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1. Introduction

For frictionless markets the pricing of contingent claims can be based on
the following simple idea suggested in Hodges and Neuberger (1989). Let
x ≥ 0 be the endowment of an agent at time zero and letX (x) be the set
of terminal values of feasible portfolios at the time horizonT ; typically,
X (x) = x+X (0). LetU be a utility function, e.g.,U(r) = 1−e−ηr , where
large values of the positive parameterη mean that the agent is strongly risk-
averse. Selling an option for the priceh at time zero, the agent starts with
capitalx+h but his results at the dateT will be diminished by a liabilityG.
The deal is attractive to the seller if

sup
ξ∈X (x+h)

EU(ξ − G) > sup
ξ∈X (x)

EU(ξ).

The infimum of suchh is thereservation price of the option; in general, it
depends onx.
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The utility-based approach to option pricing attracted attention because
for many models the super-replication price is too high. The modern trend
is to study this problem in the context of more realistic models with transac-
tion costs (see some relevant references at the end of the paper). The main
difficulty of the theory with friction is that not only the price process but also
other basic objects are vector quantities (e.g., value processes, contingent
claims, etc.); this requires an intensive use of methods of convex geometry.

Working with a rather general multi-asset model suggested in Kabanov
and Last (1999), we show that, if the seller is strongly risk-averse, his reser-
vation price approaches the super-replication price increased by the liqui-
dation value of the initial endowment. In the special case where the initial
holdings in risky assets are zero, this result was originally conjectured by
Barles and Soner (1998). In contrast to Bouchard (2000), where the result
was obtained in a Markovian setting via an asymptotic analysis of viscosity
solutions of HJB equations, we use much easier and less restrictive duality
methods which also provide a better insight into the essence of the problem.
Our main theorem can be compared with the corresponding result on risk-
averse asymptotics for frictionless markets in the recent work by Delbaen
et al. (2000).

2. Problem formulation

2.1. Financial market with transaction costs

LetT be a finite time horizon and let(�,F,F = (Ft )t≤T , P ) be a stochastic
basis with the trivialσ -algebraF0. LetS := (S1, . . . , Sd) be a semimartin-
gale with strictly positive components andSi

0 = 1; the first component is
assumed to be constant over time. With the interpretation ofS as a price
process, this means that the first security (“cash”) is taken as the num´eraire.

A trading strategy is an adapted, right-continuous, (componentwise) non-
decreasing processL taking values inMd+, the set ofd × d-matrices with
non-negative entries;Lij

t is the cumulative net amount of funds transferred
from the asseti to the assetj up to the datet ; this process may have a jump
at the origin�L

ij

0 = L
ij

0 corresponding to the initial transfer. Constant pro-
portional transaction costs are described by a matrix(λij ) ∈ M

d+ with zero
diagonal. Without loss of generality, we can assume that

(1 + λij )(1 + λjk) ≤ (1 + λik) for all i, j, k = 1, . . . , d. (2.1)

This means that the transaction costs implied by a transfer from asseti to k

can not be reduced by an artificial transit through an assetj . Condition (2.1)
above is only used to obtain an explicit characterization of PropertyH3 in
Section 3 below.
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For an initial holdings vectorx ∈ R
d and a strategyL, the portfolio

holdingsX = Xx,L are defined by the dynamics

Xi
t = x +

∫ t

0
X̂i

r− dSi
r +

d∑
j=1

(
L
ji
t − (1 + λij )L

ij
t

)

whereX̂i := Xi/Si (i.e., X̂ is the processX divided by the processS
componentwise).

Thesolvency region is the following convex polyhedral cone inRd :

K :=
{
x : ∃a ∈ M

d
+ such thatxi +

d∑
j=1

(aji − (1 + λij )aij ) ≥ 0, i ≤ d

}
.

