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Abstract. Let ¢ be the set of equivalent martingale measures for a given process
S, and letX be a process which is a local supermartingale with respect to any
measure in”. The optional decomposition theorem férstates that there exists

a predictable integrand such that the differencé —¢-S is a decreasing process.

In this paper we give a new proof which uses techniques from stochastic calculus
rather than functional analysis, and which removes any boundedness assumption.
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1 Introduction

Let S be anRY-valued right-continuous semimartingale given on a stochastic
basis (2,.7 ,F = (%), P) with the usual assumptions. We denotefythe set

of all probability measure® such thatQ ~ P andS is a local martingale with
respect toQ. For a predictable process such that the stochastic integrals with
respect toS are well defined, we denote hy- S a right-continuous version of
the process defined by ( S); = fg 0sdS.

Theorem 1 Assume thaty # (). Let X be a right-continuous process which is a
local supermartingale with respect to any ©¢’. Then there exist an increasing
right-continuous adapted process C witly € 0 and a predictable integrancgh
suchthat X=Xy +¢-S—C.

* The research of this paper was carried out during a visit of the second author to Humboldt
University supported by Volkswagenstiftung.
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70 H. Follmer, Yu.M. Kabanov

Note that the conclusion of the theorem can be reformulated as folldvese
exists a predictable processsuch that the difference X ¢ - S is a decreasing
process Note also that ifX is bounded from below, thep is admissiblein the
sense that the stochastic integyal S is bounded from below.

In contrast to the standard Doob—Meyer decomposition, the préacdssn
general not predictable but only optional, and it is not uniquely determined. On
the other hand, the decomposition in Theorem 1 is “universal” in the sense that
it holds simultaneously for any probability meas@es .

The existence of such an “optional decomposition” was shown by El Karoui
and Quenez in [5] for a special class of models; see also [11] and the references
given there. Kramkov [12] proved existence of an optional decomposition in
a general semimartingale context, but under the assumptionsStismtocally
bounded an&X > 0. The aim of this note is to prove the theorem in full generality,
and to give an interpretation of the integrand values as Lagrange multipliers for
some optimization problem with constraints. We follow a probabilistic approach
in the spirit of [5] which uses methods of stochastic calculus rather than functional
analysis and exploits the specific structure of the set of local densities.

In [5] and [11], optional decompositions arise in the context of incomplete
financial markets. There, the processlescribes the stochastic price fluctuation
of some underlying financial assets; note that our results remove previous as-
sumptions of local boundedness and thus permit the inclusion of models with
unbounded jumps as they appear, e.g., in [4] and [1]. The procésslefined in
terms of essential suprema of conditional expectations of a gifemeasurable
contingent claimH > 0 over the class of all equivalent martingale measures,
i.e., X is a right-continuous version of the process given by

X = esssupgeoEQ[H | A].

It follows that X is a supermartingale with respect to aQye /. The point of

the optional decomposition is to identi as the value process of a strategy of
“superhedging”. The integrangd specifies the amounts invested in the underly-
ing assets. This strategy induces a perfect hedges H, and it generates an
increasing procesS = X — - S of cumulative side payments. Thus, the strategy
always stays on the safe side. Such an approach to the problem of hedging in
incomplete markets may seem rather “extreme”. In fact, in various incomplete
market models such as the multinomial extension of the binomial model, the
superhedging strategy can be identified with the unique strategy of perfect repli-
cation in an associated extremal complete model which is no longer equivalent
to the initial measuré®. In models based onévy processes studied in [4], the
strategy of superhedging for a call option simply reduces to the trivial strategy of
just holding the underlying asset. Nevertheless, there are good reasons to inves-
tigate the structure of superhedging strategies and of the corresponding optional
decompositions, not only from a mathematical but also from an applied financial
point of view. For example, superhedging strategies appear as building stones
in the construction of strategies which maximize the probability of a successful
hedgeXy > H under some given constraint on the initial portfolio value; see
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[7]. In [6] the technique of superhedging is applied to models where volatility

is stochastic but respects some a priori bounds. Further examples can be found
in [13]. For an application of the optional decomposition to the arbitrage pricing
theory for large financial markets see [9].

2 The discrete time version

In order to illustrate the basic idea of our construction we begin by proving the
following discrete time version of Theorem 1 which does not need advanced
stochastic calculus:

Theorem 2 Let S= (S,) be an adapted process with valuesRfion (2,.7 ,F =
(#7),P), 0 < n < N. Let? be the set of all probability measures equivalent to
P such that S is a local martingale with respect to Q and assumedhét (.

