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1. Introduction

The main conclusion of the famous Capital Asset Pricing Model (CAPM) in-
vented by Lintner and Sharp is the following: Assume that an asseti has mean
excess returnµi and varianceσ2

i , the market portfolio has mean excess returnµ0

and varianceσ2
0. Let γi be the correlation coefficient between the return on the

asseti and the market portfolio. Thenµi = µ0βi whereβi := σi γi /σ0. Though
CAPM reveals this remarkable linear relation it has been under strong criti-
cism, in particular, because empirical (βi , µi ) values do not follow in the precise
manner the security market line. The alternative approach, the Arbitrage Pricing
Model (APM), was suggested by Ross in [20]. Based on the idea of asymptotic
arbitrage it has attracted considerable attention, see, e.g., [4], [5], [12], [13], and
was extended to the Arbitrage Pricing Theory (APT). An important reference is
the note by Huberman [11] (also reprinted in the volume “Theory of Valuation”
[3]1) who gave a rigorous definition of the asymptotic arbitrage as well as a short
and transparent proof of the fundamental result of Ross.

In a one-factor version the APM is fairly simple. Assume that the discounted
returns on assets are described as follows:

xi = µi + βi ε0 + ηi

where the random variablesε0 andηi have zero mean, theηi are orthogonal and
their variances are bounded. Consider a sequence of “economies” or, better to
say, “market models” such that then-th model involves only the firstn securities.
Thearbitrage portfolioin then-th model is a vectorϕn ∈ Rn such thatϕnen = 0
with en = (1, . . . , 1) ∈ Rn. The return on the portfolioϕ is

V (ϕn) = ϕnsn

wheresn = (x1, . . . , xn). Asymptotic arbitrageis the existence of a subsequence
of arbitrage portfolios (ϕn′

) (i.e. portfolios with zero initial endowments) whose
discounted returns satisfy the relations:EV(ϕn′

) → ∞, σ2(V (ϕn′
)) → 0. If there

is no asymptotic arbitrage then there exists a constantµ0 such that

∞∑
i =1

(µi − µ0βi )
2 < ∞.

This means that between the parameters there is the “approximately linear” re-
lation µi ≈ µ0βi . We shall discuss this model under some further restrictions
in Section 6 and show that, in spite of the difference in definitions, the absence
of asymptotic arbitrage always implies that the (βi , µi )’s “almost” lay on the
security market line.

1 The reader can find a lot of relevant information in this book, which is a collection of the most
significant papers published from 1973 to 1986 accompanied by original essays of experts in the
field.
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Note that the approach of APT is based on the assumption that agents have
some risk-preferences and in the asymptotic setting they may accept the possibil-
ity of large losses with small probabilities; the variance is taken as an appropriate
measure of risk.

A striking feature of the classic APT is that it completely ignores the problem
of the existence of an equivalent martingale measure which is a key point of
the Fundamental Theorem of Asset Pricing. In the modern dynamic setting an
agent is absolutely risk-averse (at least, “asymptotically”), i.e. he considers as
arbitrage opportunities only riskless strategies. This concept seems to be dominant
in mathematical finance because of the great success of the Black–Scholes model
where the no-arbitrage pricing is such that the option writer avoids any risk.

A problem of extension of APT to the intertemporal setting of continuous
time finance was solved in our previous article [16] on the basis of an approach
synthesizing ideas of both arbitrage theories; it was shown that the Ross pricing
bound has a natural analog in terms of the boundedness of the Hellinger process.

In this paper we continue to study asymptotic arbitrage in the framework
of continuous trading (including discrete time multi-stage models as a particular
case). On an informal level one can think about a “real-world” financial market
with a “large” (unbounded) number of traded securities. An investor is faced with
the problem of choosing a “reasonably large” numbern of securities to make a
self-financing portfolio. Starting from an initial endowmentV n

0 , a trading strategy
ϕ leads to the final valueV n

T (ϕ) where the strategyϕ and the time horizonT
also depend onn. If an “infinitesimally” small endowment gives an “essential”
gain with a positive probability (without any losses) we say that there exists an
asymptotic arbitrage. To give a precise meaning to the above notions, it seems
natural to consider an approximation of a “real-world” market by a sequence of
models (i.e. filtered probability spaces with semimartingales describing dynamics
of prices of chosen securities) rather than a fixed model as in the traditional
theory. Such a device is of common use in mathematical statistics and results of
the latter can be applied in a financial context.

In [16] we formalized the concept of a large financial market and introduced
the notions of asymptotic arbitrage of the first and second kind. It was shown
that under the assumption of completeness of any particular market model the
absence of asymptotic arbitrage of the first kind is equivalent to the contiguity
of the sequence of the “objective” (reference) probabilities with respect to the
sequence of the equivalent martingale measures (which is unique in the complete
case). The criterion of the absence of asymptotic arbitrage of the second kind is
symmetric: the contiguity of the sequence of the equivalent martingale measures
with respect to the sequence of the “objective” probabilities. A theory of con-
tiguity of probability measures on filtered spaces is well-developed (for a nice
and complete exposition see [14]); it was applied in [16] to a particular model
which can be referred to as a “large Black–Scholes market”.

In recent work Klein and Schachermayer [17] made essential progress by
extending the no-arbitrage criteria to the incomplete case though under the re-
striction that the price processes are locally bounded. They discovered that there
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is no asymptotic arbitrage of the first kind if and only if the sequence of the “ob-
jective” probabilities is contiguous with respect tosomesequence of equivalent
martingale measures. They also proved the surprising result that the correspond-
ing criteria for the absence of asymptotic arbitrage of the second kind is not a
symmetric version of the latter and involves a certain “ε-δ condition”.

Here we continue to develop the theory initiated in [16] starting with some
ramifications and extensions of results of Klein and Schachermayer [17] and
polishing up simultaneously their original proofs by applications of the minimax
theorem. We introduce alternative criteria relating the absence of arbitrage with
contiguity of upper and lower envelopes of equivalent martingale measures; these
criteria look fairly symmetric, cf. the conditions (b) of Propositions 2 and 3, but,
of course, upper and lower envelopes are set functions with radically different
properties. We also show that asymptotic arbitrage with probability one (“strong
AA”) is related to the (entire) asymptotic separation of the sequences of the
“objective” probabilities and the envelopes of equivalent martingale measures.
The main tool in our analysis is the so called optional decomposition theorem (see
[8], [19], [9] for its successive development) which can be useful in the theory
of incomplete markets as a source of trading strategies. This theorem allows us
easily to get the mentioned criteria without any restrictions on the price processes.
However, the equivalence of the new criteria and those of [17] is nontrivial. We
established it as a corollary of rather general facts from a “contiguity theory”
for sequences of convex sets of probability measures; this refined setting (which
does not involve stochastic integration) is studied in Section 3. It should be
pointed out that the essential ingredient of our proofs of difficult implications is
basically the same as in [17]: we look at the problem in an abstract dual setting
and apply some arguments based on a separation theorem. The simplification
in our paper comes from a judicious use of the minimax theorem; this replaces
some of the direct and bare-hands arguments used in [17]. Criteria of contiguity
and asymptotic separation in terms of the Hellinger integrals similar to that of
the classic theory are proved.

Section 4 is devoted to an extension of the “contiguity theory on filtered
spaces” based on the concept of the Hellinger process which is especially impor-
tant for use of the general results in the specific context of financial models. As
an application, in Section 5 a problem of asymptotic arbitrage is studied for a
large market where stock price evolution is given by linear stochastic differential
equations which may have random coefficients. Under a certain assumption on a
correlation structure of the driving Wiener processes we get effective criteria of
absence of asymptotic arbitrage or existence of asymptotic arbitrage with prob-
ability one. Further applications are given in Sections 6 and 7 where we treat
a one-stage model with an infinite number of assets (which is the one-factor
APM with a particular correlation structure when there is a “basic” source of
randomness) and a discrete-time model with two assets and infinite horizon. We
show that in spite of the difference in the definitions of asymptotic arbitrage our
approach gives results which are consistent with the traditional APT.
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Notice that in the discrete-time setting a semimartingale is simply an adapted
process and there are absolutely no problems with stochastic integrals. Therefore
we hope that the major part of the paper concerning financial modeling (especially
Sections 2 and 6) will be accessible to the reader with a standard probabilistic
background.

2. Asymptotic arbitrage and contiguity of martingale measures

Let Bn = (Ωn, F n, Fn = (F n
t ), Pn), n ∈ N, be a stochastic basis, i.e. a filtered

probability space satisfying the usual assumptions, see, e.g., [14] (this book is also
our main reference for contiguity, Hellinger integrals, and Hellinger processes).
For simplicity we assume that the initialσ-algebra is trivial (up toPn-null sets).
Asset prices evolve accordingly to a semimartingaleSn = (Sn

t )t≤Tn defined on
Bn and taking values inRd for somed = d(n).

