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1 Introduction

The important role of the Pontryagin maximum principle in the optimal control
of deterministic systems is well-known. It is a powerful tool, in many cases more
convenient and efficient than the dynamic programming based on the Bellman
equation. The maximum principle is formulated as necessary conditions of
optimality. In an initial value problem, it asserts that for the optimal control
the corresponding solutions of the (forward) equation describing the dynamics
of the controlled object and the conjugate (backward) equation are related
through a maximization problem for a certain function called the Hamiltonian.
An analysis of these conditions, sometimes rather involved, usually starts with
inspection of the solution of the conjugate equation in backward direction
since the boundary (“transversality”) conditions for the latter are given at the
right-hand extremity of the time interval, where, quite often, a structure of
the optimal control is clear. For deterministic models the time direction is not
essential and the conjugate equation is a usual ordinary differential equation.

The situation with stochastic systems is radically different: for a fixed in-
creasing family of o-algebras a boundary condition for stochastic differential
equations is always formulated as an initial value problem with data given at
the left-hand extremity of the interval. During a relatively long period it was
not clear at all what is a natural analog of the conjugate equation which is
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so important object in the deterministic optimal control. Only in 1973 J.-M.
Bismut suggested a construction which he called a backward stochastic dif-
ferential equation (BSDE). With the use of backward stochastic equations the
maximum principle for certain models resembles strongly its deterministic pro-
totype. However, for models where the amplitude of the disturbances depends
on the control, the structure of the Hamiltonian may be surprisingly different.

Here we present two simple results that are variants of the Pontryagin
maximum principle for linear equations where the ”stochastic” term is an in-
tegral with respect to a centered counting process of the Poisson type. In our
first problem, the cost functional is linear in the phase variable. Due to this
specificity there is no need in variational methods and the maximum principle
can be deduced by straightforward calculations revealing the nature of BSDEs
and their relation with the predictable representation theorem. In the second
problem, with a quadratic cost function, we use variations by a single step
function.

It necessary to note that more general variation schemes of the modern
optimal control lead to analogues of the Pontryagin maximum principle for
nonlinear SDEs of rather general type. However, one can observe that, in spite
of the considerable efforts, the available results are far from the state of art
of the deterministic theory and the examples of successful applications of the
necessary conditions in stochastic setting are rare. Up to now, the stochas-
tic maximum principle can not compete with Bellman’s method. One of the
possible reason of such a discouraging situation are “algorithmic” difficulties
encountered with determining a solution of a backward SDEs constrained to
be an element of a certain specific space. The recent investigations extended
the concept of the BSDE to a nonlinear formulation and revealed that they
have important applications and worth to be studied as objects of independent
interest in more general setting.

We end the introduction by some historical comments. The backward
stochastic differential equation was introduced by Bismut’s 4 in the context
of the duality approach to to stochastic optimal control and was exploited
in a number of his subsequent publications, see, e.g.,* for LQ-problem with
Poisson disturbances. The first attempt to apply backward SDEs to finance is
also due to Bismut, %; in particular, he considered Merton’s portfolio problem
and provided an economic interpretation for dual variables. It worth to notice
that Bismut considered filtrations more general than natural and his backward
equations are related to Kunita—Watanabe decomposition rather than to the
simple predictable representation theorem. In 70-s Bismut’s idea to use BSDE
in a formulation of stochastic maximum principle was discussed intensively by
participants of the seminar at Central Economics and Mathematics Institute;
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the result was a number of publications but, unfortunately, the only paper !
is available in English. The recent boom in mathematical finance activates an
interest to the stochastic maximal principle and there is a new wave of papers
contributing to this subject, see, e.g., 2, °. Nonlinear backward stochastic
equations was introduced by Pardoux and Peng in ', an important work ”
contains a good exposition of the theory with applications to mathematical
finance as well as a long list of references.

The optimality criteria for the linear model (1), (2), but driven by a Wiener
process, was proved in ?, the Poisson case was considered in author’s thesis
10. Jlemmas 3.1 — 3.3 are adapted from*. Theorem 5.1 for the linear-quadratic
model and Example 2 is an extension of Saksonov’s approach ! to the Poisson-
type disturbances. In spite of a difference in corresponding Ito calculus, the
resulting maximum principle has a similar structure. At last, the books® and®
can be recommended as references in point processes and measurable selection.

