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Abstract

We show that for a local martingale S the equivalent martingale measures
with bounded densities are norm-dense in the set of equivalent martingale
measures.

1 Main results

We show that for a local martingale S, the equivalent martingale measures with
bounded densities are dense in the set of all equivalent martingale measures (in the
total variation topology). To our knowledge, in spite of several attempts, a complete
proof of this natural and useful property announced in [8] is still not available. In
contrast to the approach of [12] trying to use rather delicate duality results for
semimartingales, our arguments are based on a direct approximation and rely upon
the same technology as in [6] and [10] and which goes back to the proof of the no-
arbitrage criteria in [4]. They work without any changes for a slightly more general
type of processes, namely, for σ-martingales and σ-supermartingales (see Section 5).

Let S = (St)t∈R+ be a d-dimensional semimartingale defined on a stochastic basis
(Ω,F ,F = (Ft), P ). We assume that the initial σ-algebra F0 is trivial.

Recall that S is a σ-martingale (notation: S ∈ Σm(P )) if there is a predictable
process G with values in ]0, 1] such that the integral G · S is a local martingale (in
this case one can do better and find G̃ for which G̃ ·S is a martingale). This concept,
extending the notion of local martingale, was introduced in [1] and investigated in
details in [5]. Its importance for mathematical finance was discovered in [3]. In our
analysis we shall use a simple characterization of σ-martingales suggested in [10].

Let Qσ := {Q ∼ P : S ∈ Σm(Q)} and let Qσ
b := {Q ∈ Qσ : dQ/dP ∈ L∞}.

Theorem 1.1 If S ∈ Σm(P ), then the set Qσ
b is dense in Qσ in the total variation

topology.
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Notice that the total variation distance on Qσ coincides with the L1-distance
between the densities.

If S is a local martingale with respect to P then S remains a local martingale
with respect to all measures in Qσ

b (see n.2 of Section 2) and hence we have

Corollary 1.2 If S ∈Mloc(P ) then Qσ
b is dense in Q := {Q ∼ P : S ∈Mloc(Q)}.

If P,Q ∈ Qσ then the measure Qε := εP + (1− ε)Q, ε ∈]0, 1[, is also in Qσ and

ε ≤ dQε/dP ≤ ε + (1− ε)dQ/dP.

Since Qε converges to P as ε → 0, we can replace Qσ
b in the above statements by

Qσ
bb := {Q ∈ Qσ : dQ/dP ∈ L∞, dP/dQ ∈ L∞}.

In the general case, when the reference probability P is arbitrary, it is often
asked, whether the equivalent martingale measures with densities satisfying a certain
integrability condition (e.g. with bounded entropy), are dense in the set of all
equivalent martingale measures. The following corollary of Theorem 1.1 provides an
answer useful in various applications.

Let ϕ : ]0,∞[→ R+ be a measurable function and let

Qϕ := {Q ∈ Qσ : Eϕ(dQ/dP ) < ∞}.

Corollary 1.3 Assume that ϕ is such that for every c, x > 0

ϕ(cx) ≤ r1(c)ϕ(x) + r2(c)(x + 1),

where ri are increasing positive functions. If the set Qσ
ϕ 6= ∅, then it is dense in Qσ.

Proof. Let P̃ ∈ Qσ
ϕ. Take an arbitrary measure Q ∈ Qσ. By the above theorem

there exists a sequence Qn ∈ Qσ converging to Q such that each density dQn/dP̃ is
bounded by a constant cn. We have:

Eϕ

(
dQn

dP

)
= Eϕ

(
dQn

dP̃

dP̃

dP

)
≤ r1(cn)Eϕ

(
dP̃

dP

)
+ 2r2(cn) < ∞.

Hence Qn ∈ Qσ
ϕ and the result follows. 2

Typically, ϕ(x) = xp, p > 0, or ϕ(x) = x(ln x)+. In particular, if non-empty, the
set Qσ

x ln x of σ-martingale measures with finite entropy is dense in Qσ.

Corollary 1.4 Assume that Qσ
ϕ 6= ∅ where the function ϕ satisfies the hypothesis

of Corollary 1.3. Let ξ be a random variable bounded from below. Then

sup
Q∈Qσ

EQξ = sup
Q∈Qσ

ϕ

EQξ. (1)
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Proof. It is sufficient to check that for any Q ∈ Qσ we have the inequality

EQξ ≤ sup
Q∈Qσ

ϕ

EQξ. (2)

In virtue of Corollary 1.3 there is a sequence Rn ∈ Qσ
ϕ converging to Q. Hence for

every m ∈ N
EQ(ξ ∧m) = lim

n→∞ERn(ξ ∧m) ≤ sup
Q∈Qσ

ϕ

EQξ.

