at the (unique) point ηo = Ho · ST ;

(b) Ho · S is a Q-martingale for all Q = ξP such that ξ ∈ Z and Eξ ln ξ < ∞;

(c) there are Hn ∈ Ab such that E(1− e−Hn·ST ) → Jo.

As in Remark 2, one can easily extend this result, by equivalent change of prob-
ability, to cover the more general (and useful) setting of Delbaen et al. (2002). So,
the parts (b) and (c) are generalizations of Theorem 2 and 3 while the part (a) is
just Theorem 1 ibid.

In our proof of (c) we shall use the following related result, Bellini and Frittelli
(2000), Corollary 3:

Theorem 2.2 Let Rbb be the set of random variables H ·S where H is an integrand
for which the process H · S is bounded from below. Then

sup
η∈Rbb

E(1− e−η) = 1− e−J . (5)

3 Minimization of convex functionals on Z
Let J := infξ∈Z Eφ(ξ) be the value of the minimization problem

Eφ(ξ) → min on Z (6)
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where Z is a non-empty convex set of probability densities and φ : IR+ → IR is a
convex function such that φ ≥ −c and φ(x)/x →∞ as x →∞.

Proposition 3.1 Let φ′(0) = −∞. If there exists ξ ∈ Z which is strictly positive
and such that Eφ(ξ) < ∞, then any minimizer ξ is also strictly positive.

Proof. Let ft := φ(tξ + (1 − t)ξ) and Ft := Eft, t ∈ [0, 1]. Since f is convex, the
ratio (ft − f0)/t decreases to f ′0 as t ↓ 0. Clearly, f ′0 = a(ξ, ξ)(ξ − ξ) where a(ξ, ξ) is
the right or left derivative of φ at the point ξ in correspondence to the sign of ξ− ξ.
Also f1− f0 = φ(ξ)−φ(ξ). Thus, f ′0 is dominated by an integrable random variable
and, by the monotone convergence, F ′

0 = Ef ′0. As F attains its minimum at zero,
F ′

0 ≥ 0. It follows that f ′0 is integrable and the probability of the set {ξ = 0} is zero,
because on this set f ′0 = φ′(0)ξ = −∞. 2

Proposition 3.2 If Z is closed in L1 and J < ∞, then J = Eφ(ξ) for some ξ ∈ Z.

Proof. Take a sequence ξj ∈ Z such that Eφ(ξj) → J . Since ξj ≥ 0 and Eξj = 1, in
virtue of the Komlós theorem there is a subsequence jk such that ξ̃n := n−1 ∑n

k=1 ξjk

converge a.s. to a certain ξ ∈ L1. Due to the Fatou lemma and convexity of φ

Eφ(ξ) = E lim φ(ξ̃n) ≤ lim inf Eφ(ξ̃n) ≤ lim
1

n

n∑

k=1

Eφ(ξjk
) = J.

The de la Vallée-Poussin criterion ensures that (ξ̃n) are uniformly integrable and,
hence, converge also in L1. Thus, ξ ∈ Z. 2

If φ is strictly convex, then, obviously, the minimizer is unique.

Suppose now that φ is strictly convex and differentiable on ]0,∞[. Let ψ be the
inverse of φ′ and let

C := {η : Eξ|η| < ∞ and Eξη ≤ 0 ∀ ξ ∈ Zφ}.
Here Zφ := {ξ ∈ Z : Eφ(ξ) < ∞}; Qφ denotes the set of corresponding measures.

Proposition 3.3 Assume that |φ′(x)x| ≤ c1(φ
+(x) + 1) for all x ≥ 0 and J < ∞.

Let ξ be a strictly positive random variable. Then ξ is a minimizer iff ξ = ψ(c0− η)
where c0 := Eφ′(ξ)ξ and η ∈ C with Eξη = 0.

Proof. The “if” part is obvious. Indeed, the convexity of φ implies that

Eφ(ξ) ≥ Eφ(ξ) + Eφ′(ξ)(ξ − ξ) = Eφ(ξ)− Eη(ξ − ξ) ≥ Eφ(ξ).

Conversely, let ξ > 0 be a minimizer. Define η := c0 − φ′(ξ). Take ξ ∈ Zφ.
As in the proof of Proposition 3.1, f ′0 is integrable and F ′

0 ≥ 0, i.e. φ′(ξ)(ξ − ξ) is
integrable and

0 ≤ Eφ′(ξ)(ξ − ξ) = −Eηξ ≤ Eφ(ξ)− Eφ(ξ) < ∞.
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Thus, ηξ is integrable and Eηξ ≤ 0. 2

In particular, for φ(x) = x ln x (with φ(0) := 0) the functional attains its (finite)
minimum at ξ > 0 iff ξ = eJ−η where η ∈ C and Eξη = 0. Note that in this case
Eξ| ln ξ| < ∞ for every ξ ∈ Z with Eξ ln ξ < ∞.