2 A linear model

Let us consider the following optimal control problem:

J(u) = E o T]((btayt) + fo(ut))dt — max, (1)
dyr = (Aye— + fi(ue))dt + (Bys— + fa(ue))(dNy — Aedt),
Yo = 1N (2)

(in the sequel the subscript ¢ will be usually omitted).

We assume that a stochastic basis (2, F,F, P) is given with the filtration
F generated by a counting process N and the P-null sets of F. The intensity
A of N is a bounded predictable process, the initial condition n € R™ and the
time horizon T' € R are fixed.

The set U of admissible controls consists of all predictable processes with
values in U C R™.

The coefficients are assumed to satisfy the following conditions:

1) The functions f; = f;(w,t,u) are defined on Q@ x Ry x U, f; and f, take
values in R™ and fo is a scalar function. For any u € U the process f;(.,u) is
predictable and for any w,t the function f(w,t,-) is continuous.

2) The process b = (b;) with values in R" is predictable.

3) The components of n x n matrices A = (4;) and B = (B;) are pre-
dictable processes.

4) All coefficients are bounded by a certain constant c.



3 Backward stochastic equations

Put || X||; := supy<; | Xs|. Let LOF be the space of regular (=cadlag) adapted
processes X = (X;) with E||X¢||' < oo and LCOY := Ny, >1 LOT'. We shall use
also the spaces L2™ which contains all predictable processes h such that

E / he|?*ds " < 00
(), metas)
and L2 := ﬁmzlLC%m.

For a matrix or a vector process X a notation like X € LC}* means that
all components belong to this space.
Lemma 3.1 Let ® be the solution of the linear matriz equation

d® = A®_dt+ B®_(dN — A\dt),
o, = I, (3)
where I is the n X n identity matriz. Then
(a) ® € LCP;
(b) if det (I + Bi(w)) # 0 for all w,t then the matriz ®¢(w) is always

invertible for all w,t and the process U := &' is the solution of the following
equation:

d¥ = -V _Adt+ 3V ((I+ B) ' —I)BAdt (4)
+ U_((I+B)™' = I)(dN — \dt),
v, = I (5)
(¢) if, moreover ||(I + B)~'|| < K where K is a constant then ¥ € LC®.

Proof. (a) Let g; := sup,, [®5|™, m > 1. Using the boundedness of the
coefficients and the Jensen inequality we get from (5.3) that

gt < Km(l +/ gs—Asds +/ gs—st) (6)
[0,¢] [0,t]

where K, is a constant depending on 7', m, and c.
Let oy, :=inf{t: ¢+ > n}, GEn) = Eg{™. It follows from (6) that

GV <Kn(1+2¢ [ GMds).

[0,¢]

By the Gronwall-Bellman lemma the function Gi") is bounded by a constant
not depending on 7, and the same constant gives a bound for F'sup;<r [®¢|™.
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(b) Put V := ®W¥. Then V solves the equation

dV = [(A—BAV. —V_(A—BXdt+[(I+B)V_(I+B)*—V_]dN,
Vo = L

Since the process identically equal to I is also a solution of the above
equation, we have by uniqueness that ®W¥ = I. Similarly, ¥® = [.

(c) The assumption ensures the boundedness of the coefficients of the linear
equation (4) and the assertion follows from (a). O

From now on we shall assume the |(I + B)~!] is uniformly bounded.

The following assertion is nothing but a version of the Cauchy formula.

Lemma 3.2 The solution of the problem (2) (when u € U is fized) admits the
following representation:

wo= wfr [ a0 BB s+

)

+ / O (I + B,) ! falus) (AN, — Nyds)|. (7)
[0.¢]

Proof. For y defined by (7), evidently, yo = n; by the product formula
d(XY) = X_dY +dXY_ +d[X,Y] we have

dy = Ay_dt+ By_(dN —\dt) + [fi — B(I + B) ! f2A]dt +
+ (I +B) 'f2(dN — Adt) + B(I + B) ' fodN =
(Ay— + f1)dt + (By— + f2)(dN — Adt)

where ft = f(uz) O
Lemma 3.3 (a) There are processes p € LCY® and h € L2® such that

dp = —(A*p_ + B*hA+b)dt + h(dN — \dt), 8)
pr = 0 9)

