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Abstract

We analyze the proof of the Fundamental Theorem on Asset Pricing
and show that the closedness result does not require any assumption on
the price process S.

1 Main Results

In 1981 Kreps [13] established a theorem relating the existence of an equiva-
lent “separating” measure with a certain no-arbitrage property: No Free Lunch
(NFL). Delbaen and Schachermayer [4] observed that in a model driven by a
semimartingale price process NFL coincides with another no-arbitrage property
of a clear financial meaning: No Free Lunch with Vanishing Risk (NFLVR).
Following closely the line of their proof we study here a more general setting
with value processes as the primary objects, covering the case of bond market
models and allowing some types of constraints. Our main message is that the
closedness result holds without any additional hypothesis.

Let S be the space of semimartingales X defined on a finite interval [0, T ]
and starting from zero; S is a Frechet space [7] with the quasinorm

D(X) := sup{E1 ∧ |h ·XT | : h is predictable, |h| ≤ 1}.
We fix in S a closed convex subset X 1 of processes X ≥ −1 which contains
0 and satisfies the following condition: if X, Y ∈ X 1, H, G ≥ 0 are bounded
predictable processes, HG = 0, and Z := H ·X + G · Y ≥ −1 then Z ∈ X 1.

Put X := ∪λ>0λX 1.
∗The research of this paper was partially supported by the grant INTAS-RFBR 95-0061.
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Define the convex sets K1
0 := {XT : X ∈ X 1}, K0 := {XT : X ∈ X},

C0 := K0−L0
+, C := C0 ∩L∞. We denote by C̄, C̃∗, and C̄∗ the norm closure,

the union of weak∗ closures of denumerable subsets, and weak∗ closure of C in
L∞; C+ := C ∩ L∞+ etc.

The properties NA, NFLVR, NFLBR, and NFL mean that C+ = {0}, C̄+ =
{0}, C̃∗+ = {0}, and C̄∗+ = {0}, respectively. Consecutive inclusions induce the
hierarchy of these properties:

C ⊆ C̄ ⊆ C̃∗ ⊆ C̄∗

NA ⇐ NFLVR ⇐ NFLBR ⇐ NFL.

Define the ESM property as the existence of P̃ ∼ P such that ẼXT ≤ 0 for
all X ∈ X . We introduce also the BK property: K1

0 is bounded in L0.
The following result, hidden in a more abstract context of [13], is referred

sometimes, especially, in the case of the example below, as the Fundamental
Theorem of Asset Pricing (FTAP).

Theorem 1.1 NFL ⇔ ESM.

Proof. (⇐) Let f ∈ C̄∗ ∩ L∞+ . Since dP̃/dP ∈ L1, there are fn ∈ C with
Ẽfn → Ẽf . By definition, fn ≤ Xn

T where Xn ∈ X . Thus, Ẽfn ≤ 0 implying
that Ẽf ≤ 0 and f = 0.

(⇒) Since C̄∗ ∩ L∞+ = {0}, the Kreps–Yan separation theorem (Lemma F)
provides P̃ ∼ P such that Ẽf ≤ 0 for all f ∈ C, hence, for all f ∈ K0. 2

Surprisingly, we have also NFLVR ⇔ NFLBR ⇔ NFL due to following

Theorem 1.2 Under NFLVR C = C̄∗.

Example. Let X 1 be the set of all integrals H · S ≥ −1 with respect to
a fixed semimartingale S (it is closed by Mémin’s theorem [14]). By definition,
S has EMM (resp. ELMM) property if there is P ′ ∼ P such that S ∈ M(P ′)
(resp., S ∈Mloc(P ′). If S is bounded, ESM coincides with EMM. Indeed, being
bounded from below, the stochastic integral H ·S ∈M(P ′) (see [1]) and, by the
Fatou lemma, E′H · ST ≤ 0. On the other hand, for each stopping time τ the
processes I[0,τ ] · S and −I[0,τ ] · S belong to X , ẼSτ = 0 and, hence, S ∈M(P̃ ).
Of course, if S is locally bounded, ESM coincides with ELMM.

Delbaen and Schachermayer [4] studied this very model and proved the corre-
sponding version of Theorem 1.2, a remarkable result important in its own right
not to less extent than the reformulations of the FTAP, based on it. While they
considered the case of a locally bounded semimartingale S, their method works
for a more general situation.

We give the proof of Theorem 1.2 in Section 3 after some preparatory work
in Section 2. Auxiliary results (Lemmas A, B etc.) are listed in Appendix.