We fix a sequenceTn of positive numbers which are interpreted as time
horizons. To simplify notation we shall often omit the superscript and writeT.

We shall say that the triple (Bn, Sn, Tn) is a security market modeland that
the sequenceM = {(Bn, Sn, Tn)} is a large financial market.

We assume that there exists an asset whose price is constant over time and
that all other prices are calculated in units of this asset. Markets are frictionless
and admit shortselling.

We denote byQ n the set of all probability measuresQn equivalent toPn

and such that the process (Sn
t )t≤T is a local martingale with respect toQn; we

refer to Q n as the set of local martingale measures. Certainly, it may happen
that Q n is empty. The existence of a measureQn ∈ Q n is closely related to
the absence of arbitrage on the market (Bn, Sn, Tn), while the uniqueness is the
property connected with the completeness of the market (see the pioneering paper
[10] and, for a modern treatment, [6] and references therein).

Our main assumption is that the setsQ n are nonempty for alln.
We define a trading strategy on (Bn, Sn, Tn) as a predictable processϕn with

values inRd such that the stochastic integral with respect to a semimartingale
Sn

ϕn · Sn
t =

∫ t

0
(ϕn

r , dSn
r )

is well-defined on [0, T]. Notice that if the processϕn · Sn is bounded from
below (or from above) by some constant, it follows from the Emery–Ansel–
Stricker theorem [1] that it is a local martingale on [0, T] with respect to any
Q ∈ Q n.

For a trading strategyϕn and an initial endowmentxn the value process
V n(ϕn) is given by

V n
t (ϕn) = xn + ϕn · Sn

t = xn +
∫ t

0
(ϕn

r , dSn
r ).

We shall include a positive numberxn (an initial endowment) in the definition
of a trading strategy.
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Definition 1 A sequence of trading strategiesϕn realizes the asymptotic arbi-
trage of the first kind if

1a) Vn
t (ϕn) ≥ 0 for all t ≤ T ;

1b) limn V n
0 (ϕn) = 0 (i.e. limn xn = 0);

1c) limn Pn(V n
T (ϕn) ≥ 1) > 0.

Definition 2 A sequence of trading strategiesϕn realizes the asymptotic arbi-
trage of the second kindif

2a) Vn
t (ϕn) ≤ 1 for all t ≤ T ;

2b) limn V n
0 (ϕn) > 0;

2c) limn Pn(V n
T (ϕn) ≥ ε) = 0 for anyε > 0.

Definition 3 A sequence of trading strategiesϕn realizes the strong asymptotic
arbitrage of the first kind (SAA1) if

3a) Vn
t (ϕn) ≥ 0 for all t ≤ T ;

3b) limn V n
0 (ϕn) = 0 (i.e. limn xn = 0);

3c) limn Pn(V n
T (ϕn) ≥ 1) = 1.

Notice that 3a) and 3b) are the same as 1a) and 1b).

Definition 4 A sequence of trading strategiesϕn realizes the strong asymptotic
arbitrage of the second kind(SAA2) if

4a) Vn
t (ϕn) ≤ 1 for all t ≤ T ;

4b) limn V n
0 (ϕn) = 1;

4c) limn Pn(V n
T (ϕn) ≥ ε) = 0 for anyε > 0.

To achieve an “almost non-risk” profit from the arbitrage of the second kind,
an investor sells short his portfolio. In the market there is a bound for the total
debt value which we take to be equal to 1.

Remark.From a sequence of trading strategies realizing SAA1 it is easy to
construct a sequence realizing SAA2 and vice versa. However, there is a slight
difference between two concepts related to assumptions on the market regulations.
In principle, one may impose a constraint that the total debt value should be equal
to zero, or be infinitesimally small, or be bounded by a constant. Certainly, the
first and the second variants exclude a game with the asymptotic arbitrage of the
second kind.

Definition 5 A large security marketM = {(Bn, Sn, Tn)} hasno asymptotic ar-
bitrage of the first kind (respectively, of thesecond kind) if for any subsequence
(m) there are no trading strategies(ϕm) realizing the asymptotic arbitrage of the
first kind (respectively, of the second kind) for{(Bm, Sm, Tm)}.

To formulate the results we need to extend some notions from measure theory.
Let Q = {Q} be a family of probabilities on a measurable space (Ω, F ).

Define the upper and lower envelopes of the measures ofQ as functions onF
with Q(A) := supQ∈Q Q(A) andQ(A) := infQ∈Q Q(A), respectively. We say that
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Q is dominated if any element ofQ is absolutely continuous with respect to
some fixed probability measure.

In our setting where for everyn a family Q n of equivalent local martingale
measures is given we shall use the obvious notationsQ

n
andQn.

Generalizing in a straightforward way the well-known notions of mathemat-
ical statistics (see, e.g., [14], p. 249) we introduce the following definitions:

Definition 6 The sequence(Pn) is contiguous with respect to(Q
n
) (notation:

(Pn) / (Q
n
)) when the implication

lim
n→∞ Q

n
(An) = 0 =⇒ lim

n→∞ Pn(An) = 0

holds for any sequence An ∈ F n, n ≥ 1.

Evidently, (Pn) / (Q
n
) iff the implication

lim
n→∞ sup

Q∈Q n

EQgn = 0 =⇒ lim
n→∞ EPngn = 0

holds for any uniformly bounded sequencegn of positiveF n -measurable func-
tions.

Definition 7 A sequence(Pn) is (entirely) asymptotically separablefrom (Q
n
)

(notation: (Pn) 4 (Q
n
)) if there exists a subsequence(m) with sets Am ∈ F m

such that
lim

m→∞ Q
m

(Am) = 0, lim
m→∞ Pm(Am) = 1.

The notations (Qn) / (Pn) and (Qn) 4 (Pn) have the obvious meaning. It is

clear that (Pn) 4 (Q
n
) iff ( Qn) 4 (Pn).

We shall use the following result, [8], [19]:

Proposition 1 Let Q be the set of local martingale measures for a semimartin-
gale S and letξ be a positive bounded random variable. Then there exists a pos-
itive process X with regular trajectories which is a supermartingale with respect
to any Q∈ Q such that

Xt = ess sup
Q∈Q

EQ(ξ | Ft ) P-a.s.

Our approach is based on the optional decomposition theorem. This result
is due to El Karoui and Quenez [8] in the case of continuous semimartingales
and was proved for general locally bounded semimartingales in [19]. We use
here a version taken from [9] where an alternative proof allows one to drop the
assumption of local boundedness.

Theorem 1 Let Q be the set of local martingale measures for a semimartingale
S . Assume that a positive process X is a supermartingale with respect to every
Q ∈ Q . Then there exists an increasing right-continuous adapted process C ,
C0 = 0, and an integrandϕ such that X= X0 + ϕ · S − C .
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Now we formulate and prove the main results of this section.

Proposition 2 The following conditions are equivalent:
(a) there is no asymptotic arbitrage of the first kind (NAA1);
(b) (Pn) / (Q

n
);

(c) there exists a sequence Rn ∈ Q n such that(Pn) / (Rn).

Proof. (b) ⇒ (a) Assume that (ϕn) is a sequence of trading strategies realizing
the asymptotic arbitrage of the first kind. For anyQ ∈ Q n the processV n(ϕn)
is a nonnegative localQ-martingale, hence aQ-supermartingale, and

sup
Q∈Q n

EQV n
T (ϕn) ≤ sup

Q∈Q n

EQV n
0 (ϕn) = xn → 0

by 1b). Thus,

Q
n
(V n

T (ϕn) ≥ 1) := sup
Q∈Q n

Q(V n
T (ϕn) ≥ 1) → 0

and, by virtue of the contiguity (Pn) / (Q
n
), it follows thatPn(V n

T (ϕn) ≥ 1) → 0
in contradiction with 1c).
(a) ⇒ (b) Assume that (Pn) is not contiguous with respect to (Q

n
). Taking a

subsequence, if necessary, we can find setsΓ n ∈ F n such thatQ
n
(Γ n) →

0, Pn(Γ n) → γ asn → ∞ whereγ > 0. According to Proposition 1 there exists
a regular processXn which is a supermartingale with respect to anyQ ∈ Q n

such that
Xn

t = ess sup
Q∈Q n

EQ(IΓ n | F n
t ) Pn-a.s.