(b) the pair (p, h) € LOY x L%>® satisfying (8) and (9) is uniquely defined;
(c) this pair (p,h) has the following structure:

p = HEGr+M-GQ), (10)
h = (I+B)™'=Dp_+ (I +B*)"'e* "¢, (11)
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where ® is the solution of (3),

G, / ®*_ds, (12)
f0.4]

M, = b5 (AN, — \yds), (13)
[0,1]

and the process ¢ € L3> is uniquely defined by the predictable representation

Gr=EGr+ |  ¢u(dN, — Ayds). (14)
[0.7]

Proof. At first, let us check that the formulae (10) — (14) define a pair
(p,h) € LO¥ x LC$. Since we assume that |(I + B)"!| < K, Lemma 3.1
implies that ® ! € LC%® and hence, by the boundedness of b, we have G €
LC%. In particular, E|Gr|* < co. By the predictable representation theorem
there exists the process ¢ € L2? such that (14) holds and the components of
M are square integrable martingales on [0, 7']. Because the components of M
have finite moments of any order, the Doob inequality implies that M € LCP.
It follows easily from the above properties that the process p given by (7) is in
LC¥.

Let M and ¢’ be the components of M and ¢, i = 1,...,n. Using the
Jensen inequality and the boundedness of A we have:

E(/ |¢§|2Asds)m < cm’leE/ |68 2\ ds =
[0,T7] [0,7]

cn=irmE [ gl PraN, < cm—leE(/ |¢§|2st)m.
[0,7] [0,7]
The Burkholder—Gundi—Davis inequality asserts that
B( [ wiPan)" = B M < Bl
0,T

As M € LC%, the above bounds imply that ¢ € L3®. From the properties of
®~! p, and ¢, proven under the assumption that ||I + B)~!|| is bounded, we
infer easily that the formula (11) defines the process h € L3%.

Now we check that the relations (10) — (14) define the processes p and
h related through the backward equation (8), (9). To this aim we apply the
product formula (10) and make use the equation (4) for ¥ = ®~1 and (12) —
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(14). As a result, we get:

—[A*p_ + B*(I+ B*)"* = )Ap_]dt

(I +B*)"' = Dp_(dN — \dt) +

®* 1p(dN — Adt) — bdt + (I + B*)™' = I)®* 1pdN =

= —{A'p_+B[((I+B)"' —Dp_+ T+ B*)"'®*'g]\+ b}dt +
+ [(U+B*) ™ —Dp_+ (I + B*) '&*1¢](dN — \dt) =

= —(A*p+ B*hA+b)dt + h(dN — \dt).

dp

The condition (9) holds obviously.

So, (a) and (c) are proved. The assertion (b) follows from the uniqueness
of the trivial solution in the class LCS® x L3> in the case b = 0.

By (3) and (8) we have with b = 0 that

d(®*p) = &% A*p_dt+d* B*p_(dN — \dt) — &* A*p_dt — &* B*h)dt +
+ ®*h(dN — Adt) + ®* hdN = &* (B*p_ + B*h + h)(dN — \dt) =
= (dN — \dt)

where ¢ := ®* (B*p_ + B*h + h) € L2*°. We deduce from here, making use
of the boundary condition (9) that

s (AN — Ayds) = 0.
[0,7]

By the uniqueness of the predictable representation in the class L%? for the
square integrable random variable, in our case, identically equal to zero, we
get ¢ = 0. The matrix ®; is invertible and thus p = 0. Since the matrix I + B}
is also invertible, h = 0 as well. O

The problem (8), (9) to find p € LCS° and h € L3? will referred to as the
backward stochastic equation.

Remark 1. Evidently, the relation (10) can be written as p = ®* 17 (V)
where
Y = / B hyds
(.1

and 7(Y") is the optional projection of the process Y, i.e.

b= E(/{tw @;~"bads| 7).