For a sequence x = (xk) we put Tn(x) := conv {xk, k ≥ n}. A special
semimartingales X is indicated by its canonical decomposition always of the
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form X = M + A (with various attributes) where M ∈ Mloc and A is a pre-
dictable process of bounded variation; |A|t := Var A; the density dA/d|A| is
taken predictable with values in {−1, 1}. We write H ·M∗ instead of (H ·M∗).

2 NFLVR and BK

2.1 Elementary properties

Lemma 2.1 Let X ∈ X . If NA holds then X ∈ λX 1 with λ = ‖X−
T ‖∞.

Proof. If P (Xs < −λ) > 0 then I{Xs<−λ}I]s,T ] ·XT violates NA. 2

Lemma 2.2 The following conditions are equivalent:
(a) NFLVR;
(b) P -lim gn = 0 for every sequence gn ∈ K0 with lim ‖g−n ‖∞ = 0;
(c) NA & BK.

Proof. (a) ⇒ (b) Let gn ∈ K0, lim ‖g−n ‖∞ = 0 but limP (gn ≥ α) ≥ α > 0.
Clearly, fn := gn ∧ 1 ∈ C. Lemma A provides a sequence f̃n ∈ Tn(f) ⊆ C
converging a.s. to f̃ ≥ 0 with P (f̃ > 0) = 2β > 0. By Egorov’s theorem there
is Γ such that P (Γ) > 1− β and lim ‖f̃nIΓ − f̃ IΓ‖∞ = 0 and NFLVR fails since
C 3 f̃nIΓ − f̃−n IΓc → f̃ IΓ in L∞ where P (f̃ IΓ > 0) ≥ β.

(b) ⇒ (c) NA follows trivially. If BK fails we can find Xn ∈ X 1 with
limP (Xn

T ≥ n) > 0 and get a contradiction with gn := n−1Xn
T .

(c) ⇒ (a) If NFLVR fails, there are a sequence fn ∈ C and f ≥ 0 with
P (f > 0) > 0 such that ‖fn − f‖∞ ≤ n−1. By definition, fn ≤ hn = Xn

T where
Xn ∈ X . Obviously, ‖h−n ‖∞ ≤ n−1 and, by NA, nXn ∈ X 1. By Lemma A we
may assume that hn → h a.s. Since P (h > 0) > 0, the sequence nXn

T ∈ K1
0 ,

tending to infinity with positive probability, violates BK. 2

Lemma 2.3 Let X, X1, X2 ∈ X 1 and α > 0.
(a) Let θ be stopping time. Then I[0,θ] ·X ∈ X 1;
(b) Let τ := inf{t : X1

t ≥ X2
t + α}. Then I[0,τ ] ·X1 + I]τ,∞[ ·X2 ∈ X 1.

(c) Let Xi = M i + Ai, B be a predictable increasing process dominating Ai,
ri := dAi/dB, and σ := inf{t : IΓ · M1

t + IΓc · M2
t < M1

t ∨ M2
t − α} where

Γ = {r1 ≥ r2}. Then X̃ := I[0,σ]∩Γ ·X1 + I[0,σ]∩Γc ·X2 ∈ (1 + α)X 1.

Proof. The assertion (a) is obvious; (b) holds since

I[0,τ ] ·X1 + I]τ,∞[ ·X2 ≥ X1I[0,τ ] + (α + X2)I]τ,∞[ ≥ −1 + α.

To show (c) we notice that IΓ ·A1 + IΓc ·A2 ≥ A1 ∨A2. Thus, on [0, σ[

X̃ ≥ A1 ∨A2 + M1 ∨M2 − α ≥ (M1 + A1) ∨ (M2 + A2)− α = X1 ∨X2 − α

and X̃σ ≥ −1− α because ∆X̃σ = IΓ∆X1
σ + IΓc∆X2

σ. 2
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Lemma 2.4 Let Y n = IΓn · Zn with predictable Γn and Zn ∈ X 1 be such that
1) lim supP (Y n

T ≥ β) ≥ β > 0,
2) βn := ‖((∆Y n)−)∗T ‖∞ → 0, n → 0,
3) lim P (((Y n)−)∗T ≥ γn) = 0 where γn ↓ 0.

Then BK (hence, NFLVR) fails.

Proof. Take (βn + γn)−1I[0,τn] · Yn ∈ X 1 where τn := inf{t : (Y n
t )− > γn}. 2

2.2 Absence of Compensation

Let Xn = Mn + An ∈ X 1. One can imagine the situation where Mn
T and

An
T may diverge though the sequence Xn∗

T is bounded in L2. Fortunately, BK
excludes this compensation phenomenon.

Lemma 2.5 Assume BK. Let the sequence Xn = Mn + An in X 1 be such that
‖Xn∗

T ‖2 ≤ λ. Then the sequence Mn∗
T is bounded in L0.

