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1 Introduction

We shall consider models where an investor, acting on a financial market with ran-
dom price movements and having T as his time horizon, transforms the initial en-
dowment ξ into a certain resulting wealth; let Rξ

T denote the set of all final wealth
corresponding to possible investment strategies. The natural question is, whether
the investor has arbitrage opportunities, i.e. whether he can get non-risky profits.

Let us “hide” in a “black box” the interior dynamics on the time-interval [0, T ]
(i.e. the price process specification, market regulations, description of admissible
strategies) and examine only the set Rξ

T .

At this level of generality, the answer, as well as the hypotheses, should be
formulated only in terms of properties of the sets Rξ

T . E.g., in the simplest situation
of frictionless market without constraints, R0

T is a linear subspace in the space L0 of
(scalar) random variables and Rξ

T = ξ +R0
T . The absence of arbitrage opportunities

can be formalized by saying that the intersection of R0
T with the set L0

+ of non-
negative random variables contains only zero. If the underlying probability space is
finite, i.e. if we assume in our model only a finite number of states of the nature, it
is easy to prove that there is no arbitrage if and only if there exists an equivalent
“separating” probability measure with respect to which every element of R0

T has zero
mean. Close look at this result shows that this assertion is nothing but the Stiemke
lemma [62] of 1915 which is well-known in the theory of linear inequalities and linear
programming as an example of the so-called alternative (or transposition) theorems,
see historical comments in [61]; notice that the earliest alternative theorem due to
Gordan [21] (of 1873) can be also interpreted as a no-arbitrage criterion.

The one-step model can be generalized (or specialized, depending on the point of
view) in many directions giving rise to what is called arbitrage theory. The reader
should not be confused by using “general” and “special” in this context: obviously,
one-step models are particular cases of N -period models, but quite often the main
difficulties in the analysis of models with a detailed (“specialized”) structure of the
“black box” consist in verifying hypotheses of theorems corresponding to the one-
step case. The geometric essence of these results is a separation of convex sets with
a subsequent identification of the separating functional as a probability measure;
the properties of the latter in connection with the price process are of particular
interest.

To the date one can find in the literature dozens of models of financial markets
together with a plethora of definitions of arbitrage opportunities. These models can
be classified using the following scheme.

1. Finite probability space.

Assuming only a finite number of states of the nature is popular in the literature
on economics. Of course, the hypothesis is not adequate to the basic paradigm of
stochastic modeling because random variables with continuous distributions cannot
“live” on finite probability spaces. The advantage of working under this assump-
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tion is that a very restricted set of mathematical tools (basically, elementary finite-
dimensional geometry) is required. Results obtained in this simplified setting have
an important educational value and quite often may serve as the starting point for
a deeper development.

2. General probability space.

In contrast to the case of finite probability space, the straightforward separa-
tion arguments, which are the main instruments to obtain no-arbitrage criteria, fail
to be applied without further topological assumptions on R0

T . In many particular
cases, especially in the theory of continuous trading, they are not fulfilled. This cir-
cumstance led Kreps (1981) to a more sophisticated “no-arbitrage” concept, namely,
that of “no free lunch” (NFL). However, certain no-arbitrage criteria are of the same
form as for the models with finite probability space Ω.

3. Discrete-time multi-period models.

Even for the case of finite probability space Ω, these models are important be-
cause they allow us to describe the intertemporal behavior of investors in financial
markets, i.e. to penetrate into the structure of the “black box” using concepts of
random processes. One of the most interesting features is that in the simplest model
without constraints the value processes of the investor’s portfolios are martingales
with respect to separating measures and the same property holds for the underlying
price process; this explains the terminology “equivalent martingale measures”. Mod-
els based on the infinite Ω posed challenging mathematical questions, e.g., whether
the absence of arbitrage is still equivalent to the existence of equivalent martingale
measure. For frictionless market the affirmative answer has been given by Dalang,
Morton, and Willinger in 1990. Their work, together with the earlier paper of Kreps,
stimulated further research in geometric functional analysis and stochastic calculus,
involving rather advanced mathematics.

4. Continuous trading.

Although the continuous-time stochastic processes were used for modeling from
the very beginning of mathematical finance (one can say that they were even in-
vented exactly for this purpose, having in mind the Bachelier thesis “Théorie de la
spéculation” where Brownian motion appeared for the first time), their “golden age”
began in 1973 when the famous Black–Scholes formula was published. Subsequent
studies revealed the role of the uniqueness of the equivalent martingale measure for
pricing of derivative securities via replication. The importance of no-arbitrage crite-
ria seems to be overestimated in financial literature: the unfortunate alias FTAP —
Fundamental Theorem of Asset (or Arbitrage) Pricing, ambitious and misleading,
is still widely used. If there are many equivalent martingale measures, the idea of
“pricing by replication” fails: a contingent claim may not belong to Rx

T whatever x
is, or may belong to many Rx

T . In the latter case it is not clear which martingale
measure can be used for pricing and this is the central problem of current studies
on incomplete markets. However, as to mathematics, the no-arbitrage criteria for
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general semimartingale models are considered among the top achievements of the
theory.

In 1980 Harrison and Pliska noticed that stochastic calculus, i.e. the integration
theory for semimartingales, developed by P.-A. Meyer in a purely abstract way, is
“tailor-made” for financial modeling. In 1994 Delbaen and Schachermayer confirmed
this conclusion by proving that the absence of arbitrage in the class of elementary,
“practically admissible” strategies implies the semimartingale property of the price
process. In a series of papers they provided a profound analysis of the various
concepts culminating in a result that the Kreps NFL condition (equivalent to a
whole series of properties with easier economic interpretation) holds if and only if
the price process is a σ-martingale under some P̃ ∼ P . There is another justification
of the increasing interest in semimartingales in financial modeling: mathematical
statistics sends alarming signals that in many cases empirical data for financial time
series are not compatible with the hypothesis that they are generated by processes
with continuous sample paths. Thus, diffusions should be viewed only as strongly
stylized models of financial data; it has been revealed that Lévy processes give much
better fit.

5. Large financial markets.

This particular group, including the so-called Arbitrage Pricing Model (or The-
ory), abbreviated to APM (or APT), due to Ross and Huberman (for the one-period
case), has the following specific feature. In contrast with the conventional approach
of describing a security market by a single probabilistic model, a sequence of stochas-
tic bases with an increasing but always finite number of assets is considered. One
can think that the agent wants to concentrate his activity on smaller portfolios be-
cause of his physical limitations but larger portfolios in this market may have better
performance. The arbitrage is understood in an asymptotic sense. Its absence im-
plies relationships between model parameters which can be verified empirically. This
circumstance makes such models especially attractive. The weak side of APM is the
use of the quadratic risk measure. This means that gains are punished together
with losses in symmetric ways which is unrealistic. Luckily, the conclusion of APM,
the Ross–Huberman boundedness condition, seems to be sufficiently “robust” with
respect to the risk measure and the variation of certain model parameters.

In the recent papers [36] and [37], where the theory of large financial markets
was extended to the general semimartingale framework, the concept of asymptotic
arbitrage is developed for an “absolutely” risk-averse agent. In spite of completely
different approach, the absence of asymptotic arbitrage implies, for various particular
models, relations similar to the Ross–Huberman condition.

6. Models with transaction costs.

In the majority of models discussed in mathematical finance, the investor’s
wealth is scalar, i.e. all positions are measured in units of a single asset (money,
bond, bank account, etc.). However, in certain cases, e.g., in models with con-
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straints and, especially, in those taking transaction costs into account, it is quite
natural to consider, as the primary object, the whole vector-valued process of current
positions, either in physical quantities or in units of values measured by a certain
numéraire. It happens that this approach allows not only for a more detailed and
realistic description of the portfolio dynamics but also opens new perspectives for
further mathematical development, in particular, for an extensive use of ideas from
theory of partially ordered spaces, utility theory, optimal control, and mathematical
economics. Until now only a few results are available in this new branch of arbitrage
theory. Recent studies [34] and [41] show that the basic concept of arbitrage theory,
that of the equivalent martingale measure, should be modified and generalized in
an appropriate way. There are various approaches to the problem which will be dis-
cussed here. Notice that models with transaction costs quite often were considered
as completely different from those of a frictionless market and the classical results
could not be obtained as corollaries when transaction costs vanish. The modern
trend in the theory is to work in the framework which covers the latter as a special
case.

Arbitrage theory includes another, even more important subject, namely, hedg-
ing theorems, closely related with the no-arbitrage criteria. These results, discussed
in the present survey in a sketchy way, give answers to whether a contingent claim
can be replicated in an appropriate sense by a terminal value of a self-financing
portfolio or whether a given initial endowment is sufficient to start a portfolio repli-
cating the contingent claim. Other related problems such as market completeness
or models with continuum securities, arising in the theory of bond markets, are not
touched here.

The books [52], [57], and [29] may serve as references in convex analysis, proba-
bility, and stochastic calculus.

2 Discrete-time models

2.1 General setting

Let (Ω,F ,F = (Ft), P ) be a stochastic basis (i.e. filtered probability space), t =
0, 1, ..., T . We assume that each σ-algebra Ft is complete.

We are given:

- convex cones R0
t ⊆ L0(Rd,Ft);

- closed convex cones Kt ⊆ L0(Rd,Ft).

The notation L0(Kt,Ft) is used for the set of all Ft-measurable random variables
with values in the set Kt (or Ft-measurable selectors of Kt if Kt depends on ω).

The usual financial interpretation: R0
t is the set of portfolio values at the date t

corresponding to the zero initial endowment, i.e. all imaginable results that can be
obtained by the investor to the date t.
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The cones Kt induce the partial orderings in the sets L0(Rd,Ft):

ξ ≥t η ⇔ ξ − η ∈ Kt.

The partial orderings ≥t allow us to compare current results.

As a rule, they are obtained by “lifting” partial orderings from Rd to the space
of random variables.

A typical example: Kt = L0(K,Ft) where K is a closed cone in Rd (which
may depend on ω and t). In particular, the “standard” ordering ≥t is induced by
Kt = Rd

+ when ξ ≥t η if ξi ≥ ηi (a.s.) for all i ≤ d; for the case d = 1 it is the usual
linear ordering of the real line. However, we do not exclude other partial orderings.

In the theory of frictionless market, usually, d = 1; for models with transaction
costs d is the number of assets in the portfolio.