Let us consider a more specific setting where Z is the set of normalized annulators
of a linear subspace R in L∞, i.e. Z = {ξ ≥ 0 : Eξ = 1, Eξη = 0 ∀η ∈ R}. Let
A := R− L∞+ and let ĀQ denote the closure of A in L1(Q).

Proposition 3.4 Let φ be such that for every c, x > 0

φ+(cx) ≤ r1(c)φ
+(x) + r2(c)(x + 1), (7)

where ri ≥ 0 are increasing functions. Assume that Zφ 6= ∅. Then C = ∩Q∈Qφ
ĀQ.

Proof. The inclusion C ⊇ ∩Q∈Qφ
ĀQ is obvious. Assume that the inverse inclusion

does not hold, i.e. there exists η ∈ C such that η /∈ ĀQ for some Q = ξP , ξ ∈ Zφ.
Applying the Hahn–Banach theorem we find ξ′ ∈ L∞(Q), ξ′ 6= 0, such that

EQξ′ζ < EQξ′η ∀ ζ ∈ ĀQ.

Since −L∞ ⊆ A and A is a cone, ξ′ ≥ 0 Q-a.s. and EQξ′η > 0. Without loss of
generality we may assume that 0 ≤ ξ′ ≤ c and EQξ′ = 1. Noticing that EQξ′ζ = 0
when ζ belongs to the linear space R, we infer that ξ̃ := ξξ′ is in Zφ because

Eφ+(ξ̃) ≤ r1(c)Eφ+(ξ) + 2r2(c) < ∞.

The inequality Eξ̃η > 0 contradicts η ∈ C. 2

Theorem 3.5 Let φ(x) = x ln x and Ze
φ 6= ∅. Then the problem (6) has a solution

ξ = eJ−η where η ∈ R̄P and Eξη = 0. Moreover,

max
ζ∈R̄P

E(1− eζ) = E(1− e−η) = 1− e−J . (8)

Proof. We know yet that the problem (6) admits a unique solution ξ = eJ−η where
η ∈ C and Eη = 0. Proposition 3.4 ensures that η ∈ R̄P . Indeed, for some ηn ∈ R
and αn ∈ L∞ we have ηn − αn → η in L1(P ). But Eηn = 0 and Eη = 0. Thus,
Eαn → 0 and ηn → η in L1(P ).

Plugging into the Fenchel inequality U(x) + U∗(y) ≥ xy for U(x) = ex − 1 an
arbitrary ζ ∈ R̄P and ξe−J and taking the expectation we get the bound

E(1− eζ) ≤ 1− e−J .

It remains to recall that we have the equality here when ζ = −η. 2
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Comment. All the results of this section can be found in various versions in the
literature. To our knowledge, the observation that the assertion of Proposition
3.2 follows immediately from the Komlós theorem and the Fatou lemma is due to
Evstigneev, see, e.g., the book Arkin and Evstigneev (1979). This existence result
was discussed in more specific “financial” setting in the recent works Frittelli (2000)
and Kramkov and Schachermayer (1999). Proposition 3.1 goes back to Csiszár.
Proposition 3.3 and 3.4 are minor extensions of Theorem 3 and 4 in Frittelli (2000)
where the case φ(x) = x ln x is considered, see also Goll and Rüschendorf (2001).

4 Density processes

In the case where we are given not a probability space but a stochastic basis
(Ω,F ,F = (Ft), P ), we associate with Z the set D = {Z : Zt = E(ξ|Ft), ξ ∈ Z}
of density processes and consider Zt = E(ξ|Ft) corresponding to a minimizer in the
problem (6).

Let ΠZ denote the optional projection of the process φ(ZT /Z), the unique right-
continuous adapted process such that ΠZ

τ = E(φ(ZT /Zτ )|Fτ ) for every τ from the
set TT of stopping times with values in [0, T ]. Notice that ΠZ ≥ φ(1) and ΠZ

T = φ(1).

We say that the set D is stable under concatenation if for each its elements Z1

and Z2 and every τ ∈ TT it contains also the process

Z̃ := Z1I[0,τ [ + Z2(Z1
τ /Z

2
τ )I[τ,T ].

Proposition 4.1 Let φ(x) = xp, p > 1, or φ(x) = x ln x. Assume that J < ∞ and
D is stable under concatenation. Then ΠZ ≤ ΠZ for all Z ∈ D.

Proof. If the assertion fails then there exists ε > 0 such that for the stopping time
τ := inf{t : Π

Z
t ≥ ΠZ

t + ε} ∧ T we shall have P (τ < T ) > 0. Put

Z̃ := ZI[0,τ [ + Z(Zτ/Zτ )I[τ,T ].