Proof. Suppose that the claim fails. We may assume, taking a subsequence,
that P (Mn∗

T > n3) ≥ 8α > 0. By the Chebyshev inequality, P (Xn∗
T > n) ≤ α

for sufficiently large n (we skip further these words to avoid repetitions).
Let τn := inf{t : Mn∗

t > n3 or Xn∗
t > n} and X̃n := n−3I[0,τn] ·Xn. Clearly,

P (M̃n∗
T ≥ 1) ≥ 7α. By Lemma C ‖(∆M̃n)∗T ‖2 ≤ 6n−3λ ≤ n−1. Let (Tn

i ) be
the n−1-chain for M̃n. By Lemma D

P (M̃n
T n

i
− M̃n

T n
i−1

≤ −αn−1) ≥ α2 ∀i ≤ kn := [nα/4].

For arbitrary stopping times σ and τ the Chebyshev inequality yields

P (|X̃n
τ − X̃n

σ | > αn−1/2) ≤ 8λ2n−4/α2 ≤ α2/2.

It follows that

P (Ãn
T n

i
− Ãn

T n
i−1

≥ αn−1/2) ≥ α2/2 ∀i ≤ kn.

Let Hn be the indicator function of {rn = 1} ∩ [0, Tn
kn

] where rn := dÃn/|Ãn|.
Put Y n := Hn · X̃n. Then Hn · Ãn and Hn · Ãn− Ãn are increasing on [0, Tn

kn
],

the last bound holds for Hn · Ãn, and by Lemma B

P (Hn · Ãn
T n

kn
≥ knn−1α3/8) ≥ α2/4,

i.e., P (Hn · Ãn
T ≥ 2β) ≥ 2β for some β > 0.

Since Xn on [0, τn[ is in [−1, n] we have ∆X̃n ≥ −(n + 1) on [0, τn]. Thus,

(∆Y n)− ≤ (∆X̃n)− ≤ (n + 1)n−3.
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Clearly, ‖Hn · M̃n
Tkn

‖22 ≤ ‖M̃n
Tkn

‖22 ≤ 4n−2kn and, by the Doob inequality,

P (Hn · M̃n∗
T ≥ γn) ≤ γ−2

n ‖Hn · M̃n∗
T ‖22 ≤ 16γ−2

n n−2kn → 0

if γ−1
n = o(n1/2). Since Y n ≥ Hn · M̃n we get in this case also that

P (((Y n)−)∗T ≥ γn) ≤ P (Hn · M̃n∗
T ≥ γn) → 0,

P (Y n
T ≥ β) ≥ β and the result follows from Lemma 2.4. 2

2.3 Residual Processes

Notations: τn
c := inf{t : Mn∗

t > c}, Xn
c := I[τn

c ,∞[ ·Xn, and ξ := supn Xn∗
T .

Lemma 2.6 Assume BK. Let Xn = Mn + An ∈ X 1 and ξ ∈ L2. Then for any
ε > 0 there is c0 such that for all X̃ ∈ ∪c≥c0T1(Xc) we have P (M̃∗

T > ε) ≤ ε.

Proof. Suppose that the claim fails with ε = α > 0. Take δ ∈]0, α/4[. By
Lemma 2.5 (with λ = ‖ξ‖2) there is c0 such that for all c ≥ c0 and all n

P (τn
c < ∞) = P (Mn∗

T > c) ≤ δ2.

By our hypothesis there are c ≥ c0 and X̃ =
∑

λiX
i
c (λi are convex weights)

with P (M̃∗
T > α) > α. So, for ρ := inf{t : M̃∗

t > α} we have P (ρ < ∞) > α.
Let ϑ := inf{t : Ft > δ} where F :=

∑
λiI]τ i

c ,∞[; F is an increasing left-
continuous process and, therefore, Fϑ ≤ δ . By the Chebyshev inequality

P (ϑ < ∞) = P (F∞ > δ) ≤ δ−1
∑

λiP (τ i
c < ∞) ≤ δ < α/4.

Fix N ≥ 2 such that P (ξ > N − 1) < α/4. Then P (τ < ∞) < α/4 where
τ := inf{t : supn Xn∗

t > N − 1}. For t ≤ ϑ ∧ τ we have

2δξ ≥ 2Ftξ ≥
∑

λiI{t>τ i
c}(X

i
t −Xi

τ i
c
) ≥ −NFt ≥ −Nδ.

Thus, X ′ := (Nδ)−1I[0,τ∧ϑ∧ρ] · X̃ ∈ X 1, ‖X ′∗
T ‖2 ≤ ‖1 ∨ ξ‖2, and

P (M ′∗
T ≥ α(Nδ)−1) ≥ P (ρ < ∞, τ = ∞, ϑ = ∞) ≥ α/2.