By Theorem 1 it admits a decompositionXn = Xn
0 + ϕn · Sn − Cn whereϕn is

an integrand forSn and Cn is an increasing process starting from zero. Let us
show thatV n(ϕn) := Xn

0 + ϕn · Sn are the value processes of portfolios realizing
AA1. Indeed,V n(ϕn) = Xn + Cn ≥ 0,

V n
0 (ϕn) = sup

Q∈Q n

EQIΓ n = Q
n
(Γ n) → 0,

and

lim
n

Pn(V n
T (ϕn) ≥ 1) ≥ lim

n
Pn(Xn

T ≥ 1) = lim
n

Pn(Xn
T = 1) = lim

n
Pn(Γ n) = γ > 0.

(b) ⇔ (c) This relation follows from the convexity ofQ n and Proposition 5 in
Section 3 below.�

To formulate the next result we introduce

Definition 8 The sequence of sets of probability measures(Q n) is said to be
weakly contiguous with respect to(Pn) (notation:(Q n)/w (Pn)) if for anyε > 0
there areδ > 0 and a sequence of measures Qn ∈ Q n such that for any sequence
An ∈ F n with the propertylim supn Pn(An) < δ we havelim supn Qn(An) < ε.
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Remark.For the case when the setsQ n are singletons containing the only measure
Qn the relation (Q n) /w (Pn) means simply that (Qn) / (Pn).

Obviously, the property (Q n) /w (Pn) can be reformulated in terms of func-
tions rather than sets:

for any ε > 0 there areδ > 0 and a sequence of measures Qn ∈ Q n such
that for any sequence ofF n-measurable random variablesgn, 0 ≤ gn ≤ 1, with
the propertylim supn EPngn < δ, we havelim supn EQngn < ε.

Proposition 3 The following conditions are equivalent:
(a) there is no asymptotic arbitrage of the second kind (NAA2);
(b) (Qn) / (Pn);
(c) (Q n) /w (Pn).

Proof. (b) ⇒ (a) Assume that (ϕn) is a sequence of trading strategies realizing
the asymptotic arbitrage of the second kind. By the contiguity (Qn) / (Pn) it
follows from 2c) thatQn(V n

T (ϕn) ≥ ε) → 0 or, equivalently,Qn([V n
T (ϕn)]+ ≥

ε) → 0. Since 0≤ [V n
T (ϕn)]+ ≤ 1 we have that

inf
Q∈Q n

EQ[V n
T (ϕn)]+ ≤ ε + Qn([V n

T (ϕn)]+ ≥ ε)

and hence infQ∈Q n EQ[V n
T (ϕn)]+ → 0 asn → ∞. The process [V n(ϕn)]+ is a

submartingale with respect to anyQ ∈ Q n. Thus,

V n
0 (ϕn) ≤ [V n

0 (ϕn)]+ ≤ inf
Q∈Q n

EQ[V n
T (ϕn)]+ → 0

contradicting 2b).
(a) ⇒ (b) Assume that (Qn) is not contiguous with respect to (Pn). Taking a
subsequence, if necessary, we can find setsΓ n ∈ F n such thatPn(Γ n) → 0
while Qn(Γ n) → γ > 0 asn → ∞. According to Proposition 1 (applied with
ξ = −IΓ n ) there exists a regular processXn which is a submartingale with respect
to anyQn ∈ Q n and

Xn
t = ess inf

Q∈Q n
EQ(IΓ n | F n

t ) Pn-a.s.

By Theorem 1 we have the decompositionXn = Xn
0 + ϕn · Sn + Cn whereϕn is

an integrand forSn andCn is an increasing process starting from zero. To show
that V n(ϕn) := Xn

0 + ϕn · Sn are the value processes of portfolios realizing AA2
we notice thatV n(ϕn) = Xn − Cn ≤ 1,

V n
0 (ϕn) = Xn

0 = inf
Q∈Q n

EQIΓ n = Qn(Γ n) → γ > 0,

and for anyε ∈]0, 1]

lim sup
n

Pn(V n
T (ϕn) ≥ ε) ≤ lim

n
Pn(Xn

T ≥ ε) = lim
n

Pn(Xn
T = 1) = lim

n
Pn(Γ n) = 0.

(b) ⇔ (c) This equivalence follows from Proposition 6 in Section 3.�
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Remark.The equivalence of (a) and (c) in Propositions 2 and 3 is the main
result of [17] where it is proved under the assumption thatS is locally bounded.
Clearly, for the case where eachQ n is a singleton the condition (Q n) /w (Pn)
simply means contiguity. However, in general situation it may happen thatQ n

does not contain a sequence (Qn) such that (Qn)/ (Pn). For an example see [17].

Proposition 4 The following conditions are equivalent:
(a) there is a strong asymptotic arbitrage of the first kind (SAA1);
(b) (Pn) 4 (Q

n
);

(c) there is a strong asymptotic arbitrage of the second kind (SAA2);
(d) (Qn) 4 (Pn);
(e) (Pn) 4 (Qn) for any sequence Qn ∈ Q n.

Proof. (a) ⇒ (b) The existence of SAA1 means that along some subsequence
(m) there are trading strategies such thatV m

0 (ϕm) → 0 but Pm(V m
T (ϕm) ≥ 1) →

1. As in the proof of the implication (b) ⇒ (a) of Proposition 2 we infer that
Q

m
(V m

T (ϕm) ≥ 1) → 0 and hence the setsΓ m = {V m
T (ϕm) ≥ 1} form the desired

separating subsequence.
(b) ⇒ (a) To find a subsequence of trading strategies realizing SAA1 we use the
same arguments as those in the proof of the implication (a) ⇒ (b) of Proposition
2. The only difference is that in the present case we haveγ = 1.

From any sequence realizing SAA1 it is easy to construct a sequence realizing
SAA2 and vice versa. Hence, (a) ⇔ (c). In Proposition 7 we show that (b) ⇔ (e).
Equivalence of (b) and (d) is clear. �

3. Contiguity and asymptotic separation

We start with a result which gives alternative descriptions of the property (Pn) /
(Q

n
).
Our proof uses the minimax theorem, see, e.g., [2]:

Theorem 2 Let f : X × Y → R be a real-valued function, let X be a compact
convex subset of a vector space, and let Y be a convex subset. Assume that

1) for any y∈ Y the function x7→ f (x, y) is convex and lower semicontinuous;
2) for any x∈ X the function y7→ f (x, y) is concave.
Then there exists̄x ∈ X such that

sup
y∈Y

f (x̄, y) = sup
y∈Y

inf
x∈X

f (x, y) = inf
x∈X

sup
y∈Y

f (x, y).

Proposition 5 Assume that for any n≥ 1 we are given a probability space
(Ωn, F n, Pn) with a dominated familyQ n of probability measures. Then the
following conditions are equivalent:

(a) (Pn) / (Q
n
);

(b) there is a sequence Rn ∈ convQ n such that(Pn) / (Rn);
(c) the following equality holds:
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lim
α↓0

lim inf
n→∞ sup

Q∈convQ n

H (α, Q, Pn) = 1,

where H(α, Q, P) =
∫

(dQ)α(dP)1−α is the Hellinger integral of orderα ∈ ]0, 1[;
(d) the following equality holds:

lim
K→∞

lim sup
n→∞

inf
Q∈convQ n

Pn(dPn/dQ ≥ K ) = 0.

Proof. The implication (b) ⇒ (a) is trivial while the implication (b) ⇒ (c) is
a corollary of the criterion of contiguity (Pn) / (Rn) in terms of the Hellinger
integrals, see [14].
(c) ⇒ (d) To prove this part we recall some notation concerning the Hellinger
integrals. LetP, Q be two probabilities on some measurable space,ν = (P+Q)/2,
zP = dP/dν, zQ = dQ/dν. Then Z = zP/zQ is the density of the absolutely
continuous component ofP with respect toQ. For α ∈ ]0, 1[ put

d2
H (α, Q, P) = Eνϕα(zQ, zP)

where
ϕα(u, v) = αu + (1 − α)v − uαv1−α ≥ 0, u, v ≥ 0.

It is usual to omit the parameterα = 1/2 in notation.
Notice that

α(1 − α)ϕ(u, v) ≤ ϕα(u, v) ≤ 8ϕ(u, v) = 4(
√

u − √
v)2. (1)

Obviously, d2
H (α, Q, P) = 1 − H (α, Q, P) and (c) can be rewritten (in a more

instructive way) as

lim
α↓0

lim sup
n→∞

inf
Q∈convQ n

d2
H (α, Q, Pn) = 0. (2)

It is clear that for anyα ∈ ]0, 1/2] there existsK = K (α) ≥ 4 such that for
all u, v ≥ 0 we have

ϕα(u, v)I{v≥Ku} ≥ ϕ1/2(u, v)I{v≥Ku} = (1/2)
(√

u − √
v
)2

I{v≥Ku}.