We define also the set A0
T := R0

T − KT . The elements of A0
T are interpreted as

contingent claims which can be hedged (or super-replicated) by the terminal values
of portfolios starting from zero.

The linear space LT := KT ∩ (−KT ) describes the positions ξ such that ξ ≥T 0
and ξ ≤T 0, which are “financially equivalent to zero”. The comparison of results
can be done modulo this equivalence, i.e. in the quotient space L0/LT equipped
with the ordering induced by the proper cone K̃T := πTKT where πT : L0 → L0/LT

is the natural projection.

2.2 No-arbitrage criteria for finite Ω

The most intuitive formulation of the property that the market has no arbitrage
opportunities for the investors without initial capital is the following:

NA. KT ∩R0
T ⊆ LT .

In the particular case when KT is a proper cone we have

NA′. KT ∩R0
T ⊆ {0} (with equality if R0

T is closed).

The first no-arbitrage criteria has the following form.

Theorem 2.1 Let Ω be finite. Assume that R0
T is closed. Then NA holds if and

only if there exists η ∈ L0(Rd,FT ) such that

Eηζ > 0 ∀ζ ∈ KT \ LT

and
Eηζ ≤ 0 ∀ζ ∈ R0

T .

Because L0 is a finite-dimensional space, this result is a reformulation of Theorem
A.2 on separation of convex cones.

It is easy to verify that KT ∩ R0
T ⊆ LT if and only if KT ∩ A0

T ⊆ LT . Hence, in
this theorem one can replace R0

T by A0
T .
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The above criterion can be classified as a result for the one-step model where T
stands for “terminal”. It has important corollaries for multi-period models where
the sets R0

T have a particular structure.

3 Multi-step models

3.1 Notations

For X = (Xt)t≥0 and Y = (Yt)t≥0 we define X− := (Xt−1) (various conventions for
X−1 can be used), ∆Xt := Xt −Xt−1, and, at last,

X · Yt :=
t∑

k=0

Xk∆Yk,

for the discrete-time integral. Here X and Y can be scalar or vector-valued. In the
latter case sometimes we shall use the abbreviation X • Y for the vector process
formed by the pairwise integrals of the component

X • Y := (X1 · Y 1, ..., Xd · Y d).

Though in the discrete-time case the dynamics can be expressed exclusively in terms
of differences, “integral” formulae are often instructive for continuous-time exten-
sions.

For finite Ω, if X is a predictable process (i.e., Xt is Ft−1-measurable) and Y
belongs to the space M of martingales, then X · Y is also a martingale.

The product formula

∆(XY ) = X∆Y + Y−∆X

is obvious.

3.2 Example 1. Model of frictionless market

The model being classical, we do not give details and financial interpretations: they
are widely available in many textbooks.

Let S = (St), t = 0, 1, ..., T , be a fixed n-dimensional process adapted to a
discrete-time filtration F = (Ft). Here T is a finite integer and, for simplicity, the
σ-algebra F0 assumed to be trivial. The convention S−1 = S0 is used. Define R0

T

as the linear space of all scalar random variables of the form N · ST where N is
an n-dimensional predictable process. For x ∈ R we put Rx

T = x + R0
T . We take

K0 := R+ and KT := L0(R+,FT ).

The components Si describe the price evolution of n risky securities, N i is the
portfolio strategy which is self-financing, and V is the value process. In this specifi-
cation it is tacitly assumed that there is a traded asset with the constant unit price,
i.e. this asset is the numéraire.
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Remark 3.1 One should take care that there is another specification where the
numéraire is not necessarily a traded asset. A possible confusion may arise because
the formula for the value process looks similar but the integrand and the integrator
are in the latter case d-dimensional processes with d = n + 1. The increments of a
self-financing portfolio strategy are explicitly constrained by the relation

St−1∆Nt = 0.

If the numéraire (“cash” or “bond”) is traded, the integral with respect to the latter
vanishes but, of course, holdings in “cash” are not arbitrary but defined from the
above relation.

For finite Ω we have, in virtue of Theorem 2.1, that the model has no-arbitrage
if and only if there is a strictly positive random variable η such that Eηζ = 0 for
all ζ ∈ R0

T . Without loss of generality we may assume that Eη = 1 and define the
probability measure P̃ = ηP . Clearly, Ẽζ = 0 for all ζ ∈ R0

T (i.e., ẼN · ST = 0
for all predictable N) if and only if S is a martingale. With this remark we get the
Harrison–Pliska theorem:

Theorem 3.2 Assume that Ω is finite. Then the following conditions are equiva-
lent:

(a) R0
T ∩ L0(R+,FT ) = {0} (no-arbitrage);

(b) there exists a measure P̃ ∼ P such that S ∈M(P̃ ).

Let ρt := dP̃t/dPt be the density corresponding to the restrictions of P̃ and P to
Ft. Recall that the density process ρ = (ρt) is a martingale ρt = E(ρT |Ft). Since

S ∈M(P̃ ) ⇐⇒ Sρ ∈M(P ),

we can add to the conditions of the above theorem the following one:

(b′) there is a strictly positive martingale ρ such that ρS ∈M.

Notice that the equivalence of (b) and (b′) is a general fact which holds for
arbitrary Ω and even in the continuous-time setting.

Though the property (b′) can be considered simply as a reformulation of (b), it
is more adapted to various extensions. The advantage of (b) is in the interpretation
of P̃ as a “risk-neutral” probability.

3.3 Example 2. Model with transaction costs

Now we describe a discrete-time version of a multi-currency model with proportional
transaction costs introduced in [34] and studied in the papers [11] and [41].

It is assumed that the components of an adapted process S = (S1
t , . . . , S

d
t ),

t = 0, 1, ..., T , describing the dynamics of prices of certain assets, e.g., currencies
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quoted in a certain reference asset (say, “euro”), are strictly positive. It is convenient
to choose the scales to have Si

0 = 1 for all i. We do not suppose that the numéraire
is a traded security.

The transaction costs coefficients are given by an adapted process Λ = (λij)
taking values in the set Md

+ of non-negative d× d-matrices with zero diagonal.

The agent’s portfolio at time t can be described either by a vector of “physical”
quantities V̂t = (V̂ 1

t , . . . , V̂ d
t ) or by a vector V = (V 1

t , . . . , V d
t ) of values invested in

each asset. The relation
V̂ i

t = V i
t /Si

t , i ≤ d,

is obvious. Introducing the diagonal operator

φt(ω) : (x1, ..., xd) 7→ (x1/S1
t (ω), ..., xd/Sd

t (ω)). (1)

we may write that
V̂t = φtVt.

The increments of portfolio values are

∆V i
t = V̂ i

t ∆Si
t + bi

t (2)

with

bi
t =

d∑

j=1

αji
t −

d∑

j=1

(1 + λij)αij
t ,

where αji
t ∈ L0(R+,Ft) represents the net amount transferred from the position j

to the position i at the date t.

The first term in the right-hand side of (2) is due to the price increment while the
second corresponds to the agent’s actions (made after the revealing of new prices).
Notice that these actions are charged by the amount

−
d∑

i=1

bi
t =

d∑

i=1

d∑

j=1

λijαij
t

diminishing the total portfolio value.

With every Md
+-valued process (αt) and any initial endowment

v = V−1 ∈ Rd

we associate, using recursively the formula (2), a value process V = (Vt), t = 0, ..., T .
The terminal values of these processes form the set Rv

T .

Remark 3.3 In the literature one can find other specifications for transaction costs
coefficients. To explain the situation, let us define α̃ij := (1+λij)αij. The increment
of value of the i-th position can be written as

bi =
d∑

j=1

µjiα̃ji
t −

d∑

j=1

α̃ij
t ,
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where µji := 1/(1+λji) ∈]0, 1]. The matrix (µij) can be specified as the matrix of the
transaction costs coefficients. In models with a traded numéraire, i.e. a non-risky
asset, a mixture of both specifications is used quite often.

Before analyzing the model, we write it in a more convenient way reducing the
dimension of the action space.

To this aim we define, for every (ω, t), the convex cone

Mt(ω) :=
{
x ∈ Rd : ∃ a ∈ Md

+ such that xi =
d∑

i=1

[(1 + λij
t (ω))aij − aji], i ≤ d

}
,

which is a polyhedral one as it is the image of the polyhedral cone Md
+ under a

linear mapping. Its dual positive cone

M∗
t (ω) := {w ∈ Rd : inf

x∈Mt(ω)
wx ≥ 0}

can be easily described by linear homogeneous inequalities. Specifically,

M∗
t (ω) = {w ∈ Rd : wj − (1 + λij

t (ω))wi ≤ 0, 1 ≤ i, j ≤ d}.
We introduce also the solvency cone (in values)

Kt(ω) :=
{
x ∈ Rd : ∃ a ∈ Md

+ such that xi +
d∑

i=1

[aji − (1 + λij
t (ω))aij] ≥ 0, i ≤ d

}
,

i.e. Kt(ω) = Mt(ω) + Rd
+. The negative holdings of a position vector in Kt(ω) can

be liquidated (under transaction costs given by (λij
t (ω)) to get a position vector in

Rd
+.

Let B be the set of all processes B = (Bt) with ∆Bt ∈ L0(−Mt,Ft). It is an
easy exercise on measurable selection to check that ∆Bt can be represented using a
certain Ft-measurable transfer matrix αt. Thus, the set of portfolio process in the
“value domain” coincides with the set of processes V = V v,B, B ∈ B, given by the
system of linear difference equations

∆V i
t = V i

t−1∆Y i
t + ∆Bi

t, V i
−1 = vi, (3)

with

∆Y i
t =

∆Si
t

Si
t−1

, Y i
0 = 1. (4)

Remark 3.4 Using the notations introduced at the beginning of this section, we
can rewrite these equations in the integral form

V = v + V− • Y + B, (5)

with
Y i = 1 + (1/Si

−) · Si, (6)

which remains the same also for the continuous-time version but with a different
meaning of the symbols, see [34], [39].
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It is easier to study no-arbitrage properties of the model working in the “physical
domain” where portfolio evolves only because of the agent’s action. Indeed, the
dynamics of V̂ is simpler:

∆V i
t =

∆Bi
t

Si
t

.

This equation is obvious because of its financial interpretation but one can check it
formally (e.g., using the product formula).

Put M̂t(ω) := φt(ω)Mt(ω) and introduce the solvency cone (in physical units)

K̂t(ω) := φtKt(ω) = M̂t(ω) + Rd.

