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1. Introduction

In his paper devoted to the problem of option pricing in the presence of transac-
tions costs, Heyne Leland (1985) suggested a trading strategy based on the nice
idea of a periodic revision of a hedging portfolio using modified Black—Scholes
betas. He assumed that the lekadf transactions costs is a constant and claimed
that the terminal value of the portfolio approximates the payoff as the length of

a revision interval tends to zero. In a footnote remark he also mentioned that the
same holds also when the levelkig1~1/2, n being the number of revision inter-

vals. Both of these results are considered very helpful for practitioners, and the
paper is widely quoted in the literature. However, Leland’s arguments were on
a heuristic level and his conclusions have to be considered only as conjectures.

* The research for this paper was carried out during a visit to Humboldt University at Berlin
supported by the Volkswagenstiftung. The authors express their thanks to UekeeK for fruitful
discussions and to anonymous referees for important remarks and corrections.
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Recently, Lott (1993) provided a rigorous mathematical proof of the footnote
remark (together with a study of another approximating strategy). In the present
note we show that, unfortunately, the main conjecture of Leland for the case of
constant level of the transactions costs fails, and we calculate the hedging error.
We also prove that the approximation result still holds in the case where the level
is kon—?, a €]0,1/2[, ko > 0.

2. Description of the model

The stock price dynamics is given by the geometric Brownian motion
S = Soexp{(u — o?/2)t + oW},

whereW is the Wiener process. The bond price is constant over time and equal
to one (certainly, this is not a restriction). In the absence of transactions costs
the “fair” price at timet of the European call option maturing &t= 1 with the
striking priceK, i.e. with the terminal payofH = h(S) = (S — K)*, is given

by the Black—Scholes formule; = C(t,S) where

C(t,x) = C(t,x,0) :=xP(d) — K&(d — ov/1— 1), (1)
@ is the standard normal distribution function with the densityand

_In(x/K) 1

oVt + 20\/1 t.
The terminal payoff is replicated by the value at maturity of the self-financing
portfolio which has initial endowmen€ (0, S) and at timet contains¢; =
Cx(t, ) units of the stock (and hendg — C(t, S)S units of the bond).

Assume that in the stock market the cost of a single transaction is a fixed
fraction of its trading volume and the corresponding coefficierk s k, (our
definition corresponds to one half of Leland’s round trip coefficient). Let us
consider the self-financing trading strategy with initial endowné(m $) and
the portfolio containing at timé a numberg of shares of the stock given by
the formula

d=d(x,0):

gt = Z (gti_ll]ti_l,ti](t) = Z E\:X(tl -1, Si_l)l]ti_l,ti](t)

i=1 i=1
wheret; :=i/n, C(t,x) := C(t,x,3), ¢ = C(t, S),
52 = o? (1+7), v = 2\/2k\/n :2\/2kon1/2a @)
g Y i

(to simplify formulae we omit the dependence min obvious cases). The value
process now has the form
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t
Vi€ = E(0, %) + /0 eds, — kS S 1€ - €. ®)

i <t

Remarks1) We follow here the definition adopted by Lott (1993). Leland (1985)
considered instead of self-financing Hradmissible strategy but the problem is
essentially the same.

2) A reader may have some trouble with boundary effects. There is a transaction
at timet = 0 when the investor enters the market. The last transactibr 4tis

also special: the contract may admit different specification for the final settlement,
e.g., to deliver or not to deliver the stock. We exclude these particular transactions
from our considerations.

Theorem 1 Assume that k k, = kon™ wherea €]0,1/2], ko > 0. Then
P- nIim Vi(€")=H. 4)

Theorem 2 Let k=ky > 0 be a constant. Then

P— lim Vi) =H +J1 - J ©)
where
J; == min{K, S}, (6)
0o 2
R=%00) = /0 j’l (S v, ko) exp{—g <'”(Sj/ )4 ;) }d @

e /2dx 8)

G(S, v k)= - /°° ’x_zkom(s:l/x)+ ko

Vor J_o V2rw V2

RemarkThe integral in (8) can be calculated explicitly, in particulafs,, v, 0) =
2/+/27. From the other hand, it is easy to check that

_ 1 [ In(S;/K)  1\?
J = min{K, S} = 2\/27r/o ieXp{Z(n(S;/ )+2) }dv:Jz(O).

It follows that 0< J, — J; < Bky where the constarB depends org;, andK.
Thus, the option is always underpriced in the limit though the hedging error is
small for small values ok, (see Fig. 1).