It follows that

d2
H (α, Q, P) ≥ Eνϕα(zQ, zP)I{zP≥KzQ} ≥ Eνϕ(zQ, zP)I{zP≥KzQ} =

= (1/2)EP

(√
1/Z − 1

)2
I{Z≥K} ≥ (1/8)P(Z ≥ K ).

Applying the resulting inequality

P(Z ≥ K ) ≤ 8d2
H (α, Q, P) (3)

to the case whenP = Pn andQ is an arbitrary element of convQ n we get that
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lim
K↑∞

lim sup
n→∞

inf
Q∈convQ n

Pn(Z ≥ K ) ≤ 8 lim sup
n→∞

inf
Q∈convQ n

d2
H (α, Q, Pn). (4)

Thus, (2) implies

lim
K↑∞

lim sup
n→∞

inf
Q∈convQ n

Pn(Z ≥ K ) = 0.

(d) ⇒ (a) From the Lebesgue decomposition it follows that

Pn(An) = EQZI{An, Z<K} + Pn(An, Z ≥ K ) ≤ KQ(An) + Pn( Z ≥ K ) ≤
≤ K Q

n
(An) + Pn( Z ≥ K ).

Therefore,
Pn(An) ≤ K Q

n
(An) + inf

Q∈convQ n
Pn( Z ≥ K ).

If Q
n
(An) → 0 then

lim sup
n→∞

Pn(An) ≤ lim sup
n→∞

inf
Q∈convQ n

Pn( Z ≥ K ) → 0, K → ∞.

(a) ⇒ (b) Without loss of generality we can assume that all the measures are
defined on a unique measurable space (Ω, F ) and are dominated by a fixed
probability µ. For such measures we shall consider the topology induced by
L1(µ)-convergence of their densities with respect toµ.

Put
Dn,ε = {h ∈ L∞(µ) : EPn h ≥ ε, 0 ≤ h ≤ 1} .

This set is convex and closed inσ(L∞(µ), L1(µ)).
It is easy to check that

(Pn) / (Q
n
) ⇐⇒ lim sup

n→∞
inf

h∈Dn,ε
sup

Q∈convQ n

EQh > 0 for all ε > 0.

By the minimax theorem the condition on the right-hand side is equivalent to

lim sup
n→∞

sup
Q∈convQ n

inf
h∈Dn,ε

EQh > 0 for all ε > 0.

Hence, for anyεk = 1/k there is a sequence of probability measuresRn,εk from
convQ n such that

lim sup
n→∞

inf
h∈Dn,ε

ERn,εk h = γk > 0.

Put

Rn =
1

1 − 2−n−1

n∑
k=1

2−kRn,εk .

Evidently, for allε = 1/k (and hence for allε) we have that

lim sup
n→∞

inf
h∈Dn,ε

ERn h > 0

which is equivalent to contiguity (Pn) / (Rn). �
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Remark.The well-known Halmos–Savage lemma asserts thatQ is a dominated
family of measures iff it contains an equivalent countable subset. This implies the
following qualitative corollary: IfQ is a dominated family andP is a probability
on (Ω, F ) such thatP � Q, then there is a countable convex combinationR
of elements ofQ such thatP � R.

The implication (a) ⇒ (b) in Proposition 5 is an asymptotic version of this
corollary. Both a quantitative and a dual version of the above corollary are proved
in [18], and these general results are then used to derive the no-arbitrage criteria
of [17].

Proposition 6 Assume that for any n≥ 1 we are given a probability space
(Ωn, F n, Pn) with a convex dominated setQ n of probability measures. Then
the following conditions are equivalent:

(a) (Qn) / (Pn);
(b) (Q n) /w (Pn);
(c) the following equality holds:

lim
α↓0

lim inf
n→∞ sup

Q∈Q n

H (α, Pn, Q) = 1;

(d) the following equality holds:

lim
K→∞

lim sup
n→∞

inf
Q∈Q n

Q

(
dQ
dPn

≥ K

)
= 0.

Proof. (a) ⇔ (b) Again we can suppose that all measures are dominated by a
unique measureµ. Let us consider the setBn,δ = {g : EPng ≤ δ, 0 ≤ g ≤ 1}
which is convex and closed inσ(L∞(µ), L1(µ)). Since

(Qn) / (Pn) ⇐⇒ lim sup
δ↓0

lim sup
n→∞

sup
g∈Bn,δ

inf
Q∈Q n

EQg = 0,

(Q n) /w (Pn) ⇐⇒ lim sup
δ↓0

lim sup
n→∞

inf
Q∈Q n

sup
g∈Bn,δ

EQg = 0,

the assertion follows immediately from the minimax theorem.
(b) ⇒ (d) By the Chebyshev inequality

sup
Q∈Q n

Pn

(
dQ
dPn

≥ K

)
≤ 1/K .

With this remark the assertion follows directly from the definition of weak con-
tiguity.
(d) ⇒ (c) From the elementary inequality

ϕα(u, v) ≤ 8α ln Kϕ(u, v)I{v≤Ku} + 8ϕ(u, v)I{v>Ku}

which holds whenK ≥ e, we deduce that for anyQ ∈ Q n

d2
H (α, Pn, Q) ≤ 8α ln Kd2

H (Pn, Q) + 8Eνϕ(zPn , zQ)I{zQ>KzPn } ≤
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≤ 8α ln K + 4EQ

(√
dPn

dQ
− 1

)2

I{dQ/dPn≥K} ≤ 8α ln K + 4Q

(
dQ
dPn

≥ K

)
.

(5)
Thus,

lim
α↓0

lim sup
n→∞

inf
Q∈Q n

d2
H (α, Pn, Q) ≤ 4 lim sup

n→∞
inf

Q∈Q n
Q

(
dQ
dPn

≥ K

)

yielding the result.
(c) ⇒ (d) The reasoning follows the same line as in the corresponding impli-
cation of Proposition 5. By (3) we have that for anyα ∈]0, 1/2] there exists
K ≥ 4 such that for anyQ ∈ Q n

Q

(
dQ
dPn

≥ K

)
≤ 8d2

H (α, Pn, Q).

Hence,

lim sup
K→∞

lim sup
n→∞

inf
Q∈Q n

Q

(
dQ
dPn

≥ K

)
≤ 8 lim sup

n→∞
inf

Q∈Q n
d2

H (α, Pn, Q) → 0, α ↓ 0,

by the assumption (c).
(d) ⇒ (a) Since

Qn(An) ≤ KPn(An) + inf
Q∈Q n

Q

(
dQ
dPn

≥ K

)
,

we see that whenPn(An) → 0 we also haveQn(An) → 0. �

Now we prove the criteria for asymptotic separation.

Proposition 7 Assume that for any n≥ 1 the convex familyQ n of probability
measures is dominated. Then the following conditions are equivalent:

(a) (Pn) 4 (Q
n
);

(b) (Pn) 4 (Qn) for any sequence Qn ∈ Q n;
(c) for someα ∈]0, 1[

lim inf
n→∞ sup

Q∈Q n

H (α, Q, Pn) = 0;

(d) the above equation holds for allα ∈]0, 1[;
(e) for all ε > 0

lim inf
n→∞ sup

Q∈Q n

Pn

(
dQ
dPn

≥ ε

)
= 0

(f) (Qn) 4 (Pn).
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Proof. (a) ⇔ (b) Let U n be the unit ball inL∞(µn) with center at zero where
µn is a measure dominatingPn andQ n. Let dV be the total variation distance.
Notice that

lim sup
n

dV (Pn, Q n) = 2 ⇐⇒ lim sup
n→∞

inf
Q∈Q n

sup
g∈U n

(EQg − EPng) = 2,

(Pn) 4 (Q
n
) ⇐⇒ lim sup

n→∞
sup

g∈U n
inf

Q∈Q n
(EQg − EPng) = 2.

An application of the minimax theorem shows that (a) holds iff
lim supn dV (Pn, Q n) = 2 or, equivalently, iff lim supn dV (Pn, Qn) = 2 for ev-
ery Qn ∈ Q n; the latter condition is equivalent to (b).

The equivalence of (c), (d), and (e) is because of the following easily verified
bounds ([14], V.1.7, V.1.8):

(ε

2

)α

Pn

(
dQ
dPn

≥ ε

)
≤ H (α, Q, Pn) ≤ 2εα + 2δ1−α +

(
2
δ

)α

Pn

(
dQ
dPn

≥ ε

)
.