Since ZT = ZτZT /Zτ and ΠZ
τ ≤ ΠZ

τ − ε on the set {τ < T}, we have for φ = xp:

Eφ(Z̃T )I{τ<T} = EZp
τ (ZT /Zτ )

pI{τ<T}
= EZp

τΠ
Z
τ I{τ<T}

≤ EZp
τΠ

Z
τ I{τ<T} − εEZp

τI{τ<T}
= EZp

τ (ZT /Zτ )
pI{τ<T} − εEZp

τI{τ<T}
= Eφ(ZT )I{τ<T} − εEZp

τI{τ<T}.

For φ(x) = x ln x we have in a similar way that

Eφ(Z̃T )I{τ<T} = E{[Zτ (ZT /Zτ )[ln Zτ + ln(ZT /Zτ )]I{τ<T}}
= EZτ ln ZτI{τ<T} + EZτΠ

Z
τ I{τ<T}
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≤ EZτ ln ZτI{τ<T} + EZτΠ
Z
τ I{τ<T} − εEZτI{τ<T}

= EZτ ln ZτI{τ<T} + EZT ln(ZT /Zτ )I{τ<T} − εEZτI{τ<T}
= Eφ(ZT )I{τ<T} − εEZτI{τ<T}.

As Z̃T = ξ on the set {τ = T} and Zτ > 0 on {τ < T}, we obtain in both cases

the inequality Eφ(Z̃T ) < Eφ(ξ) contradicting to the minimality of ξ = ZT . 2

From now on and until the end of this section we shall work with φ(x) = x ln x
assuming that Qe

φ 6= ∅ and using E to denote the expectation with respect to the
measure P := ZT P equivalent to P in virtue of Proposition 3.1.

Let Z̄t := exp{E(ln ZT |Ft)}. Clearly, ln Z̄ = ΠZ + ln Z because

ln Z̄t = E ((ZT /Zt) ln(ZT /Zt) + (ZT /Zt) ln Zt|Ft) .

In the sequel X∗ denotes the maximal function of a process X, i.e. X∗
t = sups≤t |Xs|.

Lemma 4.2 Let Q := ZT P and Eφ(ZT ) < ∞. Then EQ(ln Z)∗T < ∞. More-
over, if D is stable under concatenation, then the family {ln Z̄τ}τ∈TT

is Q-uniformly
integrable.

Proof. We may assume that Q ∼ P (the general case follows by considering the
measure (Q + P )/2). Put Z ′ := Z/Z. Then Z ′

T = dQ/dP and Z ′ is the density
process of Q with respect to P . According to Proposition 3.3, EZT | ln ZT | < ∞ and
hence EZ ′

T ln Z ′
T = EZT ln(ZT /ZT ) < ∞. Applying Barron’s inequality (A.2) for Z

(with respect to P ) and Z ′ (with respect to P ) we get that EQ(ln Z)∗T and EQ(ln Z ′)∗T
are finite. Since Z = Z/Z ′, this implies that EQ(ln Z)∗T is finite. It follows that the
families {ln Z̄τ}τ∈TT

and {ΠZ
τ }τ∈TT

are Q-uniformly integrable simultaneously. But
under the concatenation hypothesis the second family is Q-uniformly integrable.
Indeed, for every τ ∈ TT

Q(ΠZ
τ ≥ N) ≤ 1

N
EQΠZ

τ ≤
1

N
E(ZT ln ZT + 1/e)

(recall that ΠZ ≥ 1 ln 1 = 0 and x ln x ≥ −1/e). In virtue of Proposition 4.1,

EQΠZ
τ I{ΠZ

τ ≥N} ≤ EQΠZ
τ I{ΠZ

τ ≥N} ≤ E(ZT ln ZT + 1/e)I{ΠZ
τ ≥N}.

The Q-uniform integrability of {ΠZ
τ }τ∈TT

follows easily from here. 2

Comment. For prototypes of the above results see Lemmas 4-5 in Delbaen et al.
(2002).

5 Proof of Theorem 2.1

(a) Let us consider the linear subspace R formed by all random variables H ·ST ∈ L∞,
H is a bounded predictable process of the form H =

∑
ξiI]ti,ti+1], ξi ∈ L∞(Fti). The
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assertion (a) follows now from Theorem 3.5 because, in virtue of the Yor theorem,
Delbaen and Schachermayer (1999), R̄P = R.

(b) The set Z of local martingale measures is stable under concatenation. Let
Q ∈ Qφ where φ(x) = x ln x. Since ln Z̄ = J −Ho · S, we have in virtue of Lemma
4.2 that the family Ho · Sτ , τ ∈ TT , is uniformly integrable with respect to Q.
But this property is a necessary and sufficient condition ensuring that Ho · S is a
Q-martingale, see Chou et al. (1980).