Every process b̂ with b̂t ∈ L0(−M̂t,Ft), 0 ≤ t ≤ T , defines a portfolio process V̂
with ∆V = b̂ and the zero initial endowment. All portfolio processes (in physical
units) can be obtained in this way.

The notations R0
T and R̂0

T are obvious.

Lemma 3.5 The following conditions are equivalent:

(a) R0
T ∩ L0(KT ,FT ) ⊆ L0(∂KT ,FT );

(b) R0
T ∩ L0(Rd

+,FT ) = {0};
(c) R̂0

T ∩ L0(Rd
+,FT ) = {0}.

Proof. The equivalence of (b) and (c) is obvious. The implication (a) ⇒ (b) holds
because Rd

+\{0} is a subset of int KT . To prove the remaining implication (b) ⇒ (a)
we notice that if V B

T ∈ L0(KT ,FT ) where B ∈ B then there exists B′ ∈ B such that
V B′

T ∈ L0(Rd
+,FT ) and V B′

T (ω) 6= 0 on the set V B
T (ω) /∈ ∂KT (ω). To construct

such B′, it is sufficient to modify only ∆BT by combining the last transfer with the
liquidation of the negative positions. 2

In accordance with [41] we shall say that the market has weak no-arbitrage prop-
erty at the date T (NAw

T ) if one of the equivalent conditions of the above lemma is
fulfilled. Apparently, NAw

T implies NAw
t for all t ≤ T .

Lemma 3.6 Assume that Ω is finite. Then R̂0
T ∩ L0(Rd

+,FT ) = {0} if and only
if there exists a d-dimensional martingale Z with strictly positive components such
that Zt ∈ L0(M̂∗,Ft).

Proof. The cone R̂0
T is polyhedral. In virtue of Theorem 2.1 the first condition

is equivalent to the existence of a strictly positive random variable η such that
Eηζ ≤ 0 for all ζ ∈ R̂0

T . Let Zt = E(η|Ft). Since L0(−M̂t,FT ) ⊆ R̂0
T , the inequality

EZtζ ≥ 0 holds for all ζ ∈ L0(M̂t,Ft) implying that Zt ∈ L0(M̂∗
t ,Ft). If the second

condition of the lemma is fulfilled, we can take η = ZT . 2

Let DT be the set of martingales Z = (Zt) such that Ẑt ∈ L0(K∗
t ,Ft). The

following result from [41] is a simple corollary of the above criteria:
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Theorem 3.7 Assume that Ω is finite. Then NAw
T holds if and only if there exists

a process Z ∈ D with strictly positive components.

This result contains the Harrison–Pliska theorem. Indeed, in the case where all
λij = 0, the cone K = K̃ := {x ∈ Rd : x1 ≥ 0} and K∗ = R+1. Thus, for Z ∈ D
all components of the process Ẑ are equal. If, e.g., the first asset is the numéraire,
then Ẑ1 = Z1 is a martingale as well as the processes SiZ1, i = 2, ..., d, i.e. Z1 is a
martingale density.

Remark 3.8 For models with transaction costs other types of arbitrage may be
of interest. E.g., it is quite natural to consider the ordering induced by the cone
K̃ := {x ∈ Rd : x1 ≥ 0} (corresponding to the absence of transaction costs), see a
criterion in [41] which can be obtained along the same lines as above.

Remark 3.9 It is easily seen that

M̂t(ω) :=
{
y ∈ Rd : ∃ c ∈ Md

+ such that yi =
d∑

j=1

[πij
t (ω)cij − cji], i ≤ d

}
, (7)

where
πij

t := (1 + λij
t )Sj

t /S
i
t , 1 ≤ i, j ≤ d. (8)

One can start the modeling by specifying instead of the process (λij
t ) the process

(πij
t ) with values in the set of non-negative matrices with units on the diagonal.

Defining directly the set of processes V̂ with ∆V̂t ∈ L0(−M̂t,Ft) and the set of
“results” R̂0

T , one can get Lemma 3.6 immediately. The advantage of this approach
is that the existence of the reference asset (i.e., of the price process S) is not assumed
and we have a model of “pure exchange”. A question arises when such a model can
be reduced to a transaction costs model with a reference asset, i.e. under what
conditions on the matrix (πij) one can find a matrix (λij) with positive entries and
a vector S with strictly positive entries satisfying the relation (8).

3.4 Dalang–Morton–Willinger theorem

Let us consider again the classical model of the frictionless market but now without
any assumption on the stochastic basis.

Theorem 3.10 The following conditions are equivalent:

(a) R0
T ∩ L0(R+,FT ) = {0} (no-arbitrage);

(b) A0
T ∩ L0(R+,FT ) = {0};

(c) A0
T ∩ L0(R+,FT ) = {0} and A0

T = Ā0
T , the closure in L0;

(d) Ā0
T ∩ L0(R+,FT ) = {0};

(e) for every probability measure P ′ ∼ P there is a measure P̃ ∼ P such that
dP̃/dP ′ ≤ const and S ∈M(P̃ );
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(f) there is a probability measure P̃ ∼ P such that S ∈M(P̃ ).

(g) there is a probability measure P̃ ∼ P such that S ∈Mloc(P̃ ).

It seems that these equivalent conditions (among many others) are the most es-
sential ones to be collected in a single theorem. The equivalence of (a), (e), and (f)
relating a “financial property” of absence of arbitrage with important “probabilis-
tic” properties is due to Dalang, Morton, and Willinger [8]. Their approach is based
on a reduction to a one-stage problem which is very simple for the case of trivial
initial σ-algebra; regular conditional distributions and measurable selection theorem
allow us to extend the arguments to treat the general case, see [53], [29], and [58]
for other implementations of the same idea. Formally, the equivalence (a) ⇔ (f) is
exactly the same as the Harrison–Pliska theorem and one could think that it is just
the same result under the relaxed hypothesis on Ω. In fact, such a conclusion seems
to be superficial: the equivalent “functional-analytic property” (c), discovered by
Schachermayer in [56], shows clearly the profound difference between these two sit-
uations. Schachermayer’s condition opens the door to an extensive use of geometric
functional analysis in the discrete-time setting which was reserved previously only
for continuous-time models. It is quite interesting to notice that the set R0

T is always
closed while A0

T is not.

The condition (d) introduced by Stricker in [60] also gives a hint on an appro-
priate use of separation arguments. Specifically, the Kreps–Yan theorem (see the
Appendix) can be applied to separate AT

0 ∩L1(P ′) from L1
+(P ′) = L1(R+, P ′) where

the measure P ′ ∼ P can be chosen arbitrarily: this freedom allows us to obtain an
“equivalent separating measure” with a desired property.

Notice that the crucial implication (b) ⇒ (d) seems to be easier to prove than
(a) ⇒ (c), see [36] where a kind of “linear algebra” with random coefficients was
suggested.

The literature provides a variety of other equivalent conditions complementing
the list of the above theorem. Some of them are interesting and non-trivial. A
family of conditions is related with various classes of admissible strategies B (which
is the set of all predictable process in our formulation). Since the sets R0

T and A0
T

depend on this class, so does the no-arbitrage property. It happens, however, that
the latter is quite “robust”: e.g., it remains the same if we consider as admissible
only the strategies with non-negative value processes. The problem of admissibility
is not of great importance since we assume a finite time horizon. The situation is
radically different for continuous-time models where one must work out the doubling
strategies which allow us to win even betting on a martingale.

Proof of Theorem 3.10. The implications (a) ⇒ (b) and (c) ⇒ (d) are obvious as
well as the chain (e) ⇒ (f) ⇒ (g).

To prove the implication (d) ⇒ (e) we observe that the two properties are
invariant under the equivalent change of measure. Thus, we may assume that P ′ = P
and, moreover, by passing to the measure ce−ηP with η = supt≤T |St|, that all St

are integrable. The set Ā1
0 ∩ L1 is closed in L1 and intersects with L1

+ only at zero.
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By the Kreps–Yan theorem there is a P̃ with dP̃/dP ∈ L∞ such that Ẽξ ≤ 0 for all
ξ ∈ Ā1

0 ∩ L1. Taking ξ = ±Ht∆St where Ht is bounded and Ft−1-measurable, we
conclude that S is a martingale.

The implication (g) ⇒ (a) is also easy. If H · St ≥ 0 for all t ≤ T , then,
by the Fatou lemma, the local P̃ -martingale H · S is a P̃ -supermartingale and,
therefore, ẼH · ST ≤ 0, i.e. H · ST = 0. In other words, there is no arbitrage in
the class of strategies with non-negative value processes. This implies (a) since for
any arbitrage opportunity H there is an arbitrage opportunity H ′ with non-negative
value process. Indeed, if P (H · Ss ≤ −b) > 0 for some s < T and b > 0, then one
can take H ′ = I]s,T ]×{H·Ss≤−b}H.

In the proof of the “difficult” implication (b) ⇒ (c) we follow [42].

Lemma 3.11 Let ηn ∈ L0(Rd) be such that η := lim inf |ηn| < ∞. Then there are
η̃k ∈ L0(Rd) such that for all ω the sequence of η̃k(ω) is a convergent subsequence
of the sequence of ηn(ω).

Proof. Let τ0 := 0 and τk := inf{n > τk−1 : ||ηn| − η| ≤ 1/k}. Then η̃k
0 := ητk

is in L0(Rd) and supk |η̃k
0 | < ∞. Working further with the sequence of η̃n

0 we
construct, applying the above procedure to the first component, a sequence of η̃k

1

with the convergent first component and such that for all ω the sequence of η̃k
1(ω) is

a subsequence of the sequence of η̃n
0 (ω). Passing on each step to the newly created

sequence of random variables and to the next component we arrive at a sequence
with the desired properties. 2

To show that A0
T is closed we proceed by induction. Let T = 1. Suppose that

Hn
1 ∆S1 − rn → ζ a.s., where Hn

1 is F0-measurable and rn ∈ L0
+. It is sufficient to

find F0-measurable random variables H̃k
1 convergent a.s. and r̃k ∈ L0

+ such that

H̃k
1 ∆S1 − r̃k → ζ a.s.

Let Ωi ∈ F0 form a finite partition of Ω. Obviously, we may argue on each
Ωi separately as on an autonomous measure space (considering the restrictions of
random variables and traces of σ-algebras).