The relation (b) ⇔ (c) follows from the well-known inequalities (see, e.g.,
[14], Prop. V.4.4)

2(1− H (Q, Pn)) ≤ dV (Pn, Q) ≤ 2
√

1 − H 2(Q, Pn).

The equivalence of (a) and (f ) is obvious.�

4. Contiguity and asymptotic separation on filtered spaces

Now we again consider the situation which interests us most, with a given dom-
inated familyQ n on a stochastic basisBn = (Ωn, F n, Fn = (F n

t ), Pn). We now
use the notationzPn , zQ for the density processes (or local densities) ofPn and
Q with respect toν = (Pn + Q)/2. Then the processZ = Zn

Q = zPn/zQ is the
density process of the absolutely continuous component ofPn with respect to
Q. Notice that we can add to the list of equivalent conditions in Proposition 5
the following condition:

(6.d
′
) the following equality holds:

lim
K→∞

lim sup
n→∞

inf
Q∈convQ n

Pn(Z∗
Q ≥ K ) = 0

whereZ∗ = supt Zt .
We can add to the formulation of Proposition 6 in a similar way.
For α ∈]0, 1[ and a pair of probability measuresQ andP given on a filtered

space the Hellinger processh(α, Q, P) is defined in the following way, see [14].
Let Y(α) = zα

P z1−α
Q . Obviously, Y(α) is a boundedν-supermartingale,ν =

(P + Q)/2. It admits the multiplicative decompositionY(α) = M (α)E (−h(α))
whereM (α) is a localν-martingale until the momentσ when Y(α) hits zero,
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h(α) is a predictable increasing process uniquely defined untilσ, E (−h(α))
denotes the Doléans exponential, i.e. the solution of the linear equation

E (−h(α)) = 1− E−(−h(α)) ◦ h(α),

◦ denotes integration with respect to an increasing process. Such a processh(α) =
h(α, Q, P) is called the Hellinger process of orderα (the parameterα = 1/2
is usually omitted). The Doob–Meyer additive decomposition ofY(α) can be
written in the following specific form:

Y(α) = 1− Y−(α) ◦ h(α) + M (α). (6)

It can be shown that
Eν [Y−(α) ◦ h(α)∞]2 ≤ 4. (7)

Indeed, letA := Y−(α) ◦ h(α) and Nt := Yt (α) − E(Y∞(α)|Ft ). Then Nt =
E(A∞|Ft ) − At , i.e. N is the potential generated by the predictable increasing
processA. Clearly, EA∞ ≤ 1, N ≤2, and the inequality (7) follows from the
energy formulaEA2

∞ = E(N + N−) ◦ A∞, see [7], VI.94.
The theorems below are generalizations of the Liptser–Shiryaev criteria of

contiguity of sequences of probability measures on filtered spaces, [14], Theorem
V.2.3.

Theorem 3 The following conditions are equivalent:
(a) (Pn) / (Q

n
);

(b) for all ε > 0

lim
α↓0

lim sup
n→∞

inf
Q∈convQ n

Pn(h∞(α, Q, Pn) ≥ ε) = 0.

Proof. (a) ⇒ (b) By Proposition 5 the condition (a) is equivalent to the existence
of a sequenceRn ∈ convQ n such that (Pn) is contiguous with respect to (Rn).
An application of the Liptser–Shiryaev theorem gives the result.
(b) ⇒ (a) The desired assertion is an easy consequence of (2) and of the in-
equality given by the following lemma.�

Lemma 1 For anyα ∈ ]0, 1/4[, η ∈]0, 1[, andε > 0

d2
H (α, Q, P) ≤ 16η1/4 + 2η−αε + 2

√
2η−1{P(h∞(α, Q, P) ≥ ε)}1/2. (8)

Proof. Let Γ = {zP− ≤ η} and let ξ(α) = zα
Q−z−α

P− ◦ h(α) where h(α) =
h(α, Q, P). Taking the mathematical expectation with respect toν of the ad-
ditive decomposition (6) we deduce that

d2
H (α, Q, P) = Eνzα

Q−z1−α
P− ◦ h(α)∞ = EPξ∞(α).

On the setΓ

zα
Q−z−α

P− ≤ 2z−α−1/4
P− η1/4 ≤ 2η1/4z−1/2

P− ≤ 2η1/4z1/2
Q−z−1/2

P− .



Asymptotic arbitrage 159

By the second inequality in (1) the difference 8h−h(α) is an increasing process.
Hence,

EPIΓ ◦ ξ(α)∞ ≤ 16η1/4EPξ∞ ≤ 16η1/4. (9)

Using the bound (7), we get that

EP[IΓ̄ ◦ ξ(α)∞]2 ≤ 2Eν [IΓ̄ zα
Q−z−α

P− (zP−/η) ◦ h(α)∞]2 ≤ 8η−2. (10)

Thus,
EPIΓ̄ ◦ ξ(α)∞ ≤ 2η−αε + EPI{h∞(α)≥ε}IΓ̄ ◦ ξ(α)∞ ≤
≤ 2η−αε + {EP[IΓ̄ ◦ ξ(α)∞]2}1/2{P(h∞(α) ≥ ε)}1/2.

The bound (8) holds by virtue of (9), (10), and the above inequality.�

Theorem 4 Assume that the familyQ n is convex and dominated for any n. Then
the following conditions are equivalent:

(a) (Qn) / (Pn);
(b) for all ε > 0

lim
α↓0

lim sup
n→∞

inf
Q∈Q n

Q(h∞(α, Pn, Q) ≥ ε) = 0.

Proof. (a) ⇒ (b) Sinced2
H (α, Pn, Q) = EQzα

Pn−z−α
Q− ◦ h(α, Pn, Q)∞ we have for

any K > 1 and ε > 0 that

d2
H (α, Pn, Q) ≥ ε

1
K α

[
Q(h∞(α, Pn, Q) ≥ ε) − Q

(
sup

t

dQt

dPn
t

≥ K

)]
.

From the other hand, by (5) forK ≥ e

d2
H (α, Pn, Q) ≤ 8α ln K + 4Q

(
dQ∞
dPn∞

≥ K

)
.

Hence,

Q(h∞(α, Pn, Q) ≥ ε) ≤ Q

(
sup

t

dQt

dPn
t

≥ K

)

+
K α

ε

[
8α ln K + 4Q

(
sup

t

dQt

dPn
t

≥ K

)]
.

Notice that

Pn

(
sup

t

dQt

dPn
t

≥ K

)
≤ 1/K .

Let η > 0 be arbitrary. By (a) and the condition (d) of Proposition 6 there are
a sufficiently largeK and a sequenceQn ∈ Q n such that

lim sup
n

Qn

(
sup

t

dQn
t

dPn
t

≥ K

)
≤ η

Therefore,
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lim sup
n→∞

inf
Q∈Q n

Q(h∞(α, Pn, Q) ≥ ε) ≤ η + (K α/ε)[8α ln K + 4η]

and the condition (b) holds.
(b) ⇒ (a) An application of Lemma 1 (with a correspondent adjustment of
notations) together with the condition (c) of Proposition 6 gives the result.�

We complete this section by the following result concerning asymptotic sep-
aration where we assume that for anyn ≥ 1 the convex familyQ n of probability
measures is dominated.

Theorem 5 (a) If (Pn) 4 (Q
n
) then

lim
η↓0

lim sup
α↓0

lim sup
n

inf
Q∈Q n

Pn(h∞(α, Q, Pn) ≥ η) = 1;

(b) if

lim sup
n

inf
Q∈Q n

Pn(h∞(Q, Pn) ≥ N ) = 1

for all N > 0 then(Pn) 4 (Q
n
).

Proof. (a) For anyη > 0 andδ > 0 the following inequality holds:

1 − H (α, Q, Pn) ≤ 2η + 2δ1−α +

(
2
δ

)α

Pn(h∞(α, Q, Pn) ≥ η),

see (V.2.25) in [14]. It implies the desired relation because, by Proposition 7, for
all α ∈, ]0, 1[

lim inf
n→∞ sup

Q∈Q n

H (α, Q, Pn) = 0.

(b) One can use the inequality

dV (Pn, Q) ≥ 2
(

1 −
√

EPn exp{−h∞(Q, Pn)}
)
,

see [14], Th. V.4.21. Since

sup
Q∈Q n

EPn exp{−h∞(Q, Pn)} ≤ e−N + sup
Q∈Q n

P(h∞(Q, Pn) < N )

the assumption implies that lim supn dV (Pn, Q n) = 2, and the assertion follows
from Proposition 7.�
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5. Example: the large BS-market

In the paper [16] we considered the problem of asymptotic arbitrage for a “large
Black–Scholes market” where the dynamics of discounted asset prices were given
by geometric Brownian motions with a certain correlation structure. Here we
study a more general setting covering, in particular, a case of stochastic volatil-
ities.