Letting δ ↓ 0 we come to a contradiction with Lemma 2.5. 2

Lemma 2.7 Assume BK. Let Xn = Mn + An ∈ X 1 and ξ ∈ L2. Then for any
δ > 0 there is c0 such that D(M̃) ≤ δ for all X̃ ∈ ∪c≥c0T1(Xc).

Proof. Let ε > 0. Take c0 as in Lemma 2.6, i.e. such that P (M̃∗
T > ε) ≤ ε

for all c ≥ c0 and X̃ ∈ T1(Xc). By Lemma 2.5 supn P (τn
c < ∞) → 0 and,

hence, ‖(Xn
c )∗T ‖2 ≤ 2‖ξIτn

c <∞‖ ≤ ε/6 for all n if c is large enough. Enlarging
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eventually c0, we get by Lemma C that supn ‖(∆M̃n)∗T ‖2 ≤ ε if c ≥ c0. Take
predictable h with |h| ≤ 1, X̃ ∈ T1(Xc), and put ρ := inf{t : M̃∗

t > ε}. As

‖h · M̃ρ‖2 = ‖h2 · [M̃, M̃ ]ρ‖1/2
1 ≤ ‖[M̃, M̃ ]ρ‖1/2

1 = ‖M̃ρ‖2 ≤ 2ε,

we have, in virtue of the Chebyshev and Doob inequalities, that

P (h · M̃∗
T ≥

√
ε) ≤ P (h · M̃∗

ρ ≥
√

ε) + P (ρ < ∞) ≤ 17ε.

Thus, D(M̃) =
√

ε + 17ε and the result follows. 2

2.4 Convergence in the Semimartingale Topology

Lemma 2.8 Assume BK. Let Xn = Mn + An ∈ X 1 and ξ ∈ L2. Then there
exist X̃n ∈ Tn(X) with M̃n converging in S.

Proof. By Lemma 2.7 there is ck such that D(M̃) ≤ k−1 for all X̃ ∈ T1(Xck
).

We consider the martingales xn
k := I[0,τn

ck
] ·Mn as elements of the Hilbert space

M2. Since ‖I[0,τn

ck
] ·Mn

T ‖2 ≤ ck + 6‖ξ‖2, by Lemma E there are convex weights
Λn := (λn

j )j≤Nn such that for every k the sequence

Y n
k :=

Nn∑

j=0

λn
j I[0,τn+j

ck
] ·Mn+j

converges in M2, hence, in S. This implies that

Zn :=
Nn∑

j=0

λn
j Mn+j = Y n

k +
Nn∑

j=0

λn
j Mn+j

ck
= Y n

k + M̃n
k

is a Cauchy sequence (hence, convergent) in S. Indeed,

D(Zn − Zm) ≤ D(Y n
k − Y m

k ) + D(M̃n
k ) + D(M̃m

k ) ≤ D(Y n
k − Y m

k ) + 2k−1

and it remains to take at first the limit as m,n →∞ and then as k →∞. 2

3 Closedness

A convex bounded set C in L∞ is closed in L∞ iff every bounded and weakly∗

convergent sequence of its elements has the limit in C ( [9], Ch. 5-3, Ex. 1).
It is easy to see, using, e.g., Lemma A, that in our case, where C = C0∩L∞,

the second condition holds if C0 is Fatou closed, i.e. for any sequence hn ∈ C0

uniformly bounded from below and such that hn → h a.s. we have h ∈ C0.
Thus, Theorem 1.2 follows from
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Theorem 3.1 Assume NFLVR. Then C0 is Fatou closed.

Before the proof we recall the following fact: a non empty closed bounded
subset of L0 has a maximal element. Indeed, each linearly ordered subset {fα}
has as a majorant ess supαfα < ∞ and the claim holds by Zorn’s lemma.
Notations: bf,∞b:= {g ∈ L0 : g ≥ f}, Df := K̂1

0 ∩ bf,∞b where K̂1
0 in a

closure of K1
0 in L0.

Proof. Let fn ≥ −1 be a sequence in C0 converging to f a.s. The claim follows
if the set K0∩bf,∞b is non empty. We show that it contains the set of maximal
elements of Df . By Lemma 2.2 K̂1

0 , and hence Df , is bounded in L0. We have
−1 ≤ fn ≤ hn = Xn

T where Xn ∈ X ; NA yields that Xn ∈ X 1. By Lemma A
there are h̃n ∈ Tn(h) ⊂ K1

0 converging a.s. to some finite h̃0 which is, clearly,
in Df . Thus, Df 6= ∅ and a maximal element h0 in Df does exist. It remains to
check that h0 = X̃T for some X̃ ∈ X .