Let H1 := lim inf |Hn
1 |. On Ω1 := {H1 < ∞} we take, using Lemma 3.11, F0-

measurable H̃k
1 such that H̃k

1 (ω) is a convergent subsequence of Hn
1 (ω) for every ω;

r̃k are defined correspondingly. Thus, if Ω1 is of full measure, the goal is achieved.

On Ω2 := {H1 = ∞} we put Gn
1 := Hn

1 /|Hn
1 | and hn

1 := rn
1 /|Hn

1 | and observe
that Gn

1∆S1 − hn
1 → 0 a.s. By Lemma 3.11 we find F0-measurable G̃k

1 such that
G̃k

1(ω) is a convergent subsequence of Gn
1 (ω) for every ω. Denoting the limit by

G̃1, we obtain that G̃1∆S1 = h̃1 where h̃1 is non-negative, hence, in virtue of (b),
G̃1∆S1 = 0.

As G̃1(ω) 6= 0, there exists a partition of Ω2 into d disjoint subsets Ωi
2 ∈ F0 such

that G̃i
1 6= 0 on Ωi

2. Define H̄n
1 := Hn

1 − βnG̃1 where βn := Hni
1 /G̃i

1 on Ωi
2. Then

H̄n
1 ∆S1 = Hn

1 ∆S1 on Ω2. We repeat the procedure on each Ωi
2 with the sequence

H̄n
1 knowing that H̄ni

1 = 0 for all n. Apparently, after a finite number of steps we
construct the desired sequence.
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Let the claim be true for T − 1 and let
∑T

t=1 Hn
t ∆St − rn → ζ a.s., where Hn

t

are Ft−1-measurable and rn ∈ L0
+. By the same arguments based on the elimination

of non-zero components of the sequence Hn
1 and using the induction hypothesis we

replace Hn
t and rn by H̃k

t and r̃k such that H̃k
1 converges a.s. This means that the

problem is reduced to the one with T − 1 steps. 2

4 No-arbitrage criteria in continuous time

Nowadays, in the era of electronic trading, there are no doubts that continuous-time
models are much more important than their discrete-time relatives. As a theoretical
tool, differential equations (eventually, stochastic) show enormous advantage with
respect to difference equations. Easy to analyze, they provide very precise descrip-
tion of various phenomena and, quite often, allow for tractable closed-form solutions.
As we mentioned already, the mathematical finance started from a continuous-time
model. The unprecedented success of the Black–Scholes formula confirmed that
such models are adequate tools to describe financial market phenomena. The cur-
rent trend is to go beyond the Black–Scholes world. Statistical tests for financial
data reject the hypothesis that prices evolve as processes with continuous sample
paths. Much better approximation can be obtained by stable or other types of Lévy
processes. Apparently, semimartingales provide a natural framework for discussion
of general concepts of financial theory like arbitrage and hedging problems. Though
more general processes are also tried, yet a very weak form of absence of arbitrage
(namely, the NFLVR-property for simple integrands) in the case of a locally bounded
price process implies that it is a semimartingale, see Theorem 7.2 in [12].

4.1 No Free Lunch and separating measure

In this subsection we explain relations between the No Free Lunch (NFL) condition
due to Kreps, No Free Lunch with Bounded Risk (NFLBR) due to Delbaen, and
No Free Lunch with Vanishing Risk (NFLVR) introduced by Delbaen and Schacher-
mayer (see, [48], [10], [12]).

Let us assume that in a one-step model of frictionless market admissible strategies
are such that the convex cone R0

T (the set of final portfolio values corresponding
to zero initial endowment) contains only (scalar) random variables bounded from
below. As usual, let A0

T := R0
T −L0(R+). Define the set C := A0

T ∩L∞. We denote
by C̄, C̃∗, and C̄∗ the norm closure, the union of weak∗ closures of denumerable
subsets, and the weak∗ closure of C in L∞; C+ := C ∩ L∞+ etc.

The properties NA, NFLVR, NFLBR, and NFL mean that C+ = {0}, C̄+ = {0},
C̃∗

+ = {0}, and C̄∗
+ = {0}, respectively. Consecutive inclusions induce the hierarchy

of these properties:

C ⊆ C̄ ⊆ C̃∗ ⊆ C̄∗

NA ⇐ NFLVR ⇐ NFLBR ⇐ NFL.
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Define the ESM (Equivalent Separating Measure) property as follows: there
exists P̃ ∼ P such that Ẽξ ≤ 0 for all ξ ∈ R0

T .

The following criterion for the NFL-property was established by Kreps.

Theorem 4.1 NFL ⇔ ESM.

Proof. (⇐) Let ξ ∈ C̄∗ ∩L∞+ . Since dP̃/dP ∈ L1, there are ξn ∈ C with Ẽξn → Ẽξ.

By definition, ξn ≤ ζn where ζn ∈ R0
T . Thus, Ẽξn ≤ 0 implying that Ẽξ ≤ 0 and

ξ = 0.

(⇒) Since C̄∗ ∩ L∞+ = {0}, the Kreps–Yan separation theorem given in the

Appendix provides P̃ ∼ P such that Ẽξ ≤ 0 for all ξ ∈ C, hence, for all ξ ∈ R0
T . 2

4.2 Semimartingale model

Let (Ω,F ,F = (Ft), P ) be a stochastic basis, i.e., a probability space equipped with
a filtration F satisfying the “usual conditions”. Assume for simplicity that the initial
σ-algebra is trivial, the time horizon T is finite, and FT = F .

A process X = (Xt)t∈[0,T ] (right-continuous and with left limits) is a semimartin-
gale if it can be represented as a sum of a local martingale and a process of bounded
variation. Let U1 be the set of all predictable processes h taking values in the in-
terval [−1, 1]. We denote by h · S the stochastic integral of a predictable process
h with respect to a semimartingale. The definition of this integral in its full gen-
erality, especially for vector processes (necessary for financial application), is rather
complicated and we send the reader to textbooks on stochastic calculus.

The linear space S of semimartingales starting from zero is a Frechet space with
the quasinorm

D(X) := sup
h∈U1

E(1 ∧ |h ·XT |)

which induces the Émery topology, [17].

We fix in S a closed convex subset X 1 of processes X ≥ −1 which contains 0
and satisfies the following condition: for any X,Y ∈ X 1 and for any non-negative
bounded predictable processes H, G with HG = 0 the process Z := H ·X + G · Y
belongs to X 1 if Z ≥ −1.

Put X := coneX 1. The set X is interpreted as the set of value processes.

Put R0
T := {XT : X ∈ X}.

In this rather general semimartingale model we have NFLVR ⇔ NFLBR ⇔ NFL
in virtue of the following:

Theorem 4.2 Under NFLVR C = C̄∗.

The proof of this theorem given in [34] follows closely the arguments of the
Delbaen–Schachermayer paper [12]. Their setting is based on a n-dimensional price
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process S, the admissible strategies H are predictable Rn-valued processes for which
stochastic integrals H · S are defined and bounded from below. The set X 1 of all
value process H · S ≥ −1 is closed in virtue of the Mémin theorem on closedness
in S of the space of stochastic integrals [50]. If S is bounded then the process
H = ξI]s,t] is admissible for arbitrary ξ ∈ L∞(Rn,Ft), and hence Ẽξ(St − Ss) ≤ 0

for any separating measure P̃ . In fact, there is equality here because one can change
the sign of ξ. Thus, if S is bounded then it is a martingale with respect to any
separating measure P̃ . It is an easy exercise to check that if S is locally bounded
(i.e. if there exists a sequence of stopping times τk increasing to infinity such that
the stopped processes Sτk are bounded) then S is a local martingale with respect to
P̃ . The case of arbitrary, not necessarily bounded S is of a special interest because
the semimartingale model includes the classical discrete-time model as a particular
case. The corresponding theorem, also due to Delbaen–Schachermayer [14], involves
the notions of a σ-martingale and an equivalent σ-martingale measure.

A semimartingale S is a σ-martingale (notation: S ∈ Σm) if G · S ∈ Mloc for
some G with values in ]0, 1]. The property EσMM means that there is Q ∼ P such
that S ∈ Σm(Q).

Theorem 4.3 Let X 1 be the set of stochastic integrals H · S ≥ −1. Then

NFLV R ⇔ NFLBR ⇔ NFL ⇔ ESM ⇔ EσMM.

The remaining nontrivial implication ESM ⇒ EσMM follows from

Theorem 4.4 Let P̃ be a separating measure. Then for any ε > 0 there is Q ∼ P̃
with Var (P̃ −Q) ≤ ε such that S is a σ-martingale under Q.

A brief account of the Delbaen–Schachermayer theory including a short proof of
the above theorem based on the inequality for the total variation distance from [40]
is given in [33].

4.3 Hedging theorem and optional decomposition

Let us consider the semimartingale model based on an n-dimensional price process
S. Let C be a scalar random variable bounded from below and let

Γ := {x ∈ R : ∃ admissible H such that x + H · ST ≥ C}.
In other words, Γ is the set of initial endowments for which one can find an admis-
sible strategy such that the terminal value of the corresponding portfolio dominates
(super-replicates) the contingent claim C. “Admissible” means that the portfolio
process is bounded from below by a constant.

Obviously, if non-empty, Γ is a semi-infinite interval. The following “hedging”
theorem gives its characterization.

Let Q be the set of probability measures Q ∼ P with respect to which S is a
local martingale.
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Theorem 4.5 Assume that Q 6= ∅. Then Γ = [x∗,∞[ where

x∗ = sup
Q∈Q

EQC.

This general formulation is due to Kramkov [47] who noticed that the assertion
is a simple corollary of the following two results.

Theorem 4.6 Assume that Q 6= ∅. Let X be a process bounded from below which is
a supermartingale with respect to any Q ∈ Q. Then there is an admissible strategy
H and an increasing process A such that X = X0 + H · S − A.