Let (Ω, F , F = (Ft ), P) be a stochastic basis with a countable set of inde-
pendent one-dimensional Wiener processeswi , i ∈ Z+, wn = (w0, . . . , wn), and
let Fn = (F n

t ) be a subfiltration ofF such that (wn, Fn) is a Wiener process
in the sense that it is a martingale with〈wn〉t = tIn+1 where In+1 is the identity
matrix. Notice thatFn may be wider than the filtration generated bywn.

The behavior of the stock prices is described by the following stochastic
differential equations:

dX0
t = µ0X0

t dt + σ0X0
t dw0

t ,

dXi
t = µi X

i
t dt + σi X

i
t (γi dw0

t + γ̄i dwi
t ), i ∈ N,

with deterministic (strictly positive) initial points. The coefficients areFi -
predictable processes,∫ t

0
|µi (s)|2ds < ∞,

∫ t

0
|σi (s)|2ds < ∞

for t finite andγ2
i + γ̄2

i = 1. To avoid degeneracy we shall assume thatσi > 0
and γ̄i > 0.

Notice that the processξi with

dξi
t = γi dw0

t + γ̄i dwi
t , ξi

0 = 0,

is a Wiener process. The model is designed to reflect the fact that in the market
there are two different types of randomness: the first type is proper to each stock
while the second one originates from some common source and it is accumulated
in a “stock index” (or “market portfolio”) whose evolution is described by the
first equation.

Set
βi :=

γi σi

σ0
=

γi σi σ0

σ2
0

.

In the case of deterministic coefficients,βi is a well-known measure of risk which
is the covariance between the return on the asset with numberi and the return
on the index, divided by the variance of the return on the index.

Let us consider the stochastic basisBn = (Ω, F , Fn = (F n
t )t≤T , Pn) with the

(n+1)-dimensional semimartingaleSn := (X0
t , X1

t , . . . , Xn
t ) andPn := P|F n

T . As-
sume for simplicity that the time horizonT does not depend onn. The sequence
M = {(Bn, Sn, T)} is a large security market. In our case each{(Bn, Sn, T)} is,
in general, a model of an incomplete market as we do not suppose thatFn is
generated bywn and the set of equivalent martingale measuresQ n may have
infinitely many points.
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Let bn(t) := (b0(t), b1(t), ..., bn(t)) where

b0 := −µ0

σ0
, bi :=

βi µ0 − µi

σi γ̄i
.

Assume that ∫ T

0
|bn(t)|2dt < ∞

andEZT (b) = 1 where the strictly positive random variableZT (b) is the Girsanov
exponential

ZT (b) := exp

{∫ T

0
(bn(t), dwn

t ) − 1
2

∫ T

0
|bn(t)|2dt

}

(e.g., these conditions are fulfilled for boundedbn and finiteT). In other words,
ZT (b) = dQn/dPn whereQn is a probability measure onF n

T equivalent toPn.
By the Girsanov theorem the process

w̃n
t := wn

t −
∫ t

0
bn(s)ds

is Wiener underQn and, therefore,Qn belongs to the setQ n of equivalent (local)
martingale measures.

Proposition 8 The following conditions for the large financial marketM are
equivalent:

(a) NAA1;
(b) UT < ∞ P-a.s. where

UT :=
∫ T

0

[(
µ0

σ0

)2

+
∞∑
i =1

(
µi − βi µ0

σi γ̄i

)2
]

ds.

Proof. According to Proposition 2 and Theorem 3 the property NAA1 is equiv-
alent to the following condition:

lim
α↓0

lim sup
n→∞

inf
Q∈ Q n

P(hT (α, Q, P) ≥ ε) = 0 for all ε > 0.

Under an arbitrary measureQ ∈ Q n the process̃wn is a local martingale with
〈w̃n〉t = tIn+1, i.e. a Wiener process. Set

h0n
T (α) :=

α(1 − α)
2

∫ T

0

[(
µ0

σ0

)2

+
n∑

i =1

(
µi − βi µ0

σi γ̄i

)2
]

ds.

By Theorem IV.3.39 in [14] we have the inequalityhT (α, Q, Pn) ≥ h0n
T (α). Since

h0n
T (α) = hT (α, Qn, Pn), the equivalence of (a) and (b) clearly follows.�

Proposition 9 In the marketM the following properties are equivalent:
(i) there exists a strong asymptotic arbitrage (of the first and/or the second

kind);
(ii) U T = ∞ P-a.s.
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Proof. (ii ) ⇒ (i ) For any finiteN

lim sup
n

inf
Q∈Q n

Pn(hT (Q, Pn) ≥ N ) = lim sup
n

Pn(h0n
T ≥ N ) = 1.

By Theorem 5 (b) we have (Pn)4(Q
n
) and the assertion holds due to Proposition

4.
(i ) ⇒ (ii ) If there is SAA1 then (Pn) 4 (Q

n
) and by Theorem 5 (a)

lim
η↓0

lim sup
α↓0

lim sup
n

inf
Q∈Q n

Pn(hT (α, Q, Pn) ≥ η) = 1.

But for anyη > 0

inf
Q∈Q n

Pn(hT (α, Q, Pn) ≥ η) = Pn(hT (α, Qn, Pn) ≥ η)

and

lim sup
α↓0

lim sup
n

Pn(hT (α, Qn, Pn) ≥ η) = P(UT = ∞).

Thus, SAA1 implies thatP(UT = ∞) = 1. �

Notice that in the case of deterministic coefficients (whenUT is deterministic)
there is the alternative: either the market has the property NAA1 or there exists
a strong asymptotic arbitrage. Moreover, the properties NAA1 and NAA2 hold
simultaneously.

Remark.In the particular case of constant coefficients and finiteT, the condition
(b) of Proposition 8 can be written as

∞∑
i =1

(
µi − βi µ0

σi γ̄i

)2

< ∞. (11)

In the case where 0< c ≤ σi γ̄i ≤ C the property NAA1 holds iff

∞∑
i =1

(µi − βi µ0)2 < ∞. (12)

This assertion has the same form as the famous result in the Ross arbitrage asset
pricing theory, see [20]. Qualitatively, in the large financial market with absence
of arbitrage the parameters (µi , βi ) lay close to the security market lineµ = µ0β.
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6. Example: one-stage APM by Ross

Let (εi )i ≥0 be a sequence of independent random variables given on a probability
space (Ω, F , P) and taking values in a finite interval [−N , N ], Eεi = 0, Eε2

i = 1.
At time zero asset prices are positive numbersXi

0. After a certain period (at time
T = 1) their discounted values are given by the following relations:

X0
1 = X0

0 (1 + µ0 + σ0ε0),
Xi

1 = Xi
0(1 + µi + σi (γi ε0 + γ̄i εi )), i ∈ N.

(13)

The coefficients here are deterministic,σi > 0, γ̄i > 0 andγ2
i + γ̄2

i = 1. The
asset with number zero is interpreted as a market portfolio,γi is the correlation
coefficient between the rate of return for the market portfolio and the rate of
return for the asset with numberi .

For n ≥ 0 we consider the stochastic basisBn = (Ω, F n, Fn = (F n
i )i ∈{0,1},

Pn) with the (n + 1) -dimensional random processSn = (X0
i , X1

i , . . . , Xn
i )i ∈{0,1}

whereF n
0 is the trivialσ-algebra,F n

1 = F n := σ{ε0, ..., εn}, andPn = P|F n.
The sequenceM = {(Bn, Sn, 1)} is a large security market by our definition.

Let βn := γnσn/σ0 and define

b0 := −µ0

σ0
, . . . , bn :=

µ0βn − µn

σnγ̄n
, n ≥ 1, D2

n :=
n∑

i =0

b2
i .

It is convenient to rewrite (13) as follows:

X0
1 = X0

0 (1 + σ0(ε0 − b0)),

Xi
1 = Xi

0(1 + σi γi (ε0 − b0) + σi γ̄i (εi − bi )), i ∈ N.

The setQ n of equivalent martingale measures has a very simple description:
Q ∈ Q n iff Q ∼ Pn and

EQ(εi − bi ) = 0, 0 ≤ i ≤ n,

i.e. thebi are mean values ofεi underQ. Obviously,Q n 6= ∅ iff P(εi −bi > 0) >
0 andP(εi − bi < 0) > 0 for all i ≤ n. The last conditions has the following
equivalent form: there are functionsfi : [−N , N ] →]0,∞[, i ≤ n, such that

E(εi − bi )fi (εi − bi ) = 0.