The inequality (2) follows by monotone convergence. 2

For ϕ(x) = x(ln x)+ the assertions of Corollaries 1.3 and 1.4 coincide with those
of Lemma 7 and Corollary 12 of [2], which were proved under the assumption on
continuity of all martingales. This extension allows us to remove this restrictive
hypothesis also in Proposition 11 of [2] on risk-averse asymptotics in a problem of
exponential utility maximization.

2 Preliminaries from stochastic calculus

1. Before the proof we recall notations and basic facts on the canonical decomposi-
tion and the Girsanov theorem for semimartingales (see [9] for details).

Let (B, C, ν) be the triplet of predictable characteristics of an n-dimensional
semimartingale X corresponding to the truncation function h(x) := xI{|x|≤1}. Let
h̄ := x− h. Then X can be written in the so-called canonical form

X = Xc + h ∗ (µ− ν) + h̄ ∗ µ + B,

which is nothing but a generalization of the Lévy representation for processes with
independent increments. Recall that ν is the compensator of the jump measure µ of
X. The process h̄∗µ represents the sum of “large” jumps. The remaining part of X
is a special semimartingale which can be uniquely decomposed in a continuous local
martingale Xc, a purely discontinuous local martingale h ∗ (µ− ν) (of compensated
jumps), and a predictable process of bounded variation B. The matrix-valued pro-
cess C = 〈Xc〉 is the quadratic variation of the continuous martingale components.

For each ω the measure ν(ω, dt, dx) on the product space can be desintegrated,
i.e. represented as

ν(ω, dt, dx) = dAt(ω)Kω,t(dx).

The predictable characteristics being defined up to P -null sets, there is enough
freedom to do this in a measurable way. One can always work a “good” version of
the triplet, assuming without loss of generality that ν is of the above form where A
is a predictable increasing càdlàg process while Kω,t(dx) is a transition kernel from
(Ω×R+, P̃) into (Rn,Bn) with K({0}) = 0 and

∫
(|x|2 ∧ 1)Kω,t(dx) < ∞.
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Moreover, A can be chosen to ensure the following properties (see [9], II.2.9):

B = b · A, C = c · A,

where b and c are predictable;

if ∆At(ω) > 0 then ∆At(ω)Kω,t(R
n) ≤ 1 and bt(ω) =

∫
h(x)Kω,t(dx).

Let m(dω, dt) := P (dω)dAt(ω). The notations P̃ := P⊗Bn and at := ν({t},Rn)
are standard. We write Kω,t(Y ) instead of

∫
Y (x)Kω,t(dx) and omit often ω, t. Using

this abbreviation we put θ := K(|x|2 ∧ |x|).
2. A semimartingale X is a local martingale if and only if the following two

conditions hold:

(a) (|x|2 ∧ |x|) ∗ νt < ∞ for all t;

(b) B + h̄ ∗ ν = 0.

The corresponding characterization of σ-martingales is as follows:

X ∈ Σm(P ) (with 1/G := 1 + θ) ⇔ θ < ∞ and b + K(h̄) = 0 m-a.e.

Since the process (|x|2∧1)∗ν is always finite, (a) holds if and only if the process
|h̄| ∗ ν is finite (i.e. S is locally integrable). The condition (b) (which means that
−B is the compensator of large jumps of X) can be rewritten as

(b + K(h̄)) · A = 0.

This makes clear the difference between a local martingale and a σ-martingale: the
compensation property on the level of intensities holds for both but for the latter the
integral h̄ ∗ ν may not be defined. If X ∈ Σm is locally integrable then X ∈Mloc.