It generates a partial ordering:x � y if x − y ∈ K.
The setK∗ := {

w ∈ R
d : wx ≥ 0 ∀ x ∈ K

}
is the positive polar cone

of K. The partial ordering can be characterized in terms ofK∗: x � 0 iff
wx ≥ 0 for allw ∈ K∗. Direct computation shows that

K∗ = {
w ∈ R

d : wj − (1 + λij )wi ≤ 0, 1 ≤ i, j ≤ d
}
. (2.2)

A trading strategyL is admissible if there is a constantcL ≥ 0 such that

Xx,L
t � −cLSt , t ≤ T . (2.3)

It is easy to check that the set of admissible strategiesA does not depend
on x. We denote byX (x) the convex set of terminal values of portfolio
processes starting from the initial endowmentx, i.e.,

X (x) := {Xx,L
T : L ∈ A}.

Finally, 11 := (1,0, . . . ,0), 1 := (1, . . . ,1), andc will denote a real con-
stant.

Remark 2.1. Let x ∈ R
d andL ∈ A. ThenXx,L + c11 = Xx+c11,L and

X (x + c11) = X (x) + c11.

These relations hold because the first asset is the num´eraire.
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2.2. Reservation price

As in Bouchard (2000), we define theliquidation value

#(x) := sup{r ∈ R : x � r11},
the maximal cash endowment that one can get fromx by clearing all the
positions in the risky assets. Easily verified properties of the liquidation
function# are summarized in

Proposition 2.1. Let x, y ∈ R
d . Then

(a) x � #(x)11 (i.e., the supis attained);
(b) #(x + y) ≥ #(x) + #(y);
(c) #(cx) = c#(x) for c ≥ 0;
(d) #(x) ≥ 0 if x � 0;
(e) #(x + c11) = #(x) + c;
(f) #(x) = inf {wx : w ∈ K∗, w1 = 1}.
Remark 2.2. It follows from (a) that#(x)11 ∈ X (x).

We fix a contingent claim G, a d-dimensionalFT -measurable random
variable, assuming thatG � −cST for somec ∈ R.

Let η > 0 and
Uη(r) := −e−ηr , r ∈ R.

Similarly to Hodges and Neuberger (1989), we suppose that the agent’s
decision to sell the contingent claim is based on a comparison of expected
utilities of the initial endowments in two portfolio optimization problems:

V 0
η (x) := sup

X∈X (x)

EUη (#(X))

(the contingent claim is sold) and

V G
η (x) := sup

X∈X (x)

EUη (#(X − G))

(the contingent claim is not sold).
Thereservation price (for the seller)

pη(x) := inf
{
r ∈ R : V G

η (x + r11) ≥ V 0
η (x)

}
is the minimal initial cash endowment which induces a higher maximal
expected utility with the “liability”G at the terminal dateT .

The particular form of the exponential utility function implies that

pη(x) = 1

η
ln

V G
η (x)

V 0
η (x)

, (2.4)

and this identity follows from a slightly more general assertion.
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Lemma 2.1. Let

pη(x, y) := inf
{
r ∈ R : V G

η (x + r11) ≥ V 0
η (y)

}
.

Then

pη(x, y) = 1

η
ln

V G
η (x)

V 0
η (y)

.

Proof. Setp := pη(x, y). The functionV G
η (x) is increasing and continuous

in thex1 variable. Thus,V 0
η (y) = V G

η (x1 + p11). By Remark 2.1

V G
η (x + p11) = V G−p11

η (x) = e−ηpV G
η (x)

and the result follows. ��

Finally, we introduce the set of hedging endowments

& := {x ∈ R
d : X � G for someX ∈ X (x)},

and thesuper-replication price of the contingent claim

g(x) := inf {r ∈ R : x + r11 ∈ &} ,

i.e., the minimal initial cash increase needed in order to hedgeG without
risk, starting with the initial endowmentx.

Lemma 2.2. Let x, y ∈ R
d . Then

1

η
ln[−V G

η (x)] − g(x) + #(−y) ≤ 1

η
ln[−V 0

η (y] ≤ −#(y).

