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Abstract. We consider a multi-asset continuous-time model of a financial
market with transaction costs and prove that, for a strongly risk-averse in-
vestor, the reservation price of a contingent claim approaches the super-
replication price increased by the liquidation value of the initial endowment.
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1. Introduction

For frictionless markets the pricing of contingent claims can be based on
the following simple idea suggested in Hodges and Neuberger (1989). Let
x > 0 be the endowment of an agent at time zero andlgt) be the set
of terminal values of feasible portfolios at the time horizbntypically,
X(x) = x+ X(0). LetU be a utility function, e.g.U(r) = 1—e~ ", where
large values of the positive parametanean that the agent is strongly risk-
averse. Selling an option for the prigeat time zero, the agent starts with
capitalx + 4 but his results at the da®ewill be diminished by a liabilityG.
The deal is attractive to the seller if
sup EUE —G) > sup EU(E).

EeX (x+h) EeX(x)
The infimum of suchh is thereservation price of the option; in general, it
depends on.
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The utility-based approach to option pricing attracted attention because
for many models the super-replication price is too high. The modern trend
is to study this problem in the context of more realistic models with transac-
tion costs (see some relevant references at the end of the paper). The main
difficulty of the theory with friction is that not only the price process but also
other basic objects are vector quantities (e.g., value processes, contingent
claims, etc.); this requires an intensive use of methods of convex geometry.

Working with a rather general multi-asset model suggested in Kabanov
and Last (1999), we show that, if the seller is strongly risk-averse, his reser-
vation price approaches the super-replication price increased by the liqui-
dation value of the initial endowment. In the special case where the initial
holdings in risky assets are zero, this result was originally conjectured by
Barles and Soner (1998). In contrast to Bouchard (2000), where the result
was obtained in a Markovian setting via an asymptotic analysis of viscosity
solutions of HIB equations, we use much easier and less restrictive duality
methods which also provide a better insight into the essence of the problem.
Our main theorem can be compared with the corresponding result on risk-
averse asymptotics for frictionless markets in the recent work by Delbaen
et al. (2000).

2. Problem formulation
2.1. Financial market with transaction costs

Let7 be afinite time horizonand léR, F, F = (F,;);<r, P) be astochastic
basis with the triviab-algebraF,. Let S := (S?, ..., §¢) be a semimartin-
gale with strictly positive components as§ = 1; the first component is
assumed to be constant over time. With the interpretatiofi @ a price
process, this means that the first security (“cash”) is taken as therainm”
Atrading strategyis an adapted, right-continuous, (componentwise) non-
decreasing proceds taking values irM’_{, the set ofd x d-matrices with

non-negative entriesl;ﬁj is the cumulative net amount of funds transferred
from the assetto the assef up to the date; this process may have a jump
at the originALé’ = ng corresponding to the initial transfer. Constant pro-
portional transaction costs are described by a matfi® € M< with zero
diagonal. Without loss of generality, we can assume that

A+ ADHA+ 1 <@+ A% foralli, jk=1,...,d. (2.1)

This means that the transaction costs implied by a transfer fromiassiet
can not be reduced by an artificial transit through an gssebndition (2.1)
above is only used to obtain an explicit characterization of Propéstin
Section 3 below.
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For an initial holdings vectox € R? and a strategy., the portfolio
holdingsX = X*! are defined by the dynamics

X =x+ / Xi_dsi+y (L,” -1+ A”)L;f)
0 j=1
whereX' := Xi/S' (i.e., X is the processy divided by the process

componentwise).
The solvency region is the following convex polyhedral cone Rf':

d
K = {x : 3a € MY such thate’ +> (@' — (14 17)a") = 0, i < d}.
j=1
It generates a partial ordering:>> yif x —y € K.
The setk* := {w eRY: wx >0Vxe K} is the positive polar cone

of K. The partial ordering can be characterized in term&tfx > O iff
wx > 0 for allw € K*. Direct computation shows that

K*:{weRd: w~/—(1+kij)wi50,1§i,j§d}. (2.2)
A trading strategyL is admissibleif there is a constant; > 0 such that
Xk = —cr S, t<T. (2.3)

It is easy to check that the set of admissible stratedie®es not depend
on x. We denote byt (x) the convex set of terminal values of portfolio
processes starting from the initial endowment.e.,

X(x) = (Xy": LeA.

Finally, 1; := (1,0,...,0),1:=(1,..., 1), andc will denote a real con-
stant.

Remark 2.1. Letx € RY andL € A. ThenX*t 4 c1; = X*+<1ul gnd
Xx +cl)) = X(x) + cly.