Let X = (X,) be a process which is a local supermartingale with respect to any
Q € (. Then there exist an increasing adapted process C witlr@ and a
predictable process such that X=Xo+¢-S — C.

The structure of our proof is the following. We have to show the existence of
a predictable process such thatAX, — o, AS, < 0 where AX, = X, — Xq_1.
It is easy to reduce this problem to one period; details are given after Lemma 3.
The one-stage problem is first treated in the particular situation where the initial
c-algebra is trivial. In this case, the sét is given by all probability measures
Q ~ P such thatEq|n| < oo, Eqn = 0 for a givenR%-valued random variable
7 (corresponding taAS,). For a given scalar random varialdegcorresponding
to AXy), the supermartingale assumption means g < 0 for all Q € £ .
We need to show that there is a vecior € RY (corresponding to-¢,) such
that + A*n < 0 a.s. In Lemma 1 we restate the problem in terms of the joint
distribution of ¢, £) and show thah* does exist and can be chosen from a‘get
of Lagrange multipliers for an associated optimization problem. In Lemma 2 we
consider the general case where the initisdlgebra is no longer trivial. In this
case, the proof consists in combining the construction of Lagrange multipliers
with a measurable selection argument.

We shall use the notatiom(f) for the integral [fdm and = for the natural
projection ofRY*! to the firstd coordinates, i.e.

m(x) = (x4, ..., x%)

for x = (x1,...,x9,x9*1) e R9*L,

In view of measurable selection problems appearing in the proof of Lemma
2 it is convenient to work with the Polish spaG¢RY*?) of all continuous real-
valued functions on the one-point compactificationR3f.

Lemma 1 Let m be a probability measure oR%*1. Let G be the set of all
functionsg € C(RY*) with ¢ > 0, m(g) = 1, m(|x|g) < oo. Assume that
G%:=Gn{g: m(rg) =0} # 0 and mx4*1g) < Ofor all g € G°. Then
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(a) we have

inf sup(m(x®*g) + Am(wg)) = supm(x?*1g); (2.1)

A€RY gcG geGo
(b) the set¥ of all \* € RY such that
sup(m(x?*1g) + A*m(mg)) = inf sup(m(x9*1g) + Am(rg)) (2.2)
g€eG

geG

is nonempty;
(c) for any \* € £ we have £+ \*7r(x) < 0 m-a.s.

Proof. Let us consider the following optimization problem:

maximize f(g) := m(x%*g) (2.3)

under the constraints
m(wg) =0, (2.4)
ge€G. (2.5)

Let f* be the optimal valuef* < 0 by the hypothesis. Following a well-known
argument, we show now that for this problem there exists a Lagrange multiplier
A* € RY removing the equality constraint, i.e.

sup(m(x4*1g) + \*m(mg)) = f*. (2.6)
g€eG
Without loss of generality we assume that the componentsdf are linear
independent elements bf(m); otherwise the problem can be reduced to a lower
dimension. By our assumptioB° # () there existsy® € G satisfying the con-
straint (2.4); for thisg® and any\ € RY we havem(\rg®) = 0. Thus, ifAr < 0
m-a.s. them\r = 0 m-a.s. and hence, by the assumed linear independence of the
components ofr, we havel = 0.
Define the nonempty convex set

Z:={(y,¥2) € R x RY: y; < m(x%*1g), vy, = m(rg) for someg € G}.

The point {*,0) does not belong t&. Hence, by the separation theorem there
exists a nonzero vectot = (A1, \o) € R x RY such that

Ary1+ Aoy < Agf (2.7

for all (y1,¥2) in the closure of=. Sincey; can be a negative number with
arbitrary large absolute valugyg > 0. If A\; were equal to zero, then we would
have that for ally € G, hence for all Borel functiong > 0 with m(g) < oo and
m(|x|g) < oo,

m(A2mg) = Aam(mg) < 0.

This means thak,m < 0 m-a.s. As we observed, this inequality holds only when
A2 =0. ButA #0. Hence\; > 0.
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Put \* := X\y/\1. The inequality (2.7) implies that

sup(m(x?*1g) + X*m(rg)) < f*.
geG

On the other hand, for any we have

supm(x™tg) + Am(rg)) > sup  (M(x"g) + Am(rg)) =f* (28
geG g€G, m(mrg)=0
and so we have shown (2.6).