4 The optimality criterion for the linear model

Now we formulate the analog of the Pontryagin maximum principle for the
control problem (1), (2).
Let us consider the Hamiltonian function

H(y,u,p,h) := (p, Ay + fi1(u)) + (b, By + f2(u))A + (b,y) + fo(u)

(arguments w and ¢ are omitted).
Theorem 4.1 (a) Let u® € U be the optimal control for the problem (1), (2)
and y° = (y;) the corresponding process.
Then there exist n-dimensional processes p € LCY and h € L2 satisfying
the backward stochastic equation
oH , ,
dpy = —8—y(yt4“t,1)t—>ht)dt + he(dN — Mdt), (15)
pr = 07 (16)

and such that

sugH(yf_,u,pt_, ht) = H(y;_,uy,pe—, ht) dP x dt-a.e. (17)
ue

(b) If the processes y° € LC°, u® € U, p € LC®, and h € L3 are such
that the equations (2), (15) — (17) hold then u® is the optimal control and y°
is the optimal process.

Proof. (a) First of all we notice that the backward equation (15), (16)
coincides with (8), (9) and the existence of its solution is guaranteed by Lemma
3.3.

Let us substitute the expression (7) for y into the definition (1) of the cost
functional. We have:

Jw) = E[ (@bt +

(0,77

+ B (d)t*bt,/ @5 [fi(us) = BU 4+ B)™ fa(ug)Aslds ) di +
[0,T7] [0,¢]

+ E (@;bt,/ &, (I + B)™ fo(u,)(dN, — /\sds))dt +
[0,T7] [0,¢]

[0,7]



Integration by parts yields the equality
[ (@b [ @)~ B+ B) folun\ds) e =
[0,7] [0,¢]

= / (@/ @;bsds, f1 (Ut) - B(I + B)ilfz(ut)At)dt. (19)
[0,T7] [¢,T]

Further, using the martingale property of the integral with respect to dN — \;dt
and the formula for covariance of such integrals we obtain that

E (<I>;‘bt,/ &, 1(I +B) ™" fa(us)(dN, — /\sds))dt =
[0,7] [0,¢]
= F (@:btdt,/ (I>t__1(I + B)71f2(ut)(dNt — Atdt)) =
[0,7] [0,T7]
= E( ACAE )\tdt),/ &, (I + B)™" fa(ug) (AN, — Atdt)) =
[0,7] [0,7]

= FE (I +B*) 7 ®; =" ¢, fo(ur) Aedt). (20)
(0,77

Notice that the expectation of the right-hand side of (19) is equal to

E (@;—1m(/ 3byds ), fi(w) — B+ B) ™ fo(w)\: ) dt =
0.7) (7]

= FE (®; " (EGT — My — Gy), fi(w) — B(I + B)™" fa(ug) Ao )dt. (21)
(0.7
From (18) - (21) and (10), (11) we get the following expression for the cost
functional:

J(u) =E (®Fbe,m)dt + E/[O T][(pt, fr(ue)) + (B, f2(ue))Ae + fo(uy)]dt.

(0,77
(22)
It follows from the definitions that the control u° satisfying the maximum
principle brings the pointwise maximum to the expression under the sign of the
integral in the second term of the above representation, hence, J(u°) > J(u)
for all u € U.

(b) Reciprocally, let u° be the optimal control. This means that J(u°®) >
J(u) for all w € U. Assume that u° does not satisfy the maximum principle.
Since in the considered case maximization of the Hamiltonian H is equivalent
to maximize of the function

x(u) == (p-, fi(w)) + A(h, fa(u)) + fo(u),
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for a certain € > 0 the set

{(w)t) : sup X(w)tau) —€> X(wvt)uo)}
uelU

has positive dP x dt-measure. Let us consider the set-valued mapping I' from
(2 x R4, P) into U defined by

FNw,t):={uelU: x(w,t,u) > sup x(w,t,u) —e}.
uwelU

Clearly, I" has the P ® U-measurable graph and the set A = {(w,t) : uf(w) €
['(w,t)} is P-measurable. Let @ be a P-measurable selector of . For the
control 4° := @la + vl we have J(u®) < J(@°). Thus, the assumption that
u® does not satisfy (17) contradicts to optimality of °. O

Remark 2. If the set U is a compact then the control u° € U always exists.
Indeed, the maximum principle is satisfied by any P-measurable selector of the
set-valued mapping ¥ from (Q x Ry, P) into U defined by

Y(w,t) ={ueU: x(w,t,u) =sup x(w,t,u)}.
uelU

Example 1. As an illustration we consider the following optimal control
problem

J(u) == E/ Ijo,)(t)(y; + Bui)dt — max, (23)
[0, 7]
dyt1 = (yt2+u%)dt+01(dNt —dt), yé =nt,
dy; = (yi +ui)dt+C*(dN, —dt),  y5 =17, (24)

where u!,u? > 0 and u! + u? = 1, C' and C? are some real numbers, may be,
equal to zero, the constant 3 is such that e’ <1 -8 <1, T € Ry, Tisa
stopping time and N is the unit rate Poisson process.