As usual, we shall assume thatQ n 6= ∅ for all n; this implies, in particular, that
|bi | < N . Without loss of generality we suppose thatN > 1.

Let Fi be the distribution function ofεi . Put

si := inf{t : Fi (t) > 0}, s̄i := inf{t : Fi (t) = 1},

di := bi − si , d̄i := s̄i − bi , anddi := di ∧ d̄i . In other words,di is the distance
from bi to the end points of the interval [si , s̄i ].
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Proposition 10 The following assertions hold:
(a) inf i di = 0 ⇔ SAA ⇔ (Pn) 4 (Q

n
),

(b) inf i di > 0 ⇔ NAA1 ⇔ (Pn) / (Q
n
),

(c) lim supi |bi | = 0 ⇔ NAA2 ⇔ (Qn) / (Pn).

Notice that in the proof we can always assume without loss of generality that
bi = 0 for i ≤ n where n is arbitrarily large. Indeed, we can always take as
reference probability the measureP̃ ∼ P with P̃ := f0(ε0 − b0)...fn(εn − bn)P.

Remark.The hypothesis that the distributions ofεi have finite support is impor-
tant: it excludes the case when the value of every nontrivial portfolio is negative
with positive probability.

Proof. We shall consider here the first parts of each assertion and give direct
proofs; the second parts follow from the general theory and we included them
in the above formulation only for the reader convenience. Let us start from the
simple but important observation: there is a constantC > 0 such thatsi ≤ −C
and s̄i ≤ C (in fact, one can takeC = 1/(8N 2)). Indeed, if, e.g., ¯si ≤ 1/(8N 2)
then the conditionEεi = 0 implies thatF (−1/2) − F (−N ) ≤ 1/(4N 2) and,
hence,Eε2

i ≤ 1/4 + 1/4 < 1 in contradiction with the assumption.
In the (one-step) model with numbern, a trading strategy is an initial en-

dowmentx and a vectorϕ ∈ Rn+1. The value of the corresponding portfolio at
T = 1 is given by the formula

V n
1 = x +

n∑
i =0

ϕi (X
i
1 − Xi

0).

If we define

a0 :=
n∑

i =0

ϕi X
i
0σi γi , ai = ϕi X

i
0σi γ̄i , 1 ≤ i ≤ n,

the expression forV n
1 can be rewritten in the following more transparent form:

V n
1 = x +

n∑
i =0

ai (εi − bi ).

Since ϕ can be reconstructed froma we shall identify any pair (x, a) with a
trading strategy.

Let infi di = 0. Taking a subsequence we can assume thatdi ≤ 2−i .
Then SAA1 is realized by the trading strategies corresponding to the sequence
(x2n, a2n) where x2n := 2−n, a2n

i := IΓ̄∩{i ≥n} − IΓ∩{i ≥n}, 0 ≤ i ≤ n,
Γ := {i : d̄i < di }. Indeed,

V 2n
1 = 2−n +

2n∑
i =n+1

a2n
i (εi − bi ) =

=
2n∑

i =n+1

(
(s̄i − εi )IΓ + (εi − si )IΓ̄

)
+ 2−n −

2n∑
i =n+1

(
d̄i IΓ + di IΓ̄

) ≥
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≥
2n∑

i =n+1

(
(s̄i − εi )IΓ + (εi − si )IΓ̄

)
.

The right-hand side of this inequality is non-negative and, moreover, is greater
than or equal to

n

(
C +

1
n

2n∑
i =n+1

(−1)IΓ εi

)
.

But by the strong law of large numbers this sequence (and henceV 2n) tends to
infinity with probability one.

Now let infi di = δ > 0. From the definitions it follows that for anyη > 0
with strictly positive probability

n∑
i =0

ai (εi − bi ) ≤ −
n∑

i =0

|ai |di + η ≤ −δ
n∑

i =0

|ai | + η.

Thus, if xn ≥ 0 then the condition

V n
1 := xn +

n∑
i =0

an
i (εi − bi ) ≥ 0 a.s.

implies the bound

δ

n∑
i =0

|an
i | ≤ xn

and forxn → 0 we have

V n
1 ≤ xn + 2N

n∑
i =0

|an
i | ≤ xn(1 + 2Nδ−1) → 0.

This means that asymptotic arbitrage opportunities of the first kind cannot exist.
Notice that the inverse implications in (a) and (b) follow from the two im-

plications proved above.
Suppose that lim supi |bi | > 0. Without loss of generality we may assume

that ν := infi |bi | > 0. Then an asymptotic arbitrage opportunity can be realized
by the sequence (xn, an) wherexn := ν2/N 2 and

an
i :=

ν2bi

N 2D2
n
, D2

n :=
n∑

i =0

b2
i .

Indeed,

V n
1 =

ν2

N 2
+

n∑
i =0

an
i (εi − bi ) =

ν2

N 2D2
n

n∑
i =0

bi εi .

SinceD2
n ≥ Cn the strong law of large numbers implies thatV n

1 → 0 a.s. when
n → ∞. Taking into account thatν ≤ N and
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n∑
i =0

|bi εi | ≤ N
n∑

i =0

|bi | ≤ ND2
n

ν

we check easily the bound|V n
1 | ≤ 1.

At last, suppose that lim supi |bi | = 0. This implies that lim supi di ≥ C and,
hence,δ := infi |di | > 0. Fix a numberγ ∈ ]0, 1[. Without loss of generality we
can assume that

sup
i

|bi | ≤ γδ

2(1− γ)
.

Let (xn, an) be a sequence such that the first two properties of a strategy realizing
AA2 are fulfilled, i.e.xn → x > 0 and

V n
1 := xn +

n∑
i =0

an
i (εi − bi ) ≤ 1.

It follows that

xn + δ
n∑

i =0

|an
i | ≤ 1.

Assume thatx > γ. Then for sufficiently largen

n∑
i =0

|an
i | ≤ 1 − γ

δ

and, therefore,

V n
1 ≥ γ −

n∑
i =0

|an
i ||bi | +

n∑
i =0

an
i εi ≥ γ/2 +

n∑
i =0

an
i εi .

For sufficiently largen

P(V n
1 ≥ γ/4) ≥ E(V n

1 − γ/4)+ ∧ 1 ≥ E(V n
1 − γ/4) ∧ 1 = E(V n

1 − γ/4) ≥ γ/4.

Thus, there are no asymptotic arbitrage opportunities of the second kind if
limn xn > γ. Sinceγ is arbitrary the property NAA2 holds.�

Remark.If the σi γ̄i ’s are bounded away from zero we have again that for a
market without asymptotic arbitrageµi ≈ µ0βi .

7. Example: two-asset model with infinite horizon

We consider here the discrete-time model with only two assets, one of which is
taken as a nuḿeraire and its price is constant over time. The price dynamics of
the second asset is given by the following relation:

Xi = Xi −1(1 + µi + σi εi ), i ≥ 1, (14)



168 Yu.M. Kabanov, D.O. Kramkov

where X0 > 0, (εi )i ≥1 is a sequence of independent random variables on a
probability space (Ω, F , P) and taking values in a finite interval [−N , N ], Eεi =
0, Eε2

i = 1. The coefficients here are deterministic,σi > 0 for all i .
For n ≥ 1 we consider the stochastic basisBn = (Ω, F n, Fn = (F n

i )i ≤n, Pn)
with the 1-dimensional random processSn = (X0

i )i ≤n whereF n
0 = F0 is the

trivial σ-algebra,F n
i = Fi := σ{ε0, ..., εi }, and Pn = P|F n

n . The sequence
M = {(Bn, Sn, n)} is a large security market according to our definition. Let

bi := −µi

σi
, D2

n :=
n∑

i =1

b2
i .

Then
Xi = Xi −1[1 + σi (εi − bi )], i ≥ 1.

The setQ n of equivalent martingale measures has the following description:
Q ∈ Q n iff Q ∼ Pn and

EQ(εi − bi | Fi −1) = 0, 1 ≤ i ≤ n.

Clearly, Q n 6= ∅ iff P(εi − bi > 0) > 0 and P(εi − bi < 0) > 0 for all
i ≤ n. The last condition has the following equivalent form: there are functions
fi : [−N , N ] →]0,∞[, i ≤ n, such that

E(εi − bi )fi (εi − bi ) = 0. (15)

As usual, we shall assume thatQ n 6= ∅ for all n; this implies, in particular,
that |bi | < N . Without loss of generality we suppose thatN > 1.