We infer from (2.6) and (2.8) that* € 4 and that (2.1) holds and this
proves &) and ). For \* € it follows from (2.6) thatm((x9*+ \*7)g) < 0
for all Borel functionsg > 0 with m(g) < co andm(|x|g) < oo; this property
implies €). O

Lemma 2 Let & be a subs-algebra of.7 . Let ¢ and n be random variables
taking values inR and RY, respectively. Assume that(@& | %) < 0 for all
random variables z> 0 with E(z|¢) = 1, E(|nz||9) < oo, E(|(Z]|9) < oo,

and E(nz|¢) = 0. Suppose that there is at least one such z. Then there exists a
{¢’-measurable d-dimensional random variable such thatt + A*n < 0 P-a.s.

Proof. Without loss of generality we assume thét, (7, P) is a complete proba-
bility space, thats” contains all null sets fron¥#, and that the random variables
z appearing in the assumption aré¢ . £, n}-measurable. Lan(w, dx) be a reg-
ular conditional distribution of the + 1-dimensional random variable,§) with
respect to¢’. Then the hypothesis of the lemma can be formulated as follows:

for any strictly positive¢ @ .29*1-measurable functiop on £2 x R9*! such
that

[ steoome.do =1 (2.9)
/\X|g(w,x)m(w, dx) < oo P-a.s, (2.10)
/w(x)g(w, x)M(w,dx) =0 P-a.s. (2.12)
we have
/ x4 g(w, x)M(w,dx) <0 P-a.s, (2.12)

and there exists at least one strictly positive functi@rsatisfying (2.9) — (2.11)
To prove the lemma it is sufficient to find ‘& -measurable random variable
\* with values inRY such thatx?*!+ \*m(x) < 0 m(w, dx)-a.s. for almost all.
To this end let us show that there existssameasurable sef’ with P(I") = 1
such that for any € I" we have the following property:
for any strictly positive functiog € C(R%*') such that

m(w, g) := /g(x)m(w7 dx) =1, (2.13)
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M. xlg) = [ lgbom(.cb) < oc, (2.14)
m(w, g) = /W(X)g(x)m(w, dx)=0 (215)

we have
m(w, x%*g) = / x4*1g(x)m(w, dx) < 0. (2.16)

Indeed, the set
B :={(w,9) € 2 x C(R™): ¢ >0, (2.13) - (2.15) hold but (2.16) does Aot

is & ®.72(C(RY*))-measurable. Denote by the complement of the projection
of B onto {2. By the measurable selection theorem, see e.g. [3], 111.44245,
admits a_measurable selector, i.e. there exists’aneasurable mapping :
2 — C(R¥Y) such that ¢, F(w)) € B for all w € I'® (recall that (2, %, P)
is assumed to be complete). Notice that the scalar fundin x) := F(w)(x)
being % -measurable inv and continuous i is & ® .2%1-measurable. Put
G(w, x) := ¢%w, x) for w € I" and §{w, X) := F(w,X) for w € I'°. If P(I'"°) were
not equal to zero, the functiog Wwould violate the assumption (2.9) — (2.12).

By our assumption, there exists a null $étc & such that for alkw ¢ N
there exists a strictly positive29*-measurable function, namely?(w, .) such
that the relations (2.13) — (2.16) hold. But from Lemma 3 below it follows that
for each suchw there is a functiond(w, .) € C(R¥*Y) with the same properties.
Thus, the hypotheses of Lemma 1 are satisfiechf@r, .) whenw ¢ N U I'°. It
follows that for any suchv there exists a Lagrange multiplia¢ € RY from the
nonempty set” (w) defined as in (b) of Lemma 1. It remains to show that one
can choose representatives from the sétgv) in a measurable way. To this end
we notice that

P (w,g,\) — m(w,x*

is a ¢ ®.2(C(R™)) ® .29 -measurable function, and that the sets

g) + A\m(w, mg)

Ay = {w,9) € 2x CR™): g >0, mw,g) =1, mw,[x|g) <N}
and
A={(w,g) € 2xCR™): g>0, mw,g)=1, mw,|x|g) < oo}

belong to ¢ ® .2(C(R%1)); see [2], Lemma 2.5. Denote iy (w) and G(w)
the w-sections ofAy and A. Putdy(w, g, ) := &(w, g, \) if (w,g) € Ay and
—oo otherwise. Clearlydy is & ©.2(C(RI*1))-measurable. It follows that for
any fixed\ the function