These relations hold because the first asset is therimn’
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2.2. Reservation price

As in Bouchard (2000), we define thiguidation value
L(x):=supr e R: x > rls},

the maximal cash endowment that one can get frioby clearing all the
positions in the risky assets. Easily verified properties of the liquidation
function? are summarized in

Proposition 2.1. Let x, y € R?. Then

(@) x = £(x)1; (i.e., the supis attained);
(D) €(x +y) = €(x) + £(y);

(c) £(cx) = ct(x) for ¢ > 0;

(d)£(x) = 0ifx = 0O;

(€)£(x + cly) = £(x) +c;

(f) £(x) =inf {wx : we K*, w!=1}.

Remark 2.2. It follows from (a) thatt(x)1; € X (x).

We fix a contingent claim G, ad-dimensionalFr-measurable random
variable, assuming that > —cSr for somec € R.
Letn > 0and
U)r)y:=—e", rek

Similarly to Hodges and Neuberger (1989), we suppose that the agent’s
decision to sell the contingent claim is based on a comparison of expected
utilities of the initial endowments in two portfolio optimization problems:

V2(x) ;== sup EU, (¢(X))
XeX(x)

(the contingent claim is sold) and

VE(x):= sup EU, (X —G))
XeX(x)
(the contingent claim is not sold).
Thereservation price (for the seller)
pyx) ==infl{reR: VO(x+rly) > Vx)}

is the minimal initial cash endowment which induces a higher maximal
expected utility with the “liability”G at the terminal daté& .
The particular form of the exponential utility function implies that

1 Vi)
pr;(x) - ; In Vno(x) s

(2.4)

and this identity follows from a slightly more general assertion.
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Lemma2.1. Let
x,y):=inf{reR: Ve(x+rl) > V()
pylx, y): r Ve +rl) =2 V()

Then
V.9 (x) '
VR(y)

py(x,y) =—1In
n

Proof. Setp := p,(x, y). ThefunctionVnG(x) is increasing and continuous
in the x* variable. Thusy2(y) = V.9 (x1 + p11). By Remark 2.1

VO 4 ply) = VIPM(x) = e "V, (x)
and the result follows. O
Finally, we introduce the set of hedging endowments
I'={xeR: X > G forsomeX € X(x)},
and thesuper-replication price of the contingent claim
gx):=inf{reR: x+rl;el},

i.e., the minimal initial cash increase needed in order to h&dggthout
risk, starting with the initial endowment

LemmaZ2.2. Letx, y € R?. Then

1 o 1 0
SIN=VE0] =800 + 6y = ZI=VP01 = —40),

Proof. The second inequality is obviou&y)1; € X' (y) (Remark 2.2) and
henceV2(y) > —e ™). By Lemma 2.1 the first inequality means that
py(x,y) < g(x) —£(—y). To prove this bound in the non-trivial case where
g(x) < oo we takee > 0 andé € X(y). By definition of g(x), there is

£ € X(x + (g(x) + &)1y) such thatt — G > 0. Since—t(—y)11 > v,
there ist’ € X'(—£€(—y)1;) suchthat’ > £. Putr, := —£(—y)+ g(x) +¢
and¢” := £ + £. Then&¢” € X(x + r.1;) and¢” — G > &; hence,
LE" — G) = L(&). Sinceé € X(y) is arbitrary, we obtain the bound
VO (x +r.11) = V2(y) implying thatp, (x, y) < r.. O
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3. Themain result

Let M denote the space of martingales and let
={ZeM:Z=1 Z e K*Vi<T)}
={ZeD: Z: >0, Z;InZ} € LY.

The setD” of terminal values of processes frathplays a similar role
to that of the set of absolute continuous martingale measures in the the-
ory of frictionless markets whil®! corresponds to the set of equivalent
martingale measures with finite entropy. By virtue of (2.2) the elements of
D, have all components strictly positive. Recall that (2.3) ensures that, for
every adm|SS|bIe strategly, the procesSZX" L is a supermartingale and
EZTX L < Zox

We introduce the following hypotheses.
H;. The process is continuous.
H,. There exists a probability measupe~ P such thatS € M(Q).
Hs. The coneX is proper (i.e.K N (—K) = {0}).
H4. The setD, # @ andD! is dense iD7 in L.

The third condition has various equivalent forms: the inteki¢iis non-
empty, or (under Condition (2.1))/ + A/* > O for anyi, j,i # j.

Our main result is

Theorem 3.1. Assume that H1—H 4 hold. Then
nleoo pp(x) = g(x) + £(x).

Remark 3.1. Consider the special case= al; for somea € R, i.e., the
initial holdings in risky assets are zero. Then, from the obvious identity

glaly) + £(aly) = g(0),

Theorem 3.1 says that the reservation price of the strongly risk averse seller
approaches the super-replication cost, as was conjectured in Barles and
Soner (1998).

Theorem 3.1 is a simple corollary of the hedging theorem and the fol-
lowing more technical assertion which we prove in Section 4.