Proposition 11 (a) If D 2
∞ < ∞ then(Pn) / (Q

n
) and (Qn) / (Pn) (equivalently,

the properties NAA1 and NAA2 hold);
(b) if D 2

∞ = ∞ then(Pn) 4 (Q
n
) (equivalently, SAA holds).

In other words, we have the dichotomy: either simultaneously (Pn)/(Q
n
) and

(Qn) / (Pn) or (Pn) 4 (Q
n
) (and (Pn) 4 (Qn)), wheneverD2

∞ < ∞ or D2
∞ = ∞.

Proof. (a) Since Pn = P|F n, the condition (Pn) / (Q
n
) is equivalent to the

condition (P̃n) / (Q
n
) where P̃n := P̃|F n and P̃ is any probability measure

such thatP̃ ∼ P. If P̃ := f0(ε0 − b0)...fn(εn − bn)P we get for our model a new
specification withb̃i = 0, i ≤ n, and b̃i = bi , i > n. By the assumption,bi → 0
and the above observation shows that one can suppose without loss of generality
that |bi | ≤ c wherec > 0 is arbitrarily small.

We show that if the|bi | are bounded by a certain sufficiently small constant
then for everyn and for everyα ∈]0, 1[ there exists a probability measure
Rn(α) ∈ Q n such that

sup
Q∈Q n

H (α; Q, Pn) = H (α, Rn(α), Pn) (16)

and
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H (α, Rn(α), Pn) ≥ e−Cα(1−α)D2
n (17)

whereC is a constant which does not depend onα andn.
It follows from (16) and (17) that

sup
Q∈Q n

H (α; Q, P) → 0 asα → 0 or α → 1

and the assertion (a) holds by virtue of Propositions 5 and 6.
To find Rn(α) let us consider the following optimization problem (corre-

sponding to the casen = 1):

J (f ) :=
∫

f α(x) m(dx) → max, (18)

∫
(x − b)f (x) m(dx) = 0, (19)

∫
f (x) m(dx) = 1, (20)

f > 0 m-a.s. (21)

where m(dx) is a probability measure on [−N , N ] with zero mean and unit
variance,b ∈] − N , N [.

The solution of (18)–(20) can be found with the help of the Kuhn–Tucker
theorem which asserts that it is also the solution of the problem∫

[λ0f α(x) + λ1(x − b)f (x) + λ2f (x)] m(dx) → max

with the constraint (21) whereλ0 ≥ 0 and not allλi are equal to zero. Simple
considerations show thatλ0 is not equal to zero and we can assume thatλ0 = 1;
also λ2 /= 0 andλ1(x − b) + λ2 ≤ 0. The functionf 7→ f α + λ1(x − b)f + λ2f
attains its maximum at the pointf ∗(x) = C0(1 +a∗(x − b))1/(1−α) where specific
expressions forC0 anda∗ are not important. The relation (19) gives an equation
determininga∗ and we show in Lemma 2 that this equation has a solution at
least if |b| is small enough. The normalization constantC0 is given by (20). The
function f ∗ defined in this way is the solution of (18)–(21) (it follows also from
(25)–(27)).

Lemma 2 There exists a constant c> 0 such that for allα ∈]0, 1[ and b ∈
[−c, c] the equation

Ψ (a) :=
∫

(x − b)(1 + a(x − b)β−1) m(dx) = 0 (22)

whereβ = α/(α−1) has the unique root a∗ = a∗
b,α ∈ [−γ, γ], γ−1 := 4N (1+|β|);

there is a constant C such that for all a∈ [−γ, γ] and b∈ [−c, c]∫
(1 + a(x − b))βm(dx) ≥ e−Cαb2

. (23)
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Proof. We first consider the case whenα ∈]0, 1/2]. Let g(x) := x(1 + x)β−1.
Sinceβ ∈ [−1, 0[ we have

g′′(x) = (β − 1)(1 +x)β−3(βx + 2) ≤ −4/9

on [−1/2, 1/2] and henceg(x) ≤ x − (2/9)x2 on this interval. The function
Ψ (a) is continuous and decreasing on [−1/(4N ), 1/(4N )]. From the last bound
it follows that if |b| ≤ 1/(36N ) then

Ψ (−1/(8N )) ≥ −b +
1

36N
(1 + b2) > 0,

Ψ (1/(8N )) ≤ −b − 1
36N

(1 + b2) < 0,

and the existence of the unique root is proved.
On the interval [−1/2, 1/2] we have that (∂2/∂x2)(1+x)β ≥ β(β −1)(2/3)3,

which implies the bound

(1 + x)β ≥ 1 + βx +
4

27
β(β − 1)x2.

It follows that for anya ∈ [−1/(4N ), 1/(4N )]

∫
(1 +a(x + b))β m(dx) ≥ 1 +βba +

4
27

β(β − 1)a2 ≥ 1−
(

3
2

)3

αb2 ≥ e−C1αb2

where the last inequality holds with some sufficiently large constantC1 when
b2 ≤ (2/3)3.

The caseα ∈]1/2, 1[ is similar. There is a constantc2 > 0 such that
(1 + x)β−3 ≥ 2c2 when β ∈] − ∞,−1[ and |x| ≤ (|β| + 1)−1. Thus,g′′(x) ≤
−2c2(|β| + 1) andg(x) ≤ x − c2(|β| + 1)x2 for suchx. From the last bound we
get that if |b| ≤ c2/(4N ) then

Ψ (−γ) ≥ −b + c2(|β| + 1)γ(1 + b2) = −b +
c2

4N
(1 + b2) > 0,

Ψ (γ) ≤ −b − c2(|β| + 1)γ(1 + b2) = −b − c2

4N
(1 + b2) < 0,

and there is a root ofΨ on [−γ, γ].
For |x| ≤ (|β| + 1)−1 we have for some constantc3 > 0 the bound

(1 + x)β ≥ 1 + x + c3β(β − 1)x2.

Hence for anya ∈ [−γ, γ]∫
(1 + a(x − b))β m(dx) ≥ 1 − βba + c3β(β − 1)a2 ≥ 1 − αb2

2c3
≥ e−C2αb2

where the last inequality holds with some sufficiently large constantC2 when
b2 ≤ 2c3. The lemma is proved.�
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Now we show that the optimal point in (16) is the product of the solutions of
one-stage optimization problem (18)–(21) corresponding tob1, . . . , bn. Assuming
that all |bi | are sufficiently small and applying Lemma 2 withm(dx) equal to the
distribution ofεi , we get that for someai ∈ [−γ, γ]

E(εi − bi )(1 + ai (εi − bi ))
β−1 = 0 (24)

or, equivalently,

E(1 + ai (εi − bi ))
β = E(1 + ai (εi − bi ))

β−1. (25)

The measureRn(α) given by the density

dRn(α)
dPn

:=
n∏

i =1

(1 + ai (εi − bi ))β−1

E(1 + ai (εi − bi ))β−1

belongs toQ n,

H (α, Rn(α), Pn) = E

(
dRn(α)

dPn

)α

=

(
n∏

i =1

E(1 + ai (εi − bi ))
β

)1−α

≥

≥ exp

{
−Cα(1 − α)

n∑
i =1

b2
i

}
(26)

and (17) holds.
For anyQ ∈ Q n we have, using the (inverse) Hölder inequality, that

1 = E
dQ
dPn

n∏
i =1

(1 +ai (εi − bi )) ≥
(

E
n∏

i =1

(1 + ai (εi − bi ))
β

)1/β

H 1/α(α, Q, Pn) =

= H −1/α(α, Rn(α), Pn)H 1/α(α, Q, Pn). (27)

Thus,H (α, Q, Pn) ≤ H (α, Rn(α), Pn) and (16) also holds.
(b) Let us consider an arbitrary sequence of measuresQn ∈ Q n. For anyn the
process (Mk , F

k)k≤n with Mk :=
∑k

i =1 bi (εi − bi ) is a Qn-martingale and

EQn M 2
n =

n∑
i =1

b2
i EQn (εi − bi )

2 ≤ 4N 2D2
n .

For the setsAn := {D−3/2
n Mn > 1} ∈ F n we have by the Chebyshev inequality

that
Qn(An) ≤ D−3

n EQn M 2
n ≤ 4N 2D−1

n → 0, n → ∞.

But

Pn(Ān) = Pn

(
−

n∑
i =1

bi εi ≥ (D2
n − D3/2

n )

)
≤ 4N 2D2

n

(D2
n − D3/2

n )2
→ 0, n → ∞.

Thus, (Pn) 4 (Qn) and by Proposition 7 (Pn) 4 (Q
n
). �
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