N, \) = sup D(w,g,A) = sup Pn(w,g, )
g€EGN(w) g€C(RI*)

is & -measurable inw; see e.g. the proof of 1V.33 in [3]. For any fixed the
function ¢n (w, -), as a supremum of linear functions, is convexiimand, being
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bounded, it is continuous in this variable. Hengg, is ¢ ® .22%-measurable.
It follows that the functionp defined byg(w, A) := sup,cg(.) P(w, g, A) has the
same property. Thus, the set

@A) X € L@} ={@ ) 6w, \) = inf 6w, N}

belongs to% ®.72%. We have shown that the projection of this set ofttdhas
full measure. Applying again the measurable selection theorem we obtain the
existence of & -measurable selector*(w). O

Lemma 3 Let m be a probability measure R",.2") and letg be a strictly
positive. Z2"-measurable function oR" with m(g) = 1 and m(|x|g) < co. Then
there exists a functiop; € C(R") such thatg; > 0, m(g1) = 1, m(|x|g1) < oo,
and m(xg) = m(xgy).

Proof. Let a := m(xg). SetTa(X) :=x —a, m® := T;Im, andg?(x) := g(x + a).
Since m?(xg®) = 0, the problem is reduced to the case= 0. But the latter
property means thah(dx) := g(x)m(dx) is an equivalent martingale measure for
the identity mapping, and the existence of another equivalent martingale with
densityg; € C(R") follows, e.g., from Th. 2.1in [2]. O

Reduction to a one-stage probleAny measureQ ~ P has the fornQ = zZyP

with Zy = z2...zy wherez, is a strictly positive.7,-measurable random
variable such tha(z, | .%,-1) = 1. In discrete time the class of local martingales
coincides with the class of generalized martingales, see [14], Ch. 7. Hence,
Q e ¢ iff E(|AS)|zn | F-1) < 00 andE(AS,z, | Za-1) = 0. If the process

X is a generalized-supermartingale theB (Xnz, | -7-1) < Xn—1. After these
remarks the result follows from the application of Lemma 2 for eactwith

G =P 1, £E= AXy, n= AS,, andp, = —X5). O

3 Proof of Theorem 1

Let us consider the continuous time case. Without loss of generality we may
assume thaP € ¢. UnderP, the d + 1-dimensional proces#/ := (S, X) is
a special semimartingale. Denoting pythe jump measure oV and byv the
compensator of, we can write the canonical decompositionwfin the form

W =Wo+W° +xx*(u—v)+D (3.1)

whereW® = (S€, X€) is a continuous local martingale with the covariance process
C and whereD is a predictable process of locally bounded variation, see [8],
11.2.38. SinceS is a local martingale an¥ is a local supermartingale unde,
the firstd components oD vanish, and the last component has the fortd
where U is a predictable increasing process with = 0. Thus, (3.1) can be
rewritten as

S=S+S+7(X) * (u—v), (3.2)
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X =Xo+ X+ x s (u—1v)—U, (3.3)

wherer is the projection oR%*! to the firstd coordinates. Moreover,
/w(x)u({t}7dx) =0, /xd+1u({t}7dx) = —AU,. (3.4)

and (x|? A |x]) x v belongs to the set#;,. of locally integrable increasing
processes or, equivalentlyx(? A [x]) * x < oo for finite t, see [8], 11.2.29.

Notice that, in the notation of [8], the triplet of predictable characteristics
of the semimartingal&V is given by 8, C, ) (with truncation functiorh(x) =
Xlgx|<13) whereB =D — xl;y~13 * ¥ andv,C, D are defined as above.

According to Proposition 11.2.9 in [8] one can choose a “good” version of the
characteristics 0V with respect to some predictable reference profess 4,

i.e., a version such thal =u-A, Cl =cl . A v(w,dt,dx) = K (w,t, dx)dA (w)
whereu is a predictable process,is a predictable process with values in the
set of all non-negative symmetrid ¢ 1) x (d + 1) matrices, and& (w, t, dx) is a
transition kernel from x R+, ) into (R4*1,.29+1) with the properties 11.2.11
in [8].