3. Conclusion

We have shown that the limiting error in Leland’s hedging strategy for the ap-
proximate pricing of the European call is equal to zero only when the level of
transaction costs decreases to zero as the revision interval tends to zero. In the
case when the level of transaction costs is a constant the limiting hedging error
is given in Theorem 2 and, in general, is not equal to zero.
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ID-3(2)

Fig. 1. Dependence aod; — J, onk = kg andS = S for K = 150

Appendix A. Proof of Theorem 1

We start with calculations that are common for both theorems, assuming also
without loss of generality tha® is the risk-neutral measure (i.e.,= 0).

The case olv = 1/2 (whens and henceC do not depend om) has been
considered in Lott (1993). So we suppose from now on that [0,1/2[. This
implies thats? = O(n%?2~%) — o0 asn — oo). However, some ideas from
Lott's study work well here and we use them in several places below, e.g., in
Lemma 4.

By the Ito formula we have that

Cx(t,S) = Cx(0, So) + M + A

where

M

t . t R
/ Cr(U, SIS, = / 05,CoxlU, Su)d i,
0 0

A /t Cu(u &)+1azaféx u,S)| du
0 t 9 2 XxX\Y, .

The proces#M " is a square integrable martingale on IPwith

t o? | 2
(M%) = 21 /0 52(1—s) eXp{_ (g(wsi/_}i ¥ ;‘Wl_ S) }ds'

Following Lott we represent the differendg — H in the form convenient
for a further study.
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Lemma 1 We have Y— H = F(£") + F,(¢") where

l o~
Fa(en) /0 (& — d)ds, ©)

1 oo n
P = 0 [ G -kY I -4 8. (0)
i=1

Proof. According to the Black—Scholes theorem the cldtimadmits the repre-
sentation

1
H :C(07S))+/0 dudS,. (11)

Comparing (3) and (11) we get that
1 N 1 N N
Vi H = /O (& - d)ds +/0 (3 — ¢0dS +C(0, %) — C(0, )
k>l - s
i=1
We have left to check that

1 1
C0.8) - C(0.8)= 0 | FCult S)ct~ [ (G~ o).

This identity follows easily from the Ito formula and the observation ét x)
is the solution of the parabolic equatiory2)o?x?Cy+C; = 0 with the boundary
condition C (1, x) = h(x) while C(t,x) is the solution of (12)52x2Cyy + C; = 0
with the same boundary condition

Lemma 2 Foranya €[0,1/2]
P— nIim Fi(¢™ =0. (12)

Proof. By the Lenglart inequality (see, e.g., Jacod and Shiryayev (1987)) it is
sufficient to show that

l o~
P — lim / (€N — #)%0%SPdt = 0. (13)
n—oo 0

Here the integrand is bounded (by sup.; S?). But for allt < 1 we have that
g{‘alandq?tﬂlasnaoo.m

The study ofF,(£") is more delicate.

Put At := 1/n. It is easily seen thaf,(¢") = 3, L where
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1
Lr1] = 0_’7/ Széxx(tast)dt
2 Jo
7 [N @
—0'2/ ZS‘Z_lcxx(ti—]-?Si—l)l]t\—lyt\](t)dt’
0 =1
Y : c;
Lg = 0-2;3'271CXX(ti_1,Si71)At

—ko Z Sizfléxx(ti -1 Sifl)‘wti - wti71|7

i=1

n
Lg = ko Z Sizfléxx(ti—ly Si,1)|wti - wti—l‘
i=1

n
_kZSi—l“\At? - Mt?,l )
i=1
n n
LQ = kzsi—1|Mt.n - Mt.n_1| - kzsi—1|£t? _gt?_l"
i=1 i=1

Lg = kZ(Si,], - S|)|£tr,1 - é.tri'|71|'

i=1

Lemma 3 For anya € [0,1/2] we have

1
oz / S2C(t, S)dt — J; as,
0

1 n
O-Z / Z ai2_1C:XX(ti717 Sifl)l]tifl,ti](t)dt - Jl a.s,
0 =1

and, hence, L — 0 a.s. when n— cc.