(c) We need the following extension of lemma 9 in Delbaen et al. (2002) :

Lemma 5.1 Let U(x) be an non-decreasing continuous function bounded from above
and let the process H · S be bounded from below by a constant a. Then there exist
bounded integrands Hn ∈ Ab such that U(Hn · ST ) → U(H · ST ) in L1.

Proof. Since the process U(H · S) is bounded and for any stopping time τ

HI[0,τ ] · S = (H · S)τ = H · Sτ ,

we may assume without loss of generality that S is not only locally bounded but
bounded, say, by a constant c. Let H̃n := HI{|H|≤n]}, τn := inf{t : H · St ≥ n}. In

virtue of the construction of stochastic integrals ((H − H̃n) ·S)∗T → 0 in probability
as n →∞. For the sequence of stopping times

σn := inf{t : ((H − H̃n) · S)∗t ≥ 1} ∧ T

we have that P (σn = T ) → 1. The important observation is that H̃n · S ≥ a − 1,
because the jump of H̃n · S at σn is either zero, or equal to the jump of H · S. Let
Hn := H̃nI[0,σn∧τn]. Then Hn · ST → H · ST in probability and

a− 1 ≤ Hn · ST ≤ n + 1 + 2nc.

The bounded sequence U(Hn ·ST ), converging in probability to U(H ·ST ), converges
also in L1. 2

With the above lemma the assertion (c) follows from Theorem 2.2. 2

A Barron’s inequalities

Lemma A.1 For any non-negative supermartingale Y

E(ln− Y )∗T ≤ e + e sup
t≤T

E ln− Yt. (A.1)

Proof. For r > 1 the function ψ(x) := 1 ∨ (ln− x)1/r is convex and non-increasing
and hence the process X := ψ(Y ) is a submartingale. By the Doob inequality

E(X∗
T )r ≤

(
r

r − 1

)r

sup
t≤T

EXr
t .
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It follows that

E(ln− Y )∗T ≤
(

r

r − 1

)r

sup
t≤T

(
1 + E ln− Yt

)
.

Taking the limit as r →∞ we get (A.1). 2

Proposition A.2 Let Z = (Zt)t≤T be a density process. Then

EZT (ln Z)∗T ≤ 2 + e + eEZT ln ZT . (A.2)

Proof. Let Q = ZT P . A process X is a Q-supermartingale if and only if XZ
is a supermartingale. Thus, Y := 1/ZI{Z>0} is a Q-supermartingale: I{Z>0} is
a supermartingale since the function I{x>0} is concave on IR+. Notice that Z is
strictly positive Q-a.s. Using Lemma A.1, the bound x ln+ x ≤ x ln x + 1/e, and the
fact that Z ln Z is a submartingale we obtain that

EQ(ln+ Z)∗T ≤ e + e sup
t≤T

EQ ln+ ZT ≤ 1 + e + eEZT ln ZT .

It remains to combine this with the Ionescu Tulcea inequality

EQ(ln− Z)∗T ≤ 1. (A.3)

The proof of the latter is simple. Indeed,

EQ(ln− Z)∗T =
∫ ∞

0
Q((ln− Z)∗T ≥ t)dt

Put τt := inf{s : ln(1/Zs) ≥ t} and note that EQ(1/Zτt) ≤ 1. Then for t > 0

Q((ln− Z)∗T ≥ t) = Q

(
sup
s≤T

ln(1/Zs) ≥ t

)
= Q(ln(1/Zτt) ≥ t) = Q(1/Zτt ≥ et) ≤ e−t

by the Chebyshev inequality. Integrating yields (A.3). 2

references

Aubin J.-P. (1993): Optima and Equilibria. Springer-Verlag, Berlin.

Arkin V.I., and I.V. Evstigneev (1979): Probabilistic models of control and eco-
nomic dynamics. (Veroyatnostnye modeli upravleniya i ehkonomicheskoj dinamiki).
“Nauka”, Moscow. English translation: Stochastic Models of Control and Economic
Dynamics. Academic Press, London, 1987.

Barron A.R. (1985): “The strong ergodic theorem for densities: generalized
Shannon–McMillan–Breiman theorem,” Ann. Prob. 13, 1292-1303.

Bellini F., and M. Frittelli (2000): “On the existence of minimax martingale
measures,” preprint.

10



Bouchard B., Yu.M. Kabanov, and N. Touzi (2001): “Option pricing by large
risk aversion utility under transaction costs”. Decisions in Economics and Finance.

Chou C.S., P.-A. Meyer, and Ch. Stricker (1980): “Sur les intégrales
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