The process H ·S, being bounded from below, is a local martingale with respect
to every Q ∈ Q (the property that an integral with respect to a local martingale is
also a local martingale if it is one-side bounded is due to Émery for the scalar case
and to Ansel–Stricker [1] for the vector case). Thus, this decomposition resembles
that of Doob–Meyer but it holds simultaneously for the whole set Q; in general,
it is non-unique and A may not be predictable but only adapted, hence, A, being
right-continuous, is optional. This explains why the above result is usually referred
to as the optional decomposition theorem. It was proved in [47] for the case where
S is locally bounded; this assumption was removed in the paper [18]. The proof
in [18] is probabilistic and provides an interpretation of the integrand H as the
Lagrange multiplier. Alternative proofs with intensive use of functional analysis
can be found in [13]. For an optional decomposition with constraints see [20], an
extended discussion of the problem is given [19]. In [43] it is shown that if P ∈ Q
then the subset of Q formed by the measures with bounded densities is dense in Q;
this result implies, in particular, that, without any hypothesis, the subset of (local)
martingale measures with bounded entropy is dense in Q.

Proposition 4.7 Assume that C is such that supQ∈Q EQC < ∞. Then there exists
a process X which is a supermartingale with respect to every Q ∈ Q such that

Xt = ess supQ∈QEQ(C|Ft).

This result is due to El Karoui and Quenez [16]; its proof also can be found in
[47].

Proof of Theorem 4.5. The inclusion Γ ⊆ [x∗,∞[ is obvious: if x + H · ST ≥ C
then x ≥ EQC for every Q ∈ Q. To show the opposite inclusion we may suppose
that supQ∈Q EQH < ∞ (otherwise both sets are empty). Applying the optional
decomposition theorem to the process

Xt = ess supQ∈Q EQ(C|Ft)

we get that X = x∗+H ·S−A. Since x∗+H ·ST ≥ XT = C, the result follows. 2
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4.4 Semimartingale model with transaction costs

In this model it is assumed that the price process is a semimartingale S with non-
negative components. The dynamics of the value process V = V v,B is given by the
linear stochastic equation

V = v + V− • Y + B

where Y i = (1/Si
−) · Si,

Bi :=
d∑

j=1

Lji −
d∑

j=1

(1 + λij)Lij,

and Lij is an increasing right-continuous process representing the accumulated net
wealth “arriving” at a position i from the position j.

At this level of generality, criteria of absence of arbitrage are still not available
but the paper of Jouini–Kallal [30] is an important contribution to the subject. It
provides an NFL criterion for the model of stock market with a bid–ask spread where,
instead of transaction costs coefficients, two process are given, S and S, describing
the evolution of the selling and buying prices. It is shown that a certain (specifically
formulated) NFL property holds if and only if there exist a probability measure P̃ ∼
P and a process S whose components evolve between the corresponding components
of S and S such that S is a martingale with respect to P̃ . This result is consistent
with the NA criteria for finite Ω, see [41]. Apparently, the approach of Jouini
and Kallal can be easily extended to the case of currency markets. However, one
should take care that the setting of [30] is that of the L2-theory. The limitations
of the latter in the context of financial modeling are well-known; in contrast with
engineering where energy constraints are welcome, they do not admit an economical
interpretation. We attract the reader’s attention to the recent paper [32] of the same
authors where problems of equilibrium and viability (closely related to absence of
arbitrage) are discussed; see also [31] for models with short-sell constrains.

The situation with the hedging theorem is slightly better. Its first versions in [6]
(for two-asset model) and in [34] were established within the L2-framework. In the
preprint [38] an attempt was made to work with the class of strategies for which the
value process is bounded from below in the sense of partial ordering induced by the
solvency cone. This class of strategies corresponds precisely to the usual definition of
admissibility in the case of frictionless market. However, the result was proved only
for bounded price processes. To avoid difficulties one can look for other reasonable
classes of admissible strategies. This approach was exploited in the paper [39] which
contains the following hedging theorem.

It is assumed that the matrix Λ of transaction costs coefficients is constant, the
first asset is the numéraire, and there exists a probability measure P̃ such that S is
a (true) martingale with respect to P̃ .

Let Bb be the class of strategies B such that the corresponding value processes
are bounded from below by a price process multiplied by (negative) constants (this
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definition resembles that used by Sin in the frictionless case, [55]). In particular, it
is admissible to keep short a finite number of units of assets.

Let D be the set of martingales Z such that Ẑ takes values in K∗. Notice that
{Z : Ẑ = wρ, w ∈ K∗} ⊆ D where ρt := E(dP̃ /dP |Ft). Moreover, Z ∈ D
and we have Ẑ1 = Z1; since the transaction costs are constant, it follows from the
inequalities defining K∗ that |Ẑ| ≤ κZ1 for a certain fixed constant κ. With these
remarks it is easy to conclude that ẐV v,B is always a supermartingale whatever
Z ∈ D and B ∈ Bb are.

Define the convex set of hedging endowments

Γ = Γ(Bb) := {v ∈ Rd : ∃B ∈ Bb such that V v,B
T ≥K C}

and the closed convex set

D := {v ∈ Rd : Ẑ0v ≥ EẐT C ∀Z ∈ D}.

Theorem 4.8 Assume that S is a continuous process and the solvency cone K is
proper. Then Γ = D.

The “easy” inclusion Γ ⊆ D holds in virtue of the supermartingale property of
ẐV v,B even without extra assumptions. The proof of the opposite inclusion given in
[39] is based on a bipolar theorem in the space L0(Rd,FT ) equipped with a partial
ordering. The hypotheses of the theorem and the structure of admissible strategies
are used heavily in this proof. The assumption that K is proper, i.e. the interior
of K∗ is non-empty, is essential (otherwise, Γ may not be closed). However, the
assertion Γ̄ = D can be established for arbitrary K. How to remove or relax the
assumptions on continuity of S to make the result adequate to the hedging theorem
without friction remains an open problem.

Remark 4.9 It is important to note that the set of hedging endowments depends
on the chosen class of admissible strategies. Let B0 be the class of buy-and-hold
strategies with a single revision of the portfolio, namely, at time zero when the
investor enters the market. It happens that in the most popular two-asset model
under transaction costs with the price dynamics given by the geometric Brownian
motion where the problem is to hedge a European call option (or, more generally,
a contingent claim C = g(ST )) we have Γ(Bb) = Γ(B0). This astonishing property
was conjectured by Clark and Davis [9] and proved independently in [49] and [59],
see also [7] and [2] for further generalizations. More precisely, in the mentioned
papers it was shown that the investor having the initial endowment in money which
is a minimal one to hedge the contingent claim C, can hedge it using buy-and-
hold strategy from B0. In other words, the conclusion was that the point with zero
ordinate lying on the boundary of Γ(Bb) belongs also to the boundary of a smaller
set Γ(B0). In fact, one can extend the arguments and proof that both sets coincide.
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5 Large financial markets

5.1 Ross–Huberman APM

The main conclusion of the Capital Asset Pricing Model (CAPM) by Lintner and
Sharp is the following:

the mean excess return on an asset is a linear function of its “beta”, a measure
of risk associated with this asset.

More precisely, we have the following result. Assume for simplicity that the
riskless asset pays no interest. Suppose that the return on the i-th asset has mean
µi and variance σ2

i , the market portfolio return has mean µ0 and variance σ2
0. Let γi

be the correlation coefficient between the returns on the i-th asset and the market
portfolio. Then µi = µ0βi where βi := γiσi/σ0.

Unfortunately, the theoretical assumptions of CAPM are difficult to justify and
its empirical content is dubious. One can expect that the empirical values of (βi, µi)
form a cloud around the so-called security market line but this phenomenon is
observed only for certain data sets. The alternative approach, the Arbitrage Pricing
Model (APM) suggested by Ross in [54] and placed on a solid mathematical basis
by Huberman, results in a conclusion that there exists a relation between model
parameters, which can be viewed as “approximately linear”, giving much better
consistency with empirical data. Based on the idea of asymptotic arbitrage, it
attracted considerable attention, see, e.g., [3], [4], [26], [27]; sometimes it is referred
to as the Arbitrage Pricing Theory (APT). An important reference is the note by
Huberman [25] who gave a rigorous definition of the asymptotic arbitrage together
with a short and transparent proof of the fundamental result of Ross. The idea of
Huberman is to consider a sequence of classical one-step finite-asset models instead
of a single one with infinite number of securities (in the latter case an unpleasant
phenomenon may arise similar to that of doubling strategies for models with infinite
time horizon). When the number of assets increases to infinity, this sequence of
models can be considered as a description of a large financial market.

A general specification of the n-th model Mn is as follows. We are given a
stochastic basis (Ωn,Fn,Fn, P n) with a convex cone R0n

T of square integrable (scalar)
random variables. Assume for simplicity that the initial σ-algebra is trivial, FT = F .
Here T stands for “terminal” and can be replaced by 1. As usual, the elements of
R0n

T are interpreted as the terminal values of portfolios.

By definition, a sequence ξn ∈ R0n
T realizes an asymptotic arbitrage opportunity

(AAO) if the following two conditions are fulfilled (En and Dn denote the mean and
variance with respect to P n):

(a) limn Enξn = ∞;

(b) limn Dnξn = limn En(ξn − Enξn)2 = 0.

Roughly speaking, if AAO exists, then, working with large portfolios, the investor
can become infinitely rich (in the mean sense) with vanishing quadratic risk.

21



We say that the large financial market has NAA property if there are no asymp-
totic arbitrage opportunities for any subsequence of market models {Mn′}.

A simple but useful remark: the NAA property remains the same if we replace
(a) in the definition of AAO by the weaker property lim supn Enξn > 0 (“if one can
become rich, one can become infinitely rich”).

Let ρn be the L2-distance of R0n
T from the unit, i.e.

ρn := inf
ξ∈R0n

T

En(ξ − 1)2,

Proposition 5.1 NAA ⇔ lim infn ρn > 0.

Proof. (⇒) Assume that lim infn ρn = 0. This means (modulo passage to a subse-
quence) that there are ξn ∈ R0n

T such that En(ξn − 1)2 → 0. It follows from the
identity

En(ξn − 1)2 = Dnξn + (Enξn − 1)2

that Dnξn → 0 and Enξn → 1, violating NAA.

(⇐) Assume that NAA fails. This means (modulo passage to a subsequence)
that there are ξn ∈ R0n

T , ξn 6= 0, satisfying (a) and (b). It follows that

En(ξn)2 = Dnξn + (Enξn)2 →∞.

Put ξ̃n := ξn/
√

En(ξn)2. Then ξ̃n ∈ R0n
T ,

Dnξ̃n = (1/En(ξn)2)Dnξn → 0

and
(Enξ̃n)2 = En(ξ̃n)2 −Dnξ̃n = 1−Dnξ̃n → 1.