Theorem 3.2. Assume that H, and H, hold. Then
limsupp, (x) < g(x) + £(x),

n— 00

liminf p,(x) > y(x) + £(x),
n— 00

where

y(x) := SUPE(Z7G — Zox).
ZeD
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Proof of Theorem 3.1. In view of the above inequalities it remains to check
thatg(x) = y (x) wheny (x) < oco. According to Kabanov and Last (1999),
if H1—H3 hold, thenl' = {x : y(x) < 0}. In particular,I" is closed and,
hencex + g(x)1; € I'. For any reak we havey (x + c1;) = y(x) — c.
Therefore,

0>y(x+gl) = y(x) —gx).

On the other hand, singe(x + y(x)1;) = 0, the pointx + y(x)1; isinT
andy(x) > g(x). O

4. Proof of Theorem 3.2

Lemma4.1. For arbitrary Z € D, the following inequality holds:
1 ~ ~ 1
=In[-V,S ()] = E(ZrG — Zox) — ~EZ;In Z7.
n n

Proof. Let & € X(x). SinceZ; € K* andZ: = ZL > 0 we have by
Proposition 2.1 f) that

-~

Y4
E@—®s§%e4n
T

Thus,
Zr&E — 721G
Zz

ZrE—7:G 1
= EZ}U, (Tsz—lTJr;In Z%)
T

E%w@—GDSEm(

-~ o~ 1
<U, (E(zrg —Z1G)+ ~EZzIn z;)
n

by the Jensen inequality applied with the measfife:= Z7 P. Since
EZ;&E < Zyx, it follows that

G 2 = 1 1 1
Vi@ = U, ( EZox =216 + S EZ; Inz: ).

Obviously, this bound is equivalent to the assertion of the lemma.
Lemma4.2. Under H, and H,
L(x) = Zlglfje Zox,

y(x) = sup E(Zr+G — Zox).
zeD,
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Proof. Foranyw € K* the procesg with Z, = (dQ,/d P)wisinD. Thus,
H2 ensures thak™ N {w : w! = 1} coincides with the s€tZy : Z € D}.
ButbyH,thesef{Zy: Z € D,} is dense in the latter (if the terminal values
of martingales converge ib* then the initial values also converge). The first
identity now follows from Proposition 2.1 (f).

LetZ € DandZ" € D, be such thaZ’. converges t&r in theL!-sense
and also a.s. Singé > —cSy we have the bound

d
ZyG > —cZySr = —c Y _ Z}.
i=1

Hence, by Fatou’s Lemma,

EZrG — Zrx < liminf(EZL.G — Zix) < sup E(Z1G — Zox)
n ZeD,

and the second identity holdso

Now the proof of Theorem 3.2 is easy. First we check that
1 0
lim = In[—V (x)] = —£(x). (4.1)
n—o0 ]’)
Indeed, applying Lemma 4.1 wiiti = 0, we see that

.1 0 A
lim inf —In[—V,’ x)]=—inf Zgx = —£(x)
n—>00 1) ZeD,

by virtue of Proposition 2.1 (f) and the hypotheldis The converse inequal-
ity follows from the upper bound of Lemma 2.2.
As a corollary of (4.1), we have that

lim EIn[—vo(x)] = lim Eln[—vo(ax)ll)].
n—00 1 " n—oo N n
It follows from (2.4) and this identity that

lim supp, (x) = lim sup} ( IN[—V,%(x)] —In [—V,?(E(x)ll)])

n— 00 n—>00
< g(x) = £(—L(x)1y) = g(x) + £(x),
where we used the lower bound of Lemma 2.2 witk £(x)1;.
Finally, by virtue of Lemmata 4.1 and 4.2
. . 1 G —~~ P
liminf — In[—V,7 (X)] = SUPE(Z7G — Zox) = y(x).
n—oe N ZeD,

The second inequality of Theorem 3.2 follows from (2.4) and (4.1).
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5. Final comments

An inspection of the proof shows that in Theorem 3.1 the hypothdsed s

can be replaced by a single hypothesis: the closufeadincides with the
set{x : y(x) < 0}. Thus, the assertion holds for a discrete-time model
(where all strategies are admissible) undierandH4 alone. Indeed, the
hedging theorem in Delbaen et al. (1999) ensuresIthat {x : y(x) <

0} if H, holds. One may expect that the hedging theorems are true under
weaker assumptions which automatically will substituteHigr-H3z in our
formulation.

The large risk-averse asymptotics in Delbaen et al. (2000) are obtained
by assuming that all martingales on the stochastic basis are continuous. In
fact, one needs only the property that the @gtof martingale measures
with finite entropy is dense in the set of all local martingale meas@res
It was shown in Kabanov and Stricker (2000) that this is always the case if
Q. # . The corresponding result for the s&sandD, is not available yet
but, if all martingales on stochastic bases are continuousang @, Hy
holds; see the proof of Theorem 3.7 in Kabanov (1999).
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