Proof. After the substitutiorv = 5%(1 — t) the first integral can be written as

2

252 /or Jo o O P) T2 v 2

and the second one as

~2
oy 1 /J i Sl—vi_l/;z
252.\/21 Jo Vi1

i=1

(NG, /K 1)
_’U|,1 1—vj_1/02 +
X exp 5 ( i1 5 lor,o_q (0)dv

wherev; := 5%(1 — t;). Clearly, both expressions tends a.s. to the integral
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soe ool 5 (M0 e

(which is equal ta); = min{K, S;}) sincey/5?> — 1/0 and the integrands above
(when Sy (w) # K) are dominated by the function of the form

Ca(w)[v™ %% VI (v) + e ) (V) + €7/ I oo (0)] (14)
and we get the result (see Remark after Theorenil2).
Lemma 4 For any« € [0,1/2] we have § — 0 in probability.
Proof. The sequence of independent random variables
lwy —wy_,| —n"Y2\/2/7

is a martingale difference with respect to the discrete filtratigf)(

E(juy —wy | —n2y/2/x) = (@ 2/mnt = (- 2/m)At

By the Lenglart inequality we need to check only the convergence to zero in
probability of the sequence

0'2(1 — 2/7T)k2 Z Sﬁ_léxzx(ti -1 S| —1)At

i=1
which for almost alkw is of the orderk?/52 = O(n~%2-*). O
Lemma 5 Fort € [0, 1] we have
2
EFCAUL ) = 27732(11 —1) ¢2alz ‘1 eXp{_ 2a5+ 1}

where oyt In(S/K) — azt/2 1

TevL-t b= oV1-t A\/l
Proof. Let  be a standard normal random variable. Then for arandb

1 b?
E exp{—(an + b)?} = oz +1 exp{— oa2 4 1}.

Since
§E2(t.S)= -, *
XX ’\2(1 )
owr , IN(S/K)—o?t/2 1A 2
EXp{_(E\/l—t Gv1—t VL~ ) }

the result follows
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As a corollary we get that for € [1/2,1]

ES?CA(t.S) < (15)

c
oVl-t

We shall use below some simple bounds for higher order derivatives of the
function C«(t, x) = #(d) whered := d(x, 7). We have:

Cux(t, X) e(d),

1
xov1—t
1 d N
1+ d
X251 —t ( 8\/1—t> (@),
. 1 2 d
Cooolt,X) = s l?f\/l—t <1+8\/l—t>

d d .
+82(1 —1) (l " ov1— t)] (),

Cou(t, X)

St = (a4 s 1) #@
Coalt ) = {_;xﬁ(l i £)3/2
+x8\/11 —t (_;al(ri(i/t};fﬂ)ﬂ " 411\/1U—t>} #(d).
It follows that fort < 1 we have

w0y 34(11_ t)2> | (o)
Contt ) < XC“ (32(11— n" 84(11— v 86(11— t)3> SR
ICult,x)] = ¢ <1+ \/13_t> : (18)
Gt = ¢ (s Tyt 1) (19

Lemma 6 For any« € [0, 1/2[ the sequencefl— 0 in probability.
Proof. Using the inequality|al — |b|| < |a — b| we get that
n t; =R =R
LBl<k> o8| [ ols Cat-s.S) ~ SCult S)ldu
i=1 i1

and it sufficient to show that the sequence

ti—1

n t
S| [ 18 Catt1S ) - SCAC. S)lduy
=1 Jti-
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tends to zero in probability. But by the Burkholder and Jensen inequalities

S el
i=1

ti R N
[Si-+Cunlti -1, &) — SCx(t, S)]dlue | <

ti—1

n t R R 1/2
<c Z E ( [Si—lCXX(tiflv Si—l) - Scxx(tv S)]Zdt> <
i=1

ti—1

n X ~ R 1/2
<c) ( / E[S .Culti-1,S ) — scxx(t,a)]zdt> :
i=1

tl—l

It follows from (15) that the last summand in the right-hand side of the above
inequality is finite and tends to zero. By the Ito formula

d[SCult, S)] = frdwy + grdlt
where
ft Uséxx(t»S) +02$26xxx(t7$)7

Stéxxt(t, St) + ;Uzsaéxxxx(ty S) + UZSZGXXX(L S)

gt

and we can estimate all other summands as follows:

i1

t t t , \ Y?
< (/ | fudwu+/ godlu dt)
ti_1 ti—1 -1

ti 1 1/2
< V2(At)Y? ( / Ef2du + At / Egﬁdu>

ti—1 ti—a

1 1 1/2
< cA +
=¢ t<82(1—ti) 84(1—ti)2>

. 1/2
( / E[S .Cu(ti_1,S ,) — SCul(t, S)]Zdt>

1 1 1
+c(At)%/2 + +
c(At) (8(1—ti)3/2 1t 52(1—t)