Proof. The second inequality is obvious:#(y)11 ∈ X (y) (Remark 2.2) and
henceV 0

η (y) ≥ −e−η#(y). By Lemma 2.1 the first inequality means that
pη(x, y) ≤ g(x)−#(−y). To prove this bound in the non-trivial case where
g(x) < ∞ we takeε > 0 andξ ∈ X (y). By definition ofg(x), there is
ξ̃ ∈ X (x + (g(x) + ε)11) such thatξ̃ − G � 0. Since−#(−y)11 � y,
there isξ ′ ∈ X (−#(−y)11) such thatξ ′ � ξ . Putrε := −#(−y)+ g(x)+ ε

and ξ ′′ := ξ̃ + ξ ′. Then ξ ′′ ∈ X (x + rε11) and ξ ′′ − G � ξ ; hence,
#(ξ ′′ − G) ≥ #(ξ). Sinceξ ∈ X (y) is arbitrary, we obtain the bound
V G
η (x + rε11) ≥ V 0

η (y) implying thatpη(x, y) ≤ rε. ��
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3. The main result

Let M denote the space of martingales and let

D := {Z ∈ M : Z1
0 = 1, Ẑt ∈ K∗ ∀ t ≤ T },

De := {Z ∈ D : Z1
T > 0, Z1

T lnZ1
T ∈ L1}.

The setDT of terminal values of processes fromD plays a similar role
to that of the set of absolute continuous martingale measures in the the-
ory of frictionless markets whileDT

e corresponds to the set of equivalent
martingale measures with finite entropy. By virtue of (2.2) the elements of
De have all components strictly positive. Recall that (2.3) ensures that, for
every admissible strategyL, the procesŝZXx,L is a supermartingale and
EẐTX

x,L
T ≤ Ẑ0x.

We introduce the following hypotheses.

H1. The processS is continuous.
H2. There exists a probability measureQ ∼ P such thatS ∈ M(Q).
H3. The coneK is proper (i.e.,K ∩ (−K) = {0}).
H4. The setDe �= ∅ andDT

e is dense inDT in L1.

The third condition has various equivalent forms: the interiorK∗ is non-
empty, or (under Condition (2.1))λij + λji > 0 for anyi, j , i �= j .

Our main result is

Theorem 3.1. Assume that H1–H4 hold. Then

lim
η→∞pη(x) = g(x) + #(x).

Remark 3.1. Consider the special casex = a11 for somea ∈ R, i.e., the
initial holdings in risky assets are zero. Then, from the obvious identity

g(a11) + #(a11) = g(0),

Theorem 3.1 says that the reservation price of the strongly risk averse seller
approaches the super-replication cost, as was conjectured in Barles and
Soner (1998).

Theorem 3.1 is a simple corollary of the hedging theorem and the fol-
lowing more technical assertion which we prove in Section 4.

Theorem 3.2. Assume that H2 and H4 hold. Then

lim sup
η→∞

pη(x) ≤ g(x) + #(x),

lim inf
η→∞ pη(x) ≥ γ (x) + #(x),

where
γ (x) := sup

Z∈D
E(ẐTG − Ẑ0x).
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Proof of Theorem 3.1. In view of the above inequalities it remains to check
thatg(x) = γ (x) whenγ (x) < ∞. According to Kabanov and Last (1999),
if H1–H3 hold, then& = {x : γ (x) ≤ 0}. In particular,& is closed and,
hence,x + g(x)11 ∈ &. For any realc we haveγ (x + c11) = γ (x) − c.
Therefore,

0 ≥ γ (x + g(x)11) = γ (x) − g(x).

On the other hand, sinceγ (x + γ (x)11) = 0, the pointx + γ (x)11 is in &

andγ (x) ≥ g(x). ��

4. Proof of Theorem 3.2

Lemma 4.1. For arbitrary Z ∈ De the following inequality holds:

1

η
ln[−V G

η (x)] ≥ E(ẐTG − Ẑ0x) − 1

η
EZ1

T lnZ1
T .

Proof. Let ξ ∈ X (x). SinceẐT ∈ K∗ and Ẑ1
T = Z1

T > 0 we have by
Proposition 2.1(f ) that

#(ξ − G) ≤ ẐT

Z1
T

(ξ − G).