Since h0 ∈ K̂1
0 , there is a sequence Xn ∈ X 1 such that Xn

T → h0 a.s.

Lemma 3.2 We have P -limm,n(Xm −Xn)∗T = 0.

Proof. If the claim fails then P (((Xik − Xjk)+)∗T > α) ≥ α > 0 with some
ik, jk → ∞. For Tk := inf{t : Xik

t − Xjk
t > α} we have P (Tk < ∞) ≥ α. In

virtue of Lemma 2.3 X̃k := I[0,Tk] ·Xik + I]Tk,T ] ·Xjk ∈ X 1. Notice that

X̃k
T = Xik

T I{Tk=∞} + Xjk

T I{Tk<∞} + ξk

where ξk := (Xik

Tk
− Xjk

Tk
)I{Tk<∞} ≥ 0 and P (ξk ≥ α) ≥ α. Applying Lemma

A to (ξk) we infer that Df contains an element h0 + η with η ≥ 0, η 6= 0, in a
contradiction with the maximality of h0. 2

In particular, ξ := supn Xn∗
T < ∞. Take Q ∼ P such that ξ ∈ L2(Q); Xn are

special semimartingales under Q. Working with the properties invariant under
an equivalent change of measure, we may assume Q = P . Lemma 2.8 provides
X̃n ∈ Tn(X) with the martingale components M̃n converging in S. By Lemma
3.3 below Ãn also converge in S. So, X̃n = M̃n + Ãn converge in S to X̃ ∈ X 1

since X 1 is convex and closed. Thus, h0 = lim X̃n
T = X̃T . 2

Lemma 3.3 Let Xn ∈ X 1 be such that Xn
T → h0 a.s. and Mn converge in S.

Then An converge in S.

Proof. Let rn := dAn/dB, B is a predictable increasing process dominating all
An. If the claim fails, An is not a Cauchy sequence in S and there are ik, jk →∞
such that P (|rik − rjk | · BT > 2γ) ≥ 2γ > 0. Let Γk := {rik ≥ rjk}. We may
assume ik ∧ jk > ik−1 ∨ jk−1 and, interchanging eventually ik and jk,

P ((rik − rjk)IΓk
·BT > γ) ≥ γ.
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Take αk ↓ 0 and define X̄k := IΓk
·Xik + IΓc

k
·Xjk , X̃k := I[0,σk] · X̄k where

σk := inf{t : IΓk
·M ik

t + IΓc
k
·M jk

t < M ik
t ∨M jk

t − αk}.

By Lemma 2.3 X̃k ∈ (1 + αk)X 1. Note that M̄k −M ik = IΓc
k
· (M jk −M ik)

tends to zero in S. Hence, (M̄k −M ik)∗T tends to zero in probability and the
same holds for (M̄k −M jk)∗T . We may take ik and jk growing fast enough to
ensure P (σk < ∞) → 0. From the representation

X̃k
T = Xjk

T∧σk
+ IΓk∩[0,σk] · (M ik −M jk)T + ξk,

applying Lemma A to ξk := (rik−rjk)IΓk
·BT∧σk

, we get easily that Df contains
an element h0 + η with η ≥ 0, η 6= 0, in a contradiction with the maximality of
h0. 2

Appendix

Facts from Probability

Lemma A. Let (ξn) be a sequence of nonnegative r.v. Then there exist a
sequence ηn ∈ Tn(ξ) and a r.v. η with values in [0,∞] such that ηn → η a.s.

If T1(ξ) is bounded in L0 then η < ∞.
If P (ξn ≥ α) ≥ α > 0 for all n then P (η > 0) > 0.

Proof. Clearly, Jn := infη∈Tn(ξ) Ee−η increase to some J ≤ 1. Take ηn ∈ Tn(ξ)
with Ee−ηn ≤ Jn + 1/n. For any ε > 0 there is δ = δ(ε) > 0 such that

e−(x+y)/2 ≤ (e−x + e−y)/2− δIBε(x, y)

where Bε := {(x, y) ∈ R2
+ : |x− y| ≥ ε, x ∧ y ≤ 1/ε}. Therefore,

Jn∧m ≤ Ee−(ηn+ηm/2 ≤ (Ee−ηn + Ee−ηm)/2− δP ((ηn, ηm) ∈ Bε).

It follows that limm,n→∞ P ((ηn, ηm) ∈ Bε) = 0. We infer from the inequality

E|e−ηn − e−ηm | ≤ ε + 2e−1/ε + P ((ηn, ηm) ∈ Bε)

that e−ηn is a Cauchy sequence in L1. It remains to recall that a sequence
convergent in L1 (hence, in L0) contains a subsequence convergent a.s.