1 1 1/2
+ +
Y 1-t)? o%(1-t )3)

< cAt ! + !
- g(l—t)2  o2(1-1t)
1
3/2
+C(At) (81/2(1 N ti)3/4
R S S S
@-1)v2 s -2 Tea ) T e - )2
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It is clear that

”if At _ oo /1 dt
(R LI G R
o

1

At
I = 5%lnn—0,
=0 Q-
n—1 1
At dt
1/2 — p-1/24-1/2
O e A 1y O

i=1

n—-1 1
At dt
A2y = n—1/2/ -0,
— (1 )Y* o (L-p)¥4

n—-1

At
A2y = nY2Inn -0
(1) £ 5(1-t) s

n—1 At
A2y = nY% 320,

— o3(1 —1;)%/2
and the result follows

Lemma 7 For anya €]0, 1/2[ the sequencejl.— 0 in probability and bounded
in probability for o = 0.

Proof. Using again the inequalitjfa] — |b|| < |a — b| we get that

L3l < k> OSLIA - AL

i=1

n ti R
< kc(w)Z/t |Ca(u, Sy)[du
i=1 V-1

n t R
o) Y [ o?5¢ICun(u, S)du (20)
i=1

-1

It follows from (16) that

n-1 . n—1
' = At At
2c2 <
Z:/tmg Sl Goollt Si)idu = C; <5(1'Ei)1/2 * 32(1—'&))

<c(@1+572%Inn) — 0.
But the first sum for anyx € [0,1/2[ converges to a finite limit
1 %] 1In(S/K) 1 v (In(S/K)  1\?
\/27T/0 ’ 2w FTap|®P T2 e o)

wherek,, = limk, (which is to zero wherx > 0 and toky whena = 0). The
convergence to zero of the last summand in (20) follows from (15).

C(w)Koo
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Lemma 8 For any « € [0, 1/2[ the sequencefl.— 0 in probability.
Proof. It is sufficient to show that the sequence
n n
K1l - | =k D16, S) — Culti—1,S, )|
i=1 i=1
is bounded in probability. But this fact follows easily from Lemma 7 since we
proved above that >, S _,[M{" — M{" | converges in probability td;. O

Thus, we established that far €]0,1/2[ the sequenc&,(£") converges to
zero in probability and Theorem 1 is proved.

Appendix B. Proof of Theorem 2

In view of Lemmas 1, 2, 8, and 3, 4, 6 it remains to show only that

k) S & -& .- %
i=1

Put
a = ’\/n(wt' ~ W) - ZJ(r]l(Slti{r)z/n ¥ 4;\2/n ’
ZM = Z"-E@" A
Evidently, ]
DSl -G kg TR = IR IS
where -

n

I1n = Z Si—l‘é‘t‘? - ft?,l| - ZUSilex(ti,l, Siﬂ) |wti — Wy _,
i=1 i=1
In(S, _,/K) 1

— At+ T G2At
20—t 1) 40 7|

n
Z US?,lcxx(ti —1, S,,l)zinn—l/Z7
i=1
n
I3 ngtiz_lcxx(tpl? S _)E@" | Z_)n"Y2 k1.
i=1

Sinced?/y/n — 2\/2/7Tkoa we get using the definition (8) that
n

noo 1 S 5 ds g
I3 = 4;3 A S S VL CCRIE

+0(1) —k; 23, = 0 as.
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By the same considerations as in Lemma 4 we can showlfhat 0 in
probability. Indeed, for any the sequencéin is a martingale difference (with
respect to the discrete filtratioi¥{ _,)) and for a certain easily calculated function
R we have

> o’St Calti-1, S _)E(@N? | A_)n ™t

i=1
<cn Y RS, ,,0%(1-t-1)) — 0 as.
i=1

implying by the Lenglart inequality the convergerige— 0 in probability.
Finally,

n
|I:|I.1| S Z S|—].“v|t| - Mtl—l - USI71Cxx(ti71, S|—1)(wt| - wt|—1)|
i=1

+Y's,

i=1

In(s,_,/K) 1
X (_20(1ti_1) * 40"2) At"

Ati - Ati_l - Usti_léxx(ti -1, S\_l)

It follows from Lemma 6 that the first sum in the right-hand side of the above
inequality converges to zero. The second sum is equivalent to the sum

> S
i=1

which tends to zero as — 0.0

1 N N
/ Clt, S)dt — Cualty 1, S, )AL
ti—1
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