3. Let P 0 ∼ P and let Z0 be the density process of P 0 with respect to P . The
general Girsanov theorem [9], III.3.24, in connection with [9], III.5.7, provides the
existence of a predictable Rn-valued process β0 and a strictly positive P̃-measurable
function Y 0 = Y 0(ω, t, x) such that

H∞(β0, Y 0) := β0∗cβ0 · A∞ + (1−
√

Y 0)2 ∗ ν∞ +
∑

s≥0

(
√

1− as −
√

1− Ŷ 0
s )2 < ∞,

{0 < a < 1} = {0 < Ŷ 0 < 1}, {a = 1} = {Ŷ 0 = 1} where

Ŷ 0 := K(Y 0)∆A,

and the triplet of predictable characteristics (B0, C0, ν0) under P 0 has the form:

B0 = B + cβ0 · A + K(h(Y 0 − 1)) · A,

C0 = C, ν0 = Y 0ν.

The function Y 0 can be calculated as a kind of conditional expectation:

Y 0 = MP
µ (Z0/Z0

−|P̃),
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where MP
µ means the average with respect to µ(ω, dt, dx)P (dw). The process β is

any predictable solution of the (vector) equation

cβ · A = (1/Z0) · 〈Zc, Xc〉.

In virtue of the above criteria, X ∈ Σ(P 0) if and only if

K((|x|2 ∧ |x|)Y 0) < ∞, m-a.s. (3)

cβ0 + K(x(Y 0 − 1)) = 0 m-a.s. (4)

4. Let P 1 be another measure equivalent to P . It is well-known that for any
pair of probability measures there exists a predictable increasing process h(P 0, P 1)
starting from zero such that for any stopping time τ

||P 0
τ − P 1

τ || ≤ 4
√

E0hτ (P 0, P 1).

In our case this so-called Hellinger process has the following structure, see [11].

Let the martingales Zi be the density processes of P i with respect to P . Then

ht(P
0, P 1) =

1

8
〈M0c −M1c〉t +

1

2
K((

√
Y 1 −

√
Y 0)2) · At

+
1

2

∑

s≤t

(
√

1− Ŷ 1
s −

√
1− Ŷ 0

s )2.

where M i := (1/Zi) · Zi (hence M ic = (1/Zi) · Zic).

3 Proof of Theorem 1.1

Let P 0 ∈ Qσ and let Z0 be the density process of the measure P 0 with respect to
P . We shall work with the semimartingale X = (S, Z0) taking values in Rn where
n = d + 1.

We shall denote by π the natural projection on the first d coordinates.

The semimartingale X can be represented as follows:

S = S0 + Sc + π(x)I{|x|≤1} ∗ (µ− ν) + π(x)I{|x|>1} ∗ µ + π(B),

Z0 = 1 + Z0c + xd+1 ∗ (µ− ν).

Since S ∈ Σm(P ) and Z0 is a martingale we have m-a.e. that K(|x|2∧|x|) < ∞ and

K(xI{|x|>1}) = −b.

The idea of the proof is to approximate P 0 by a measure P 1 with bounded Y 1

close enough to Y 0 and preserving the “compensation” property (4).
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Since S ∈ Σm(P 0) we can add to the usual integrability conditions

θ0 := K((|x|2 ∧ 1)Y 0) < ∞, m-a.e.,

K((1−
√

Y 0)2) < ∞, m-a.e.,

the following one:
K((|π(x)|2 ∧ |π(x)|)Y 0) < ∞, m-a.e.

Remark 3.1 The integrability of functions |x|2∧|x|, (|x|2∧|x|)Y 0, (1−
√

Y 0)2 with
respect to K implies the integrability of |x||Y 0 − 1|. Moreover, if K is finite, then
Y 0 is also integrable. We leave this easy exercise to the reader.

Let Y be the set of functions Y > 0, Y ∈ C(R̄n); Y with its Borel σ-algebra Y
is a Lusin space.

Let δ = (δt) be a strictly positive predictable process such that δ · A∞ < ε.

For every (ω, t) we consider in Y the convex subsets

Γ1
ω,t := {Y : Kω,t((

√
Y −

√
Y 0(ω, t))2) ≤ δt(ω)},

Γ2
ω,t := {Y : Kω,t((Y − 1)π(x)) = Kω,t((Y

0(ω, t)− 1)π(x))},
Γ3

ω,t := {Y : I{at(ω)>0}Kω,t(Y ) = I{at(ω)>0}Kω,t(Y
0(ω, t))}.

Put
Γω,t := Γ1

ω,t ∩ Γ2
ω,t ∩ Γ3

ω,t.