The first property of limits is obvious.
To prove the second one we observe that if P (ξn ≥ α) ≥ α > 0 for all n then

Ee−ζ ≤ 1− α + αe−α < 1 for any ζ ∈ T1(ξ). 2

Lemma B. Let ηn := ξ1 + . . . ξn where all ξi ≥ 0 and P (ξi ≥ a) ≥ 2b for some
a, b > 0. Then P (ηn ≥ nab) > b.
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Proof. Let A := {ηn ≥ nab}. We have:

nab(1− P (A)) ≥ EηnIAc ≥
n∑

i=1

EξiI∩{ξi≥a}∩Ac ≥ a

n∑

i=1

P ({ξi ≥ a} ∩Ac) ≥

≥ a

n∑

i=1

(P (ξi ≥ a)− P (A)) ≥ na(2b− P (A)).

Thus, P (A) ≥ b/(1− b) and the result follows. 2

Facts from Stochastic Calculus

Lemma C. Let X = M + A be a special semimartingale. Then

‖(∆A)∗T ‖2 ≤ 2‖(∆X)∗T ‖2, ‖(∆M)∗T ‖2 ≤ 3‖(∆X)∗T ‖2.

Proof. Obviously, for the predictable process A we have (∆A)∗ ≤ Y where
Yt = E((∆X)∗T |Ft). The bound for A follows by the Doob inequality. 2

Lemma D. Let N ∈M2
0 and (Ti) be the ε-chain of N defined as follows:

T0 := 0, Ti+1 := inf{t ≥ Ti : |Nt −NTi | > ε}, n ≥ 1.

Assume that ‖(∆N)∗T ‖2 ≤ ε and P (N∗
T ≥ 1) ≥ 7α > 0. Then

P (NTi −NTi−1 > −αε) ≥ α2 ∀ i = 1, 2, . . . , k := [ε−1α/4].

Proof. Let fi := NTi −NTi−1 , Γ := {Tk < ∞}, and Bi := {f−i > εα} (the set of
interest). By the Doob inequality ‖I]Ti−1,Ti] ·N∗

T ‖2 ≤ 2‖fi‖2 ≤ 4ε. Hence,

‖N∗
T IΓc‖2 =

∥∥∥∥∥

(
k∑

i=1

I]Ti−1,Ti]

)
·N∗

T IΓc

∥∥∥∥∥
2

≤
k∑

i=1

‖I]Ti−1,Ti] ·N∗
T ‖2 ≤ 4εk ≤ α

and, by the Chebyshev inequality, P (N∗
T IΓc ≥ 1) ≤ α2. It follows that

P (Γ) ≥ P (N∗
T ≥ 1)− P ({N∗

T ≥ 1} ∩ Γc) ≥ 7α− α2 ≥ 6α.

For any i ≤ k we have {|fi| > ε} ⊇ Γ and, due to the martingale property,

Ef−i = Ef+
i = E|fi|/2 ≥ εP (|fi| > ε)/2 ≥ 3εα.

Using the Cauchy–Schwarz inequality and the above estimate we have

‖f−i ‖2
√

P (Bi) ≥ Ef−i IBi = Ef−i − Ef−i IBc
i
≥ 3εα− εα = 2εα

and the result follows since ‖f−i ‖2 ≤ ‖fi‖2 ≤ 2ε. 2
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Facts from Functional Analysis

Lemma E. Let (xn
k )k,n∈N be a double sequence in a Hilbert space H such that

Ck := supn ‖xn
k‖ < ∞ for every k. Then there is a sequence Λn = (λn

j )0≤j≤Nn

of convex weights such that for every k the sequence (yn
k )n∈N with

yn
k :=

Nn∑

j=0

λn
j xj+n

k

converges in H.
Proof. Let K := ⊕∑∞

1 H be the Hilbert space with elements x = (xk), xk ∈ H,
and ‖x‖2K :=

∑ ‖xk‖2H < ∞. As x̃n = (x̃n
k )k∈N with x̃n

k := xn
k/(2kCk) is

a bounded sequence in K, by the Mazur theorem [16] there are yn ∈ Tn(x̃)
convergent in K, thus, componentwise in H. The corresponding convex weights
meet the requirement. 2

Lemma F. [13], [15],[2] Let C ⊇ −L∞+ be a convex weakly∗ closed cone in L∞

such that C ∩ L∞+ = {0}. Then there is P̃ ∼ P such that Ẽf ≤ 0 for all f ∈ C.