Now we describe the special properties which are induced by our assumptions
on the behavior oiX under a measur® € ¢. Let - denote the predictable
o-field on 2 x R,. SinceP ~ P, the general Girsanov theorem [8], 111.3.24 in
connection with [8], 111.5.7 simplifies as follows: There exists a predict&ste -
valued proces$ and a positive”’ @ .%*1-measurable functioN =Y (w,t,X)
such that

Hoo = B'CB - A + (1= VY)? 5 v+

+Z(\/1—as—\/1—\?5)2<oo,

s>0

{0<a<1}={0<Y <1}, {a=1} ={Y = 1} where
a = v({s},R™), ¥, := / Y (s, X)u({s}, dx),

and the triplet of predictable characteristi& €, ) underP has the form:
B=B+ch A+xlyy<n(Y — 1) %, (3.5)
c=C, v=Ywu
The integrals in (3.5) exist in the usual sense. Being a special semimartingale
with respect taP, the proces$VW admits the canonical decomposition
W =Wo+WE+xx(u—Yr)+D,

where (x|2 A [X|)Y 1t < oo for finite t, andB = D — Xl 513 Y .
SinceS remains a local martingale with respectRothe firstd components
of D vanish, i.e.
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d+1
d g A+XI(Y —1)xv=0, i<d. (3.6)
j=1

The condition thatX remains a local supermartingale with respecPtean be
written in the following way:

d+1
D A A+x®HY —1)x v — U is a decreasing process. .13
j=1

The above relations make sense because for finite have
lcB| - A < oo, (3.8)
[X(Y — 1) 1 < oc. (3.9)
In terms of “intensities” the conditions (3.6) and (3.7) take the form

d+1

ZC;J ()3l +/xi(Y(w,t,x)—1)K(w,t,dX)=0, i <d, (3.10)

j=1
d+1 ) )
S XUt - DK@t Su @1
i=1
P ® A-a.e.
For a point {,t) € {a = 0} we define the setZ,,; of all pairs @3,Y) €
R9*1 x C,(RY*1) such that

/(|x|2/\ IX[)Y (X)K (w, t, dx) < oo, /(\/Y(x) — 1K (w, t,dx) < oo, (3.12)

and
d+1

S d () +/xi(Y(x) DK, t,d) =0, i<d;  (313)

i=1

for (w,t) € {0 < a < 1} we include in the definition ofZ,, ; also the constraint
0< /Y(x)z/(w, {t},dx) <1 (314)

while for (w,t) € {a = 1} we add the constraint

/.Y(X)V(w, {t},dx) = 1. (3.15)

Lemma 4 There is a sef” € & with (P ® A)(I"°) = 0 such that for(w,t) € I
we have

d+1
chdﬂ,j W)3 + /Xd+l(Y(x) — DK (w, t,dx) < u(w) (3.16)
j=1

forall (8,Y) € %, .
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Proof. Without loss of generality we can assume that
lT'cl- Ay + A, < const

wherel is the (column) vector with unit coordinates.
Let us consider in2 x Ry x R x C(RY*Y) the subset

A = {@tsY): 18l <k,
/ (X2 A [X))Y (OK (w,t, dx) + / (VY () — 172K (.1, dx) < ko,

Y (x) > 0, (3.10) holds (3.11) fails} NA1NA;

where
2 x Ry x R4"1
x C (R, (w,t) ¢ {0<a<1},
A1:= 49 0 xR, x RI*!
x{Y D 0< [Y(X)v(w, {t}, dx) < 1}, (w,t) e {0<a <1},
2 x Ry x R¥*1 x C(R*Y), (w,t) € {a=1},
Ayi={ 2 xRix Rd+1

X{YZ fY(x)u(w,{t},dx):1}, (w,t) € {a=1}.

Note thatA is measurable with respect to thealgebrar’®. 91 . 2(C (R4*1))
where~” is the completion of”” with respect taP ® A.

If the claim of the lemma is false then for some const&atandk, the pro-
jection of A onto {2 x R, has a positive measuRe® A. Applying the measurable
selection theorem as in the proof of Lemma 2 we can construct a predictable
process? and a positive7’ ®.72%+1-measurable functio such that the relation
(3.11) is violated on a set of positi@® A-measure antl,, < const. Theorem
12 in [10] (see also [8], Lemma I11.5.30) implies that there exists a probability
measure with these parametérandY, and this is a contradiction. (J

Lemma 5 There exist a predictable process with values inR? and a setl” €
2’ with (P ® A)(I"°) = 0 such that for all(w,t) € I" we have

d+1
St w)e + / XEHY (x) — DK (@, t, dx)+
j=1
d+1

d
PN @ [X 0 - DK@t o) Su) @17
i=1 j=1

forany(8,Y) € %, .
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Proof. As in Lemma 1, we first show that for any (t) such that the set/,, ;
is nonempty there exists a vectat depending ond,t) which is a Lagrange
multiplier of the following optimization problem:

maximize f(z) (3.18)

under the constraints
I(z) =0, (3.19)
zeG, (3.20)

wheref and| denote the functions defined by the left-hand sides of (3.11) and
(3.10), and where we pus = {z = (3,Y) € R x C(R™Y) : Y(x) >