Thus,

EUη(#(ξ − G)) ≤ EUη

(
ẐT ξ − ẐT G

Z1
T

)

= EZ1
T Uη

(
ẐT ξ − ẐT G

Z1
T

+ 1

η
lnZ1

T

)

≤ Uη

(
E(ẐT ξ − ẐT G) + 1

η
EZ1

T lnZ1
T

)

by the Jensen inequality applied with the measureP 1 := Z1
T P . Since

EẐT ξ ≤ Ẑ0x, it follows that

V G
η (x) ≤ Uη

(
E(Ẑ0x − ẐT G) + 1

η
EZ1

T lnZ1
T

)
.

Obviously, this bound is equivalent to the assertion of the lemma.��
Lemma 4.2. Under H2 and H4

#(x) = inf
Z∈De

Ẑ0x,

γ (x) = sup
Z∈De

E(ẐTG − Ẑ0x).
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Proof. For anyw ∈ K∗ the processZ with Ẑt = (dQt/dPt)w is inD. Thus,
H2 ensures thatK∗ ∩ {w : w1 = 1} coincides with the set{Ẑ0 : Z ∈ D}.
But byH4 the set{Ẑ0 : Z ∈ De} is dense in the latter (if the terminal values
of martingales converge inL1 then the initial values also converge). The first
identity now follows from Proposition 2.1 (f).

LetZ ∈ D andZn ∈ De be such thatZn
T converges toZT in theL1-sense

and also a.s. SinceG � −cST we have the bound

Ẑn
T G ≥ −cẐn

T ST = −c

d∑
i=1

Zni
T .

Hence, by Fatou’s Lemma,

EẐTG − ẐT x ≤ lim inf
n

(EẐn
TG − Ẑn

0x) ≤ sup
Z∈De

E(ẐTG − Ẑ0x)

and the second identity holds.��
Now the proof of Theorem 3.2 is easy. First we check that

lim
η→∞

1

η
ln[−V 0

η (x)] = −#(x). (4.1)

Indeed, applying Lemma 4.1 withG = 0, we see that

lim inf
η→∞

1

η
ln[−V 0

η (x)] ≥ − inf
Z∈De

Ẑ0x = −#(x)

by virtue of Proposition 2.1 (f) and the hypothesisH4. The converse inequal-
ity follows from the upper bound of Lemma 2.2.

As a corollary of (4.1), we have that

lim
η→∞

1

η
ln[−V 0

η (x)] = lim
η→∞

1

η
ln[−V 0

η (#(x)11)].

It follows from (2.4) and this identity that

lim sup
η→∞

pη(x) = lim sup
η→∞

1

η

(
ln [−V G

η (x)] − ln [−V 0
η (#(x)11)]

)
≤ g(x) − #(−#(x)11) = g(x) + #(x),

where we used the lower bound of Lemma 2.2 withy = #(x)11.
Finally, by virtue of Lemmata 4.1 and 4.2

lim inf
η→∞

1

η
ln[−V G

η (x)] ≥ sup
Z∈De

E(ẐTG − Ẑ0x) = γ (x).

The second inequality of Theorem 3.2 follows from (2.4) and (4.1).��
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5. Final comments

An inspection of the proof shows that in Theorem 3.1 the hypothesesH1–H3

can be replaced by a single hypothesis: the closure of& coincides with the
set {x : γ (x) ≤ 0}. Thus, the assertion holds for a discrete-time model
(where all strategies are admissible) underH2 andH4 alone. Indeed, the
hedging theorem in Delbaen et al. (1999) ensures that& = {x : γ (x) ≤
0} if H2 holds. One may expect that the hedging theorems are true under
weaker assumptions which automatically will substitute forH1–H3 in our
formulation.

The large risk-averse asymptotics in Delbaen et al. (2000) are obtained
by assuming that all martingales on the stochastic basis are continuous. In
fact, one needs only the property that the setQe of martingale measures
with finite entropy is dense in the set of all local martingale measuresQ.
It was shown in Kabanov and Stricker (2000) that this is always the case if
Qe �= ∅. The corresponding result for the setsD andDe is not available yet
but, if all martingales on stochastic bases are continuous andQe �= ∅, H4

holds; see the proof of Theorem 3.7 in Kabanov (1999).
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Delbaen F., Kabanov,Yu.M.,Valkeila, E. (1999): Hedging under transaction costs in currency
markets: a discrete-time model. Prepublication 2000-39. Publications Math´ematiques de
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