Proof. By the Hahn–Banach theorem any nonzero x ∈ L∞+ can be separated
from C: there is zx ∈ L1 such that Ezxx > 0 and Ezxf ≤ 0 for all f ∈ C. Since
C ⊇ −L∞+ , the latter property yields that zx ≥ 0; we may assume Ezx = 1. By
the Halmos–Savage lemma the dominated family {Px = zxP : x ∈ L∞+ , x 6= 0}
contains a countable equivalent family {Pxi}. But then z :=

∑
2−izxi > 0 and

we can take P̃ := zP . 2

Addendum

When this note was completed, F. Delbaen communicated the summary [5]
which contains, for the case X 1 = {H · S : H · S ≥ −1} without restrictions
on S, formulations of the closedness result and an approximation property of
separating measures implying a new equivalence announced at Ascona meeting
in September 1996 (see Theorems 2 and 1 below). The detailed exposition [6] is
now available but for the sake of completeness we give our proof of Theorem 2
using the measurable selection technology of [8] which goes back to [3].

A semimartingale S is a σ-martingale (notation: S ∈ Σm) if G ·S ∈Mloc for
some G with values in ]0, 1]. The property EσMM means that there is Q ∼ P
such that S ∈ Σm(Q).
Theorem 1 Let X 1 be the set of stochastic integrals H · S ≥ −1. Then

NFLV R ⇔ NFLBR ⇔ NFL ⇔ ESM ⇔ EσMM.

The only remaining nontrivial implication ESM ⇒ EσMM follows from
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Theorem 2 Let P be a separating measure. Then for any ε > 0 there is Q ∼ P
with Var (P −Q) ≤ ε such that S is a σ-martingale under Q.

In contrast with the intriguing implication above, this formulation contains
an instruction1 how to proceed. Our arguments use intensively notations and
results of [10], cited directly.

Let (B,C, ν) be the characteristics (relative to the truncation function h(x) :=
xI{|x|≤1}) of the semimartingale S written in the canonical form

S = Sc + h ∗ (µ− ν) + h̄ ∗ µ + B,

h̄ := x− h. We choose a “good” version of the triplet, i.e. such that B = b ·A,
ν(ω, dt, dx) = dAt(ω)Kω,t(dx) where A is a predictable process in A+, b is
predictable, Kω,t(dx) is a transition kernel from (Ω × R+, P̃) into (Rd,Bd)
with

∫
(|x|2 ∧ 1)Kω,t(dx) < ∞; if ∆At(ω) > 0 then ∆At(ω)Kω,t(Rd) ≤ 1 and

bt(ω) =
∫

h(x)Kω,t(dx), II.2.9. We may assume that A = α · Ao where α > 0
is predictable and Ao

T ≤ 1. Let P̄ be the completion of P with respect to
the measure m(dω, dt) := P (dω)dAt(ω). As usual, at := ν({t},Rd). We write
Kω,t(Y ) instead of

∫
Y (x)Kω,t(dx) and omit often ω, t. Let θ := K(|x|2 ∧ |x|).

The following assertion is an obvious corollary of II.2.29.
Lemma 3 S ∈ Σm (with 1/G := 1 + θ) ⇔ θ < ∞ and b + K(h̄) = 0 m-a.e.
Proof of Theorem 2. Let Y be the set of functions Y > 0, Y ∈ C(R̄d); Y with
its Borel σ-algebra Y is a Lusin space. Let δ > 0 be a predictable process. For
every (ω, t) we consider in Y the convex subsets

Γ1
ω,t := {Y : Kω,t((

√
Y − 1)2) ≤ δt(ω)},

Γ2
ω,t := {Y : Kω,t((|x|2 ∧ |x|)Y ) < ∞},

Γ3
ω,t := {Y : I{at(ω)>0}Kω,t(Y ) = I{at(ω)>0}Kω,t(Rd)},

Γ0
ω,t := {Y : Kω,t(|xY − h|) < ∞, Kω,t(xY − h) = −bt(ω)}.

Put Γω,t := Γ1
ω,t ∩ Γ2

ω,t ∩ Γ3
ω,t. Clearly, {(ω, t, Y ) : Y ∈ Γi

ω,t} ∈ P ⊗ Y.
Lemma 4 Let P be a separating measure. Then Γω,t ∩ Γ0

ω,t 6= ∅ m-a.e.
With this lemma we get the result immediately. Indeed, let δ := ε2/(16α).