0, (3.12) holdg. Letf* be the optimal valuef* < u; by (3.11). It is sufficient

to consider only the case when the components afe linearly independent.
Define the nonempty convex set

Z:={(y1,Y2): Y1 <f(2), y2=1(2) for somez € G} c R,

By the separation theorem there exists a nonzero vetter (\1, ;) € RI*?
such that
A1y + Aoy < A fF (3.21)

for all (y1,y.) from the closure of=. Clearly, \; > 0. The only problem is to
show that\; is not equal to zero. Indeed, Ji = 0 then),l(z) < Oforallz € G.
In particular, takingz = (3,Y) with 5 = 0 and arbitrary¥ > 0 which satisfies
(3.12) we have

d
> xz/xi(v(x) — 1)K (w,t,dx) < 0. (3.22)
i=1

Suppose thatu(;t) € {a = 0}. There is a##%*1-measurable function(x) with
values in ]01[ such that the function¥ (x) = 1 £ ¢(x) satisfy (3.12); hence the
same holds for all function¥ (x) = 1 + «(x)e(x) wherea > —1 and bounded.
This implies the identity

d
D Ax =0 K(w,t,)-ae. (323)
i=1

It follows that Azl (z) = 0 for all z € G, the situation which we excluded.

If (w,t)isin {0 < a < 1} or in {a = 1} we need to include the additional
constraint. Now the measuke(w,t,.) is finite and by (3.4) the relation (3.22)
has the form

d
ZA;/x‘Y(x)K(w,t,dx) <0. (3.24)
i=1

As in Lemma 1 we get thdf_ A\bx' = 0 (a.e. with respect t& (w, t, .)) and again
A2l (z) < 0 for all z € G which is impossible. Hence, a Lagrange multiplier
exists if £, is nonempty.
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Making use of Lemma 3 we conclude that the set of the Lagrange multipliers
is nonempty folP ® A-almost all (v, t). Taking a measurable (predictable) selector
we get the result. O

Now we easily accomplish the proof of Theorem 1. For the sake of clarity
we first consider the casé = 1. By Lemma 5 there exists a scalar predictable
process\* such that

CPLL + C222 + \F (L5t + ci2?) + / [X2(Y — 1)+ AA(Y — DIK(t, dx) <
or

(CPH+ A B+ (P2 + AT 6D + / [P+ A XY () — (CHAIK (t, dx) < g

where 31, 32 are arbitrary numbersy is any positive function which satisfies
the integrability conditions. It follows that

NG =0, P+ NG?=0, (3.25)

2+ axt<o, — /(x2 + M xHK (t, dx) < . (3.26)

From the Galchouk—Kunita—Watanabe decomposition we have Xhat
g - S¢+NC¢ whereg = c*?(c!)® (@ denotes the pseudoinverse) aNd is a
continuous local martingale witfN ¢, S°) = 0. Considering densities of the form
& (v - N°) with bounded predictable integrandsvhere & denotes the Délans
exponential, it follows as in the proof of the optional decomposition in [5] that
N¢ =0. Thus,X can be written as follows:

X =Xo+ (=X*)- S+ (x2+XNxY) « (u—v)— U. (3.27)

It follows from (3.26) that 2+ A*x1) x (1 — v) is a process of locally bounded
variation which is dominated by . Hence, (3.27) is the optional decomposition
in the scalar case.

Let us now consider the general case with arbitrdry 1. There exists a
predictable process* with values inR® such that the relation (3.16) holds, and
so we have

d+1

3 (e +zd; Nich ) + / [(Xd+l+§; ATX )Y 00

j=1
d . .
—(xd+l+ZA:'x')]K(t,dx) <.
i=1
As above it follows that

d
M+ Nid =0 i<d, (3.28)
i=1
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d d
x4+ 37X <0, f/(xd+l+2)\t*ixi)K(t,dx) <uw. (329
i=1

i=1

The Galchouk—Kunita—Watanabe decompositionX6fwith respect toS® has
again the formX°® = g - S® whereg is a predictable process such that

d
¢ —N"gdh =0, i<d; (3.30)
i=1

as an integrand in this decomposition, we can take any predictable function
satisfying (3.28).

The resulting representation

X = Xo+ (=A%) - S+ (xI* + A*7(x)) * (u — v) — U (3.31)

is the desired optional decomposition.[]
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