Thus,
En(ξ̃n − 1)2 = Dnξ̃n + (Enξ̃n − 1)2 → 0

and we get a contradiction. 2

Suppose now that in the n-th model we are given a d-dimensional square inte-
grable price process (Sn

t ) where t ∈ {0, T}. In general, d = d(n). Suppose that
Sin

0 = 1 (this is just a choice of scales).

The crucial hypothesis of the k-factor APM is that there are k common sources of
randomness affecting the prices of all securities and there are also individual sources
of randomness related to each security. Specifically, we suppose that

∆Sin
T = µin +

k∑

j=1

ζn
j bin

j + ηin, i ≤ d,

or, in vector notation,

∆Sn
T = µn +

k∑

j=1

ζn
j bn

j + ηn.
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Here µn, bn
j ∈ Rd, the scalar random variables ζn

j with zero means are square in-
tegrable and the d-dimensional random vector ηn with zero mean has uncorrelated
components (representing randomness proper to each asset).

Assume that Dηin ≤ C for all i ≤ d and n ∈ N for a certain constant C.

A (self-financing) portfolio strategy Hn is a vector in Rd such that

Hn1d :=
d∑

i=1

H in = 0.

At the final date the corresponding portfolio value is

V n
T = Hn∆Sn

T =
d∑

i=1

H i,n∆Sin
T

and these random variables form the set R0n
T .

Lemma 5.2 Let Ln be the linear subspace in Rd spanned by the set {1d, bn
j , j ≤ k}

and let cn be the projection of µn onto L⊥n . Then

NAA ⇒ sup
n
|cn| < ∞.

Proof. Let an be a real number. The vector Hn := ancn (being orthogonal to 1d) is
a self-financing strategy with the corresponding terminal value

V n
T = an|cn|2 + anc

nηn.

It follows that
EnV n

T = an|cn|2,

DnV n
T = a2

nE(cnηn)2 = a2
n

d∑

i=1

(cin)2Dnηin ≤ Ca2
n|cn|2.

In particular, for an = |cn|−3/2 we have an asymptotic arbitrage opportunity for any
subsequence along which |cn| converges to infinity. 2

As is easily seen from the proof, the conditions of the lemma are equivalent if
Dnηin ≥ ε > 0 for all i and n.

Proposition 5.3 Assume that NAA holds. Then there exist a constant A and real-
valued sequences {rn}, {gn

j }, j ≤ k, such that

∣∣∣µn − rn1d −
k∑

j=1

gn
j bn

j

∣∣∣
2

:=
d∑

i=1

(
µin − rn −

k∑

j=1

gn
j bin

j

)2 ≤ A.
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The assertion is an obvious corollary of the above lemma: the vector cn is a
difference of µn and the projection of µn onto Ln; the latter is a linear combination
of the generating vectors 1d, bn

1 ,..., bn
k . Of course, if the generators are not linearly

independent, the coefficients rn, gn
1 ,...,gn

k are not uniquely defined.

The most interesting case of the APM is the “stationary” one where all random
variables“live” on the same probability space and do not depend on n. All model
parameters also do not depend on n except the dimension d = n. In other words, we
are given infinite-dimensional vectors µ = (µ1, µ2, ...), η = (η1, η2, ...), etc., and the
ingredients of the n-th model, µn, ηn, etc., are composed of the first n coordinates
of these vectors. One can think that the “real-world” market has an infinite number
of securities, enumerated somehow, and the agent uses the first n of them in his
portfolios. That is, the increment of the n-dimensional price process in the n-th
model is

∆Si
T = µi +

k∑

j=1

ζjb
i
j + ηi, i ≤ n.

Theorem 5.4 Assume that NAA holds. Then there are constants r and gj, j ≤ k,
such that

∞∑

i=1

(
µi − r −

k∑

j=1

gjb
i
j

)2
< ∞.

Proof. Let us consider the vector space spanned by the infinite-dimensional vectors
1∞ = (1, 1, ...), bj = (b1

j , b
2
j , ...), j ≤ k. Without loss of generality we may assume

that 1∞, bj, j ≤ l, is a basis in this space. There is n0 such that for every n ≥ n0

the vectors formed by the first n components of the latter are linearly independent.
For every n ≥ n0 we define the set

Kn :=
{
(r, g1, ..., gl, 0, ..., 0) ∈ Rk+1 :

n∑

i=1

(
µi − r −

k∑

j=1

gjb
i
j

)2 ≤ A
}

where choosing A as in Proposition 5.3 ensures that Kn is non-empty. Clearly, Kn

is closed and Kn+1 ⊆ Kn. It is easily seen that Kn is bounded (otherwise we could
construct a linear relation between the vectors assumed to be linearly independent).
Thus, the sets Kn are compact, ∩n≥n0K

n 6= ∅, and the result follows. 2

In the case where the numéraire is a traded security, say, the first one (i.e.,
∆S1n

T = 0) we can take rn = 0 for all n in Proposition 5.3 and r = 0 in Theorem
5.4. To see this, we repeat the arguments above with “truncated” price vectors and
strategies, the first component being excluded. In this specification an admissible
strategy is just a vector from Rd−1 and the projection onto the vector with unit
coordinates is not needed.

To make the relation between CAPM and APM clear, let us consider the one-
factor stationary model where the numéraire is a traded security and the increments
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of the risky asset (enumerating from zero) are of the following structure:

∆S0
T = µ0 + b0ζ,

∆Si
T = µi + biζ + ηi, i ≥ 1.

where all random variables ζ and ηi are uncorrelated and have zero means. Assume
that Dηi ≤ C. The 0-th asset plays a particular role: all other price movements
are conditionally uncorrelated given ∆S0

T . It can be viewed as a kind of “market
portfolio” or “market index”.

If there is no asymptotic arbitrage, then there exists a constant g such that

∞∑

i=0

(µi − gbi)
2 < ∞

i.e. µi = gbi + ui where ui → 0. If the residual u0 is small, then µ0 ≈ gb0. We
can use the latter relation to specify g and conclude that µi ≈ µ0βi (at least, for
sufficiently large i) with βi := bi/b0. Of course, this reasoning is far from being
rigorous: the empirical data, even being in accordance with APM, may or may not
follow the conclusion of CAPM.

Note that the approach of APT is based on the assumption that the agents have
certain risk-preferences and in the asymptotic setting they may accept the possibility
of large losses with small probabilities; the variance is taken as an appropriate
measure of risk.

A specific feature of the classical APT is that it does not deal with the problem
of existence of equivalent martingale measures which is the key point of the Fun-
damental Theorem of Asset Pricing. For a long time these two arbitrage theories
were considered as unrelated. In [35] an approach was suggested which puts to-
gether basic ideas of both of them and allows us to solve the long-standing problem
of extension of APT to the continuous-time setting. A brief account of its further
development is given in the next subsections.

5.2 Asymptotic arbitrage and contiguity

The theory of large financial markets contains four principal ingredients: basic con-
cepts, functional-analytic methods, probabilistic results, and analysis of specific
models. The fundamentals of this theory were established in [35] where the def-
initions of asymptotic arbitrage of the first and the second kind were suggested.
Assuming the uniqueness of equivalent martingale measures (i.e. the complete-
ness) for each market model, the authors proved necessary and sufficient conditions
for NAA1 and NAA2 in terms of contiguity of sequences of equivalent martingale
measures and objective (“historical”) probabilities. A particular model of a “large
Black–Scholes market” (where the price processes are correlated geometric Brown-
ian motions) was investigated. It was shown that the boundedness condition similar
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to that of Ross–Huberman can be obtained as a direct application of the Liptser–
Shiryaev criteria of contiguity in terms of the Hellinger processes. The restricting
uniqueness hypothesis was removed by Klein and Schachermayer (see [45], [46], and
[44]). They discovered the importance of duality methods of geometric functional
analysis in the context of large financial markets and found non-trivial extensions of
NAA1 and NAA2 criteria for the case of incomplete market models. These criteria
were complemented in [37] by new ones. In particular, it was shown that the strong
asymptotic arbitrage is equivalent to the complete asymptotic separability of the
historic probabilities and equivalent martingale measures. Our presentation follows
the latter paper where also several modifications of classical models were analyzed
and necessary and sufficient conditions for absence of asymptotic arbitrage were
obtained in terms of model specifications.

In the terminology of [37], a large financial market is a sequence of ordinary semi-
martingale models of a frictionless market {(Bn, Sn, T n)}, where Bn is a stochastic
basis with the trivial initial σ-algebra. A semimartingale price process Sn takes val-
ues in Rd for some d = d(n). To simplify notation we shall often omit the superscript
for the time horizon.

We denote by Qn the set of all probability measures Qn equivalent to P n such
that Sn is a local martingale with respect to Qn. It is assumed that each set Qn of
equivalent local martingale measures is non-empty.

We define a trading strategy on (Bn, Sn, T n) as a predictable process Hn with
values in Rd such that the stochastic integral with respect to the semimartingale Sn

Hn · Sn is well-defined on [0, T ].

For a trading strategy Hn and an initial endowment xn the value process

V n = V (n, xn, Hn) := xn + Hn · Sn.

A sequence V n realizes asymptotic arbitrage of the first kind (AA1) if

(1a) V n
t ≥ 0 for all t ≤ T ;

(1b) limn V n
0 = 0 (i.e. limn xn = 0);

(1c) limn P n(V n
T ≥ 1) > 0.

A sequence V n realizes asymptotic arbitrage of the second kind (AA2) if

(2a) V n
t ≤ 1 for all t ≤ T ;

(2b) limn V n
0 > 0;

(2c) limn P n(V n
T ≥ ε) = 0 for any ε > 0.

A sequence V n realizes strong asymptotic arbitrage of the first kind (SAA1) if

(3a) V n
t ≥ 0 for all t ≤ T ;

(3b) limn V n
0 = 0 (i.e. limn xn = 0);

(3c) limn P n(V n
T ≥ 1) = 1.

One can continue and give also the definition SAA2. It is easy to understand
that the existence of SAA1 implies the existence of SAA2 and vice versa (provided
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that there are no specific constraints). So existence criteria are the same in both
cases.

A large security market {(Bn, Sn, T n)} has no asymptotic arbitrage of the first
kind (respectively, of the second kind) if for any subsequence (m) there are no value
processes V m realizing asymptotic arbitrage of the first kind (respectively, of the
second kind) for {(Bm, Sm, Tm)}.