Applying the measurable selection theorem with (Ω ×R+, P̄,m) as the x-axis
and Y as the y-axis we find a P-measurable mapping (ω, t) 7→ Y (ω, t, .) into Y
such that Y (ω, t, .) ∈ Γω,t ∩ Γ0

ω,t m-a.e. The function (ω, t, x) 7→ Y (ω, t, x) is
P̃-measurable. Put Z := E((Y − 1) ∗ (µ− ν)). Since (

√
Y − 1)2 ∗ νT ≤ ε2/16 we

have by Th. 12 in [11] that Z ∈M and ZT > 0. Let Q := ZT P and let h(P, Q)
be the Hellinger process. In virtue of IV.3.39, hT (P, Q) ≤ (

√
Y −1)2 ∗νT , Thus,

by V.4.22 (see also [12])

Var (P −Q) ≤ 4
√

EhT (P, Q) ≤ ε.

1At least, for colleagues of Robert Liptser due to [11], [12].
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The conditions of Lemma 3 are fulfilled for characteristics of S under Q, see
Girsanov’s theorem III.3.24. 2

Proof of Lemma 4. We start with the case d = 1, omitting, as usual, ω, t. Let
r := sup{x ≤ 0 : K(] − ∞, x[) = 0}, R := inf{x ≥ 0 : K(]x,∞[) = 0}.
Define the predictable processes jn := I{r>−n} and Jn := I{R<n}. Notice that
∆(jn · S) ≥ −n. Hence, jnh̄− ∗ µ ∈ A+. From the separation property of P we
infer easily that jnh̄+ ∗µ ∈ A+ and jnh̄ ∗ ν + jn ·B ∈ −A+. The conclusion for
Jn is symmetric. It follows that, outside of a m-negligible set,

if r > −∞ then K(|h̄|) < ∞ and − b ∈ [K(h̄),∞[,
if R < ∞ then K(|h̄|) < ∞ and − b ∈]−∞,K(h̄)].

In particular, −b = K(h̄) if r < ∞ and R > −∞.
Put Ψ(Y ) := K(xY − h). Obviously, Γ ∩ Γ0 6= ∅ iff −b ∈ Ψ(Γ). The image

of the convex set Γ under the affine mapping Ψ is an interval. By above Ψ(Γ)
always contains the point Ψ(Y ) = K(h̄) and we may conclude in the scalar case
using
Lemma 5 If R = ∞ then the interval Ψ(Γ) is unbounded from above.
Proof. Let Kn(dx) := I{x>n}(x)K(dx). For γ > 0 we define the set Wn,γ of
W ∈ Y such that W (n) = 1, xW (x) → 0 as x →∞, and Kn(W ) = γ. Then the
interval Kn(xWn,γ) is unbounded. Indeed, “deforming” a continuous function
V > 0 such that V (n) = 1, γ < Kn(V ) < ∞ but Kn(xV ) = ∞, it is easy to
construct W ∈ Wn,γ with arbitrary large Kn(xW ).

Fix n ≥ 1 such that K(R \ [−n, n]) ≤ δ/2. Take U ∈ Y such that U ≤ 1,
U(−n) = 1, xU(x) → 0 as x → −∞, and K(U) < K(R \ [−n, n]). Take
WN ∈ Wn,γ with γ = K(R \ [−n, n])−K(U) and Kn(xWN ) ≥ N . Then

YN (x) := U(x)I{x<−n} + I{|x|≤n} + WN (x)I{x>n} ∈ Γ

and Ψ(YN ) →∞ as N →∞. 2

The vector case is easily reduced to the just considered. Indeed, the sets
Ξω,t := Ψω,t(Γω,t) + bt(ω) ⊆ Rd are convex and {(ω, t, x) : x ∈ Ξω,t} ∈ P ⊗Bd.
By the measurable version of the separation theorem, there is a predictable
process l with values in (Rd)∗ = Rd such that, outside of a m-negligible set,
|lω,t| = 1 and lω,tx < 0 for every x ∈ Ξω,t if 0 /∈ Ξω,t, and lω,t = 0, oth-
erwise. Let us consider the scalar semimartingale Sl := l · S. We use the
superscript l to denote objects related to Sl and subscripts for dimensions
of the truncation functions. Obviously, νl(ω, dt, dx) = Kl

ω,t(dx)dAt(ω) with
Kl

ω,t(dx) = (Kω,tl
−1
ω,t)(dx) and Bl = lb ·A+K(lhd(x)−h1(lx)) ·A, see IX.5.3; P

is a separating measure for Sl. We have proved that for every fixed (ω, t) outside
of a m-negligible set the equation Ψl

ω,t(Y ) = −bl
t(ω) has a solution Y ∈ Γl

ω,t.
Due to the above relations, the function Y (lω,tx) belongs to Γω,t and solves the
equation Ψω,t(Y (lω,tx)) = −bt(ω). Thus, l = 0 m-a.e. 2
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