In virtue of Lemma 4.1, these subsets are non-empty m-a.e. and hence, by the
measurable selection theorem, there is a predictable Y-valued process Y ′(ω, t, x)
such that Y ′(ω, t, .) ∈ Γω,t m-a.e. Being continuous in variable x, the function

(ω, t, x) 7→ Y ′(ω, t, x)

is P̃-measurable.

Take τN := inf{t : Ht ≥ N}, where

Ht :=
1

8
〈M0c〉t +

1

2
K(1−

√
Y 0)2 · At +

1

2

∑

s≤t

(
√

1− as −
√

1− Ŷ 0
s )2.

Then HτN
≤ N + 1. Let

Y r(ω, t, x) := Y ′(ω, t, x)I{||Y ′(ω,t,.)||≤r} + I{||Y ′(ω,t,.)||>r}

where ||.|| is the uniform norm. Choose r = rN large enough to ensure the inequality

E0I{||Y ′||>r} ·HτN
< ε.
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Define the process Z (depending on N) as the solution of the linear equation

Z = 1 + ZI{||Y ′||≤r} ·M0c + Z−

(
Y r − 1 +

Ŷ r − 1

1− a
1{a<1}

)
∗ (µ− ν).

It is a strictly positive local martingale which is locally bounded. Let us consider
the localizing sequence τN,n := inf{t : Zt ≥ n}. We put σN,n := τN ∧ τN,n and
define the probability measure P 1 := ZσN,n

P equivalent to P . It is obvious that
S ∈ Σm(P 1).

Choose n and N large enough to have

||P 0 − P 0
σN,n

|| = E|Z0
∞ − Z0

σN,n
| ≤ ε.

Since

||P 0 − P 1|| ≤ ||P 0 − P 0
σN,n

||+ ||P 0
σN,n

− P 1|| ≤ ε + 4
√

E0hσN,n
(P 1, P 0)

and
E0hσN,n

(P 1, P 0) ≤ 2ε,

we conclude that P 0 can be arbitrary close approximated by measures from Qσ with
bounded densities. 2

4 Key lemma

Let K be a measure on Rn such that K({0}) = 0 and

K(|x|2 ∧ |x|) < ∞. (5)

We introduce the set U of strictly positive Borel functions on Rn such that:

K((|x|2 ∧ 1)Y ) < ∞, (6)

K((|π(x)|2 ∧ |π(x)|)Y ) < ∞, (7)

K((1−
√

Y )2) < ∞. (8)

Let U0 := U ∩ C(R̄n).

Lemma 4.1 Let Y 0 ∈ U and δ > 0. Then there exists Y ∈ U0 with

K((
√

Y −
√

Y 0)2) < δ (9)

and such that
K((Y − 1)π(x)) = K((Y 0 − 1)π(x)). (10)

Moreover, if K is finite, Y can be chosen to satisfy the equality K(Y ) = K(Y 0).
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Proof. Let G be the set of Y ∈ U satisfying (9) and let G0 := G ∩ C(R̄n). Let
φ : Rn → Rp be a Borel function such that

K(|1− Y ||φ|) < ∞ ∀Y ∈ U. (11)

We show that there exists Y ∈ G0 such that

K((Y − 1)φ) = K((Y 0 − 1)φ). (12)

This claim implies the assertion of the lemma because the integrability property
(11) holds for φ = π and, in the case of finite K, for the mapping φ : Rn → Rn

with φi(x) = xi, i ≤ n− 1, φn(x) = 1, see Remark 3.1.

Notice that (12) is a system of linear equations and we can exclude from con-
sideration any equation which is a linear combinations of the others. So, we may
assume without loss of generality that the components of the function (Y 0−1)φ are
linearly independent as elements of the vector space L1(K).

Since G and G0 are convex, their images under the affine mapping

Φ : Y 7→ K((Y − Y 0)φ)

are convex sets in Rp. Our claim can be reformulated as 0 ∈ Φ(G0). We prove that
0 ∈ ri Φ(G0) by checking the following two properties:

(a) 0 ∈ ri Φ(G),

(b) Φ(G0) is a dense subset of Φ(G) and hence ri Φ(G0) = ri Φ(G).

(The last equality is due to the following simple fact: if A and B are convex sets
in Rp and B is dense in A then their relative interiors coincide, see, e.g., Proposition
III.2.1.8 in [7].)

Assume that 0 /∈ ri Φ(G). Then there exists a linear functional l 6= 0 such that

〈l,K((Y − Y 0))φ)〉 ≥ 0 ∀Y ∈ G.