To formulate the results we need to extend some notions from measure theory.

Let Q = {Q} be a family of probabilities on a measurable space (Ω,F). Define
the upper and lower envelopes of measures from Q as the set functions with

Q(A) := sup
Q∈Q

Q(A), Q(A) := inf
Q∈Q

Q(A), A ∈ F .

We say that Q is dominated if any element of Q is absolutely continuous with respect
to some fixed probability measure.

In our setting, where for every n a family Qn of equivalent local martingale
measures is given, we use the obvious notations Q

n
and Qn.

Generalizing in a straightforward way the well-known notion of contiguity to set
functions other than measures, we introduce the following definitions:

The sequence (P n) is contiguous with respect to (Q
n
) (notation: (P n) / (Q

n
))

when the implication

lim
n→∞Q

n
(An) = 0 ⇒ lim

n→∞P n(An) = 0

holds for any sequence An ∈ Fn, n ≥ 1.

Obviously, (P n) / (Q
n
) if and only if the implication

lim
n→∞ sup

Q∈Qn
EQgn = 0 ⇒ lim

n→∞EP ngn = 0

holds for any uniformly bounded sequence gn of positive Fn-measurable random
variables.

A sequence (P n) is asymptotically separable from (Q
n
) (notation: (P n)4 (Q

n
))

if there exists a subsequence (m) with sets Am ∈ Fm such that

lim
m→∞Q

m
(Am) = 0, lim

m→∞Pm(Am) = 1.

Proposition 5.5 The following conditions are equivalent:

(a) there is no asymptotic arbitrage of the first kind (NAA1);

(b) (P n) / (Q
n
);

(c) there exists a sequence Rn ∈ Qn such that (P n) / (Rn).

Proof. (b) ⇒ (a) Let (V n) be a sequence of value processes realizing asymptotic
arbitrage of the first kind. For any Q ∈ Qn the process V n is a non-negative local
Q-martingale, hence a Q-supermartingale, and

sup
Q∈Qn

EQV n
T ≤ sup

Q∈Qn
EQV n

0 = xn → 0
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by (1b). Thus,
Q

n
(V n

T ≥ 1) := sup
Q∈Qn

Q(V n
T ≥ 1) → 0

and, by contiguity (P n) / (Q
n
), we have P n(V n

T ≥ 1) → 0 in contradiction to (1c).

(a) ⇒ (b) Assume that (P n) is not contiguous with respect to (Q
n
). Taking, if

necessary, a subsequence we can find sets Γn ∈ Fn such that Q
n
(Γn) → 0, P n(Γn) →

γ as n →∞ where γ > 0. According to Proposition 4.7 the process

Xn
t = ess supQ∈QnEQ(IΓn |Fn

t )

is a supermartingale with respect to any Q ∈ Qn. By Theorem 4.6 it admits a
decomposition Xn = Xn

0 + Hn · Sn − An where An is an increasing process. Let
us show that V n := Xn

0 + Hn · Sn are value processes realizing AA1. Indeed,
V n = Xn + An ≥ 0,

V n
0 = sup

Q∈Qn
EQIΓn = Q

n
(Γn) → 0,

and

lim
n

P n(V n
T ≥ 1) ≥ lim

n
P n(Xn

T ≥ 1) = lim
n

P n(Xn
T = 1) = lim

n
P n(Γn) = γ > 0.

(b) ⇔ (c) This relation follows from the convexity of Qn and a general result
given below. 2

Proposition 5.6 Assume that for any n ≥ 1 we are given a probability space
(Ωn,Fn, P n) with a dominated family Qn of probability measures. Then the fol-
lowing conditions are equivalent:

(a) (P n) / (Q
n
);

(b) there is a sequence Rn ∈ convQn such that (P n) / (Rn);

(c) the following equality holds:

lim
α↓0

lim inf
n→∞ sup

Q∈convQn
H(α, Q, P n) = 1,

where H(α,Q, P ) =
∫
(dQ)α(dP )1−α is the Hellinger integral of order α ∈ ]0, 1[.

The sequence of sets of probability measures (Qn) is said to be weakly contiguous
with respect to (P n) (notation: (Qn) /w (P n)) if for any ε > 0 there are δ > 0 and
a sequence of measures Qn ∈ Qn such that for any sequence An ∈ Fn with the
property lim supn P n(An) < δ we have lim supn Qn(An) < ε.

For the case where the sets Qn are singletons containing only the measure Qn,
the relation (Qn) /w (P n) means simply that (Qn) / (P n).

Obviously, the property (Qn) /w (P n) can be formulated in terms of random
variables:

for any ε > 0 there are δ > 0 and a sequence of measures Qn ∈ Qn such that
for any sequence of Fn-measurable random variables gn taking values in the interval
[0, 1] with the property lim supn EP ngn < δ, we have lim supn EQngn < ε.
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Proposition 5.7 The following conditions are equivalent:

(a) there is no asymptotic arbitrage of the second kind (NAA2);

(b) (Qn) / (P n);

(c) (Qn) /w (P n).

The proof of Proposition 5.7 is similar to that of Proposition 5.5. Notice that the
conditions (b) in both statements look rather symmetric in contrast to the conditions
(c). In general, the condition (b) of Proposition 5.7 may hold though a sequence
Qn ∈ Qn such that (Qn) / (P n) does not exist (see an example in [45]). The reason
is that the set functions Q and Q are of a radically different nature.

The following assertion gives criteria of existence of strong asymptotic arbitrage.

Proposition 5.8 The following conditions are equivalent:

(a) there is SAA1;

(b) (P n)4 (Q
n
);

(c) (Qn)4 (P n);

(d) (P n)4 (Qn) for any sequence Qn ∈ Qn.

Let P and P̃ be two equivalent probability measures on a stochastic basis B
and let R := (P + P̃ )/2. Let us denote by z and z̃ the density processes of P
and P̃ with respect to R. For arbitrary α ∈]0, 1[ the process Y = Y (α) := zαz̃1−α

is an R-supermartingale admitting the multiplicative decomposition Y = ME(−h)
where M = M(α) is a local Q-martingale, E is the Doléan-Dade exponential, and
h = h(α, P, P̃ ) is an increasing predictable process, h0 = 0, called the Hellinger
process of order α. These Hellinger processes play an important role in criteria of
absolute continuity and, more generally, contiguity of probability measures, see [28]
for details.

In the abstract setting of Proposition 5.6 when the probability spaces are equipped
with filtrations (i.e. they are stochastic bases) we have the following results which
are helpful in analysis of particular models arising in mathematical finance.

Theorem 5.9 The following conditions are equivalent:

(a) (P n) / (Q
n
);

(b) for all ε > 0

lim
α↓0

lim sup
n→∞

inf
Q∈convQn

P n(h∞(α, Q, P n) ≥ ε) = 0.

Theorem 5.10 Assume that the family Qn is convex and dominated for any n.
Then the following conditions are equivalent:

(a) (Qn) / (P n);

(b) for all ε > 0

lim
α↓0

lim sup
n→∞

inf
Q∈Qn

Q(h∞(α, P n, Q) ≥ ε) = 0.
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The concept of contiguity is useful in relation with an important question whether
the option prices calculated in “approximating” models converge to the “true” option
price, see [24] and [58].

5.3 A large BS-market

Let (Ω,F ,F = (Ft), P ) be a stochastic basis with a countable set of independent one-
dimensional Wiener processes wi, i ∈ Z+, wn = (w0, . . . , wn), and let Fn = (Fn

t )
be a filtration generated by wn. For simplicity, assume that T is fixed.

The behavior of the stock prices is described by the following stochastic differ-
ential equations:

dX0
t = µ0X

0
t dt + σ0X

0
t dw0

t ,

dX i
t = µiX

i
tdt + σiX

i
t(γidw0

t + γ̄idwi
t), i ∈ N,

with (deterministic strictly positive) initial points X i
0. Here γi is a function taking

values in [0, 1[ and γ2
i + γ̄2

i = 1, We assume that µi, σi ∈ L2[0, T ] and σi > 0.

Notice that the process ξi with

dξi
t = γidw0

t + γ̄idwi
t, ξi

0 = 0,

is a Wiener process. Thus, in the case of constant coefficients price processes are
geometric Brownian motions as in the classical case of Black and Scholes. The
model is designed to reflect the fact that in the market there are two different types
of randomness: the first type is proper to each stock while the second one originates
from some common source and it is accumulated in a “stock index” (or “market
portfolio”) whose evolution is described by the first equation. Set

βi :=
γiσi

σ0

=
γiσiσ0

σ2
0

.

In the case of deterministic coefficients, βi is a well-known measure of risk which is
the covariance between the return on the asset with number i and the return on the
index, divided by the variance of the return on the index.

Let bn(t) := (b0(t), b1(t), ..., bn(t)) where

b0 := −µ0

σ0

, bi :=
βiµ0 − µi

σiγ̄i

.

Assume that for every n

∫ T

0
|bn(t)|2dt < ∞.

We consider the stochastic basis Bn = (Ω,F ,Fn = (Fn
t )t≤T , P n) with the (n + 1)-

dimensional semimartingale Sn := (X0
t , X1

t , . . . , Xn
t ) and P n := P |Fn

T . The sequence
{(Bn, Sn, T )} is a large security market. In our case each (Bn, Sn, T ) is a model of
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a complete market and the set Qn is a singleton which consists of the measure
Qn = ZT (bn)P n where

ZT (bn) := exp

{∫ T

0
(bn(t), dwn

t )− 1

2

∫ T

0
|bn(t)|2dt

}
.

The Hellinger process has an explicit expression

h(α, Qn, P n) =
α(1− α)

2

∫ T

0




(
µ0

σ0

)2

+
n∑

i=1

(
µi − βiµ0

σiγ̄i

)2

 ds.

As a corollary of Theorem 5.9 we have

Proposition 5.11 The condition NAA1 holds if and only if

∫ T

0




(
µ0

σ0

)2

+
∞∑

i=1

(
µi − βiµ0

σiγ̄i

)2

 ds < ∞.

In fact, in this model both conditions NAA1 and NAA2 hold simultaneously.

In the particular case of constant coefficients, finite T , and 0 < c ≤ σiγ̄i ≤ C we
get that the property NAA1 holds if and only if

∞∑

i=1

(µi − βiµ0)
2 < ∞,

i.e. the Huberman–Ross boundedness is fulfilled.