Take a strictly positive (K-a.e.) Borel function f < Y 0 such that K(f) < δ (the
requirements are met by the function f = cgY 0 where

g =
|x|2 ∧ |1|

1 + |x|2 ∧ |1|
and c > 0 is sufficiently small). For every Borel set A the functions Y := Y 0 ± fIA

belong to G because

(
√

Y −
√

Y 0)2 ≤ |Y − Y 0| = fIA.

It follows that ±K(〈l, φ〉fIA) ≥ 0. Hence 〈l, φ〉 = 0 K-a.e. This implies that
〈l, (Y 0 − 1)φ〉 = 0 K-a.e. in contradiction with the assumed linear independence.

It remains to check (b). First of all, we observe that (11) implies that

K(|Y 1 − Y 2||φ|) < ∞ Y 1, Y 2 ∈ U.
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Using this property for Y 0 and Y 0 + cg we infer that for every ε > 0

K(I{|x|≥ε}|φ|) < ∞. (13)

Recall that for any finite measure on R̄n an integrable function y can be approx-
imated in L1 by a sequence yk ∈ C(R̄n); if y ≥ 0 then yk can be chosen strictly
positive (replace yk by yk ∨ 0 + 1/n).

Fix Y ∈ G. For any r > 0 the measure Kr := (1 + |φ|)I{|x|≥r}K is finite and
Y ∈ L1(Kr). By the above remarks there is yr ∈ C(R̄n) such that yr > 0 and

||Y − yr||L1(Kr) ≤ r.

Since Y ∈ L1(Kr/2), there exists r0 = r0(r) such that r/2 < r0 < r and

K(I{r0<|x|<r}(1 + |φ|)Y ) ≤ r.

Let ỹr be a continuous function on {x : r0 ≤ |x| ≤ r}, equal to unit on {x : |x| = r0},
coinciding with yr on {x : |x| = r}, and such that

K(I{r0<|x|<r}(1 + |φ|)ỹr) ≤ r.

Define
Yr := I{|x|≤r0} + ỹrI{r0<|x|<r} + I{|x|>r}yr.

Since

K((
√

Yr −
√

Y )2) ≤ K(I{|x|≤r0}(1−
√

Y )2) + K(I{r0<|x|<r}(ỹr + Y ))

+K(I{|x|≥r}(
√

yr −
√

Y )2) → 0, r → 0,

we have
lim
r→0

K((
√

Yr −
√

Y 0)2) < δ.

Thus, Yr ∈ G0 for sufficiently small r.

At last,

|Φ(Yr)− Φ(Y )| ≤ K(I{|x|≤r0}|1− Y ||φ|) + K(I{r0<|x|<r}(ỹr + Y )|φ|)
+K(I{|x|≥r}|yr − Y ||φ|) → 0, r → 0,

and the result follows. 2

5 Final comments

We say that a semimartingale S is is a σ-supermartingale (notation: S ∈ Σsup(P ))
if there is a predictable process G with values in ]0, 1] such that the process G · S
is a supermartingale. Obviously, S ∈ Σsup(P ) if and only if K(|x|2 ∧ |x|) < ∞ and
b + K(h̄) ≤ 0 m-a.e.

Let Q̃σ := {Q ∼ P : S ∈ Σsup(Q)} and let Q̃σ
b := {Q ∈ Qσ : dQ/dP ∈ L∞}.
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Theorem 5.1 If S ∈ Σsup(P ), then the set Q̃σ
b is dense in Q̃σ.

Our proof of Theorem 1.1 remains literally the same for this result as well. The
formulations of the corollaries can be also extended in a similar way. One can
observe that Theorem 1.1 follows from Theorem 5.1 because S ∈ Σm(P ) if and only
if (S,−S) ∈ Σsup(P ).

Let us associate with S the set X of processes bounded from below which can be
represented as stochastic integrals H · S. We denote by Qsup the set of probability
measures Q ∼ P such that every V ∈ X is a Q-supermartingale.

Theorem 1.1 implies the following assertion announced in [12].

Theorem 5.2 Assume that S ∈ Σm(P ). Then Qσ
b is a dense subset of Qsup.

Indeed, if Q ∈ Qsup then EQV∞ ≤ 0 for every V ∈ X . Thus Q belongs to the set
of equivalent separating measures containing Qσ as a dense subset, see [3] and [10].
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