5.4 One-factor APM revisited

We consider the “stationary” one-factor model of the following specific structure
(cf. with the model given at the end of Subsection 5.1). Let (εi)i≥0 be independent
random variables given on a probability space (Ω,F , P ) and taking values in a finite
interval [−N, N ], Eεi = 0, Eε2

i = 1. At time zero all asset prices Si
0 = 1 and

∆S0
T = 1 + µ0 + σ0ε0,

∆Si
T = 1 + µi + σi(γiε0 + γ̄iεi), i ≥ 1.

The coefficients here are deterministic, σi > 0, γ̄i > 0 and γ2
i + γ̄2

i = 1. The asset
with number zero is interpreted as a market portfolio, γi is the correlation coefficient
between the rate of return for the market portfolio and the rate of return for the
asset with number i.

For n ≥ 0 we consider the stochastic basis Bn = (Ω,Fn,Fn = (Fn
t )t∈{0,1}, P n)

with the (n + 1)-dimensional random process Sn := (S0
t , S

1
t , . . . , S

n
t )t∈{0,1} where Fn

0

is the trivial σ-algebra, Fn
1 = Fn := σ{ε0, ..., εn}, and P n = P |Fn. According to

our definition, the sequence M = {(Bn,Sn, 1)} is a large security market.
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Let βi := γiσi/σ0,

b0 := −µ0

σ0

, bi :=
µ0βi − µi

σiγ̄i

, i ≥ 1.

It is convenient to rewrite the price increments as follows:

∆S0
T = 1 + σ0(ε0 − b0),

∆Si
T = 1 + σiγi(ε0 − b0) + σiγ̄i(εi − bi)), i ≥ 1.

The set Qn of equivalent martingale measures for Sn has a very simple descrip-
tion: Q ∈ Qn iff Q ∼ P n and

EQ(εi − bi) = 0, 0 ≤ i ≤ n,

i.e. the bi are mean values of εi under Q. Obviously, Qn 6= ∅ iff P (εi > bi) > 0 and
P (εi < bi) > 0 for all i ≤ n.

As usual, we assume that Qn 6= ∅ for all n; this implies, in particular, that
|bi| < N .

Let Fi be the distribution function of εi. Put

si := inf{t : Fi(t) > 0}, s̄i := inf{t : Fi(t) = 1},

di := bi − si, d̄i := s̄i − bi, and di := di ∧ d̄i. In other words, di is the distance from
bi to the end points of the interval [si, s̄i].

Proposition 5.12 The following assertions hold:

(a) infi di = 0 ⇔ SAA ⇔ (P n)4 (Q
n
),

(b) infi di > 0 ⇔ NAA1 ⇔ (P n) / (Q
n
),

(c) lim supi |bi| = 0 ⇔ NAA2 ⇔ (Qn) / (P n).

The hypothesis that the distributions of εi have finite support is important: it
excludes the case where the value of every non-trivial portfolio is negative with
positive probability. For the proof of this result, we send the reader to the original
paper [37].

A Facts from convex analysis

1. By definition, a subset K in Rn (or in a linear space X) is a cone if it is convex
and stable under multiplication by the non-negative constants. It defines the partial
ordering:

x ≥K y ⇔ x− y ∈ K;

in particular, x ≥K 0 means that x ∈ K.
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A closed cone K is proper if the linear space F := K ∩ (−K) = {0}, i.e. if the
relations x ≥K and x ≤K= 0 imply that x = 0.

Let K be a closed cone and let π : Rn → Rn/F be the canonical mapping onto
the quotient space. Then πK is a proper closed cone.

For a set C we denote by cone C the set of all conic combinations of elements
of C. If C is convex then cone C = ∪λ≥0λC.

Let K be a cone. Its dual positive cone

K∗ := {z ∈ Rn : zx ≥ 0 ∀x ∈ K}

is closed (the dual cone K◦ is defined using the opposite inequality, i.e. K◦ = −K∗);
K is closed if and only if K = K∗∗.

We use the notations int K for the interior of K and ri K for the relative interior
(i.e., the interior in K −K, the linear subspace generated by K).

A closed cone K in the Euclidean space Rn is proper if and only if there exists
a compact convex set C such that 0 /∈ C and K = cone C. One can take as C the
convex hull of the intersection of K with the unit sphere {x ∈ Rn : |x| = 1}.

A closed cone K is proper if and only if int K∗ 6= ∅.
We have

ri K∗ = {w : wx > 0 ∀x ∈ K, x 6= F};
in particular, if K is proper then

int K∗ = {w : wx > 0 ∀x ∈ K, x 6= 0}.

By definition, the cone K is polyhedral if it is the intersection of a finite number
of half-spaces {x : pix ≥ 0}, pi ∈ Rn, i = 1, ..., N .

The Farkas–Minkowski–Weyl theorem:

a cone is polyhedral if and only if it is finitely generated.

The following result is a direct generalization of the Stiemke lemma.

Lemma A.1 Let K and R be closed cones in Rn. Assume that K is proper. Then

R ∩K = {0} ⇔ (−R∗) ∩ int K∗ 6= ∅.

Proof. (⇐) The existence of w such that wx ≤ 0 for all x ∈ R and wy > 0 for all y
in K \ {0} obviously implies that R and K \ {0} are disjoint.

(⇒) Let C be a convex compact set such that 0 /∈ C and K = cone C. By the
separation theorem (for the case where one set is closed and another is compact)
there is a non-zero z ∈ Rn such that

sup
x∈R

zx < inf
y∈C

zy.
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Since R is a cone, the left-hand side of this inequality is zero, hence z ∈ −R∗ and,
also, zy > 0 for all y ∈ C. The latter property implies that zy > 0 for z ∈ K, z 6= 0,
and we have z ∈ int K. 2

In the classical Stiemke lemma K = Rn and R = {y ∈ Rn : y = Bx, x ∈ Rd}
where B is a linear mapping. Usually, it is formulated as the alternative:

either there is x ∈ Rd such that Bx ≥K 0 and Bx 6= 0 or there is y ∈ Rn with
strictly positive components such that B∗y = 0.

Lemma A.1 can be slightly generalized.

Let π be the natural projection of Rn onto Rn/F .

Theorem A.2 Let K and R be closed cones in Rn. Assume that the cone πR is
closed. Then

R ∩K ⊆ F ⇔ (−R∗) ∩ ri K∗ 6= ∅.

Proof. It is easy to see that π(R ∩K) = πR ∩ πK and, hence,

R ∩K ⊆ F ⇔ πR ∩ πK = {0}.

By Lemma A.1

πR ∩ πK = {0} ⇔ (−πR)∗ ∩ int (πK)∗ 6= ∅.

Since (πR)∗ = π∗−1R∗ and int (πK)∗ = π∗−1(ri K∗), the condition in the right-hand
side can be written as

π∗−1((−R∗) ∩ ri K∗) 6= ∅
or, equivalently,

(−R∗) ∩ ri K∗ ∩ Im π∗ 6= ∅.
But Im π∗ = (K ∩ (−K))∗ = K∗ −K∗ ⊇ ri K∗ and we get the result. 2

Notice that if R is polyhedral then πR is also polyhedral, hence closed.

2. The following result is referred to as the Kreps–Yan theorem, see [48], [63], [5].
It holds for arbitrary p ∈ [1,∞], p−1 + q−1 = 1, but the cases p = 1 and p = ∞ are
the most important.

Theorem A.3 Let C be a convex cone in Lp closed in σ{Lp, Lq}, containing −Lp
+

and such that C ∩ Lp
+ = {0}. Then there is P̃ ∼ P with dP̃/dP ∈ Lq such that

Ẽξ ≤ 0 for all ξ ∈ C.

Proof. By the Hahn–Banach theorem any non-zero x ∈ Lp
+ := Lp(R+,F) can be

separated from C: there is a zx ∈ Lq such that Ezxx > 0 and Ezxξ ≤ 0 for all ξ ∈ C.
Since C ⊇ −Lp

+, the latter property yields that zx ≥ 0; we may assume ||zx||q = 1.
By the Halmos–Savage lemma the dominated family {Px = zxP : x ∈ Lp

+, x 6= 0}
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contains a countable equivalent family {Pxi
}. But then z :=

∑
2−izxi

> 0 and we
can take P̃ := zP . 2

Recall that the Halmos–Savage lemma, though important, is, in fact, very simple.
It suffices to prove its claim for the case of a convex family (in our situation we even
have this property). A family {Pxi

} such that the sequence I{zxi>0} increases to
ess sup I{zx>0} (existing because of convexity) meets the requirement.

The above theorem has the following “purely geometric” version, [5].

Theorem A.4 Suppose J and K are non-empty convex cones in a separable Banach
space X such that J ∩K − J = {0}. Then there is a continuous linear functional z
such that zx > 0 ∀x ∈ J and zx ≤ 0 ∀x ∈ K.

The first step of the proof is the same as of the previous theorem: the separa-
tion of single points allows us to construct the set of {zx ∈ X ′, x ∈ K} with unit
norms. The second step is to select a countable weak∗ dense subset. This can be
done because the separability of X implies that the weak∗-topologie on the unit ball
of X ′ (always weak∗ compact) is metrisable. For the Lebesgue spaces the separa-
bility means that the σ-algebra is countably generated. Specific properties of these
spaces allow us, by means of the Halmos–Savage lemma, to avoid such an unpleasant
assumption on the σ-algebra.
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bounded densities. Séminaire de Probabilités. To appear.

[44] Klein I. A Fundamental Theorem of Asset Pricing for large financial markets.
Preprint.

38



[45] Klein I., Schachermayer W. Asymptotic arbitrage in non-complete large finan-
cial markets. Probability Theory and its Applications, 41 (1996), 4, 927–934.

[46] Klein I., Schachermayer W. A quantitative and a dual version of the Halmos–
Savage theorem with applications to mathematical finance. Annals of Proba-
bility, 24 (1996), 2, 867–881.

[47] Kramkov D.O. Optional decomposition of supermartingales and hedging in in-
complete security markets. Probability Theory and Related Fields, 105 (1996),
4, 459–479.

[48] Kreps D.M. Arbitrage and equilibrium in economies with infinitely many com-
modities. J. Math. Economics, 8 (1981), 15-35.

[49] Levental S., Skorohod, A.V. On the possibility of hedging options in the pres-
ence of transaction costs. The Annals of Applied Probability, 7 (1997), 410–443.
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