The transition matrix ® for the system (24) has the form

cht sht
Qt_[sht sht}'

In this case the Hamiltonian is
H(y,u,p,h) =p"(y* + u') + p*(y" +u?) + h'C" + h*C* + Ijp 1 (y" + Bu?),
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and to obtain u° from the maximum principle one needs to know only p! and
2

2.
According to Remark 1, p = ®*17(Y") where
Y: ::/ Ijo,7(s)®5erds, ey := (1,0)".
(¢,

Hence,

P E[sh(TAT—tANT) | Fil,

Elch(TAT—tAT) | F)

1
t
2
yn

Let us consider the set
[:={p'>p>+ 8} = {(w,t): E(eTAT=thr | F:) > 1— 6}

It follows from the maximum principle that that for ¢ < 7 the components of
the optimal control u° has the form u°®' = Iy, u°% = I. Evidently, for ¢t > 7
the values of u°® can be chosen arbitrary.
In particular, let 7 := T'. Then u®' = Ijg 4], u°* = Iy, 77, to = T+In(1—73).
Another particular case: T := 7_; where 7, := inf{t : Y; < a}. Here the
optimal control is given by the formula u$! = I4 (¢, Myr,) where M; := Ny —t
and

A= {(t,z) €0,T]xR: e TP(r_._, >T —1t) +/

eSdF, <1— 5}
[0,T—¢]

where F' is the distribution function of 7_,_;.

5 A linear-quadratic problem

Let us consider the problem of optimal control of the same linear equation (2)
but with the quadratic cost functional

1
Jw) =B [ (Sadyl + oy + folw))dt - max,  (25)
.71 \2

where a = (a;) is a bounded predictable process and all other parameters
satisfy the hypotheses assumed above including the boundedness of the process
(T +B)71.

It happens that this more general criteria leads to some new surprising
features with respect to the corresponding deterministic result.
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One could expect, by analogy, that for the problem (2), (25) the assertion
(a) of Theorem 4.1 should hold with the Hamiltonian

H(y,u,p,1) = (p, Ay + () + (, By-+ Folu) A+ 51l + (b,) + olw). (26)

However, the example below shows that such a straightforward generalization
fails.

Example 2. Let consider the following particular case of the linear-
quadratic model:

1
J(u):=—-zF y7dt — max, (27)
2 Jom

dyt = Ut (dNt - dt), Yo = 0, (28)

where N is the unit rate Poisson process and the phase space of controls U
consists only from two points: —1 and 1.
Evidently, the cost functional J does not depend at the choice of a control
and is equal identically to
1 Eyldt = 1 E(N; — t)%dt = _lpe
2 Jo,m 2 Jo,m 4

According to the formula (26) the Hamiltonian H (y,u, p, h) = hu—(1/2)y%. In

particular, the control u® = 1 is (as all the others) an optimal one; it generates
the dynamics y; = Ny —t. The backward SDE

0H , ., .
dpt:—a—y(yt,ut,pt,h)dt+ht(dNt—dt), pr =0,

reduces to
dpt:yz)dt+ht(dNt_dt)7 pT:0>

It is easy to check, by applying the formula for a product to the processes y°
and h with hy = (t —T) , that (y°,h) is the solution of this backward SDE.
But h; < 0 for ¢ < T and hence the maximum of the Hamiltonian H cannot
be attained on the control u° = 1.

Nevertheless, the maximum principle holds for our LQ problem (even in
the case on non-convex U) but with a modified Hamiltonian which contains
one extra term, namely, with

H(y,u,p,h) = (p,Ay+ fi(u)) + (h, By + f2(u))A +
b galyl + (0,9) + folw) — 5N (Y P)P(w), Bu)A,(29)
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where

Y; = /[t,T](I)Sq)SdS’ (30)
Pe(u) = BT+ B) ' fo(ud) — & (I + B) " fo(u), (31)

and My (.|P) denotes conditioning with respect to the predictable o-algebra on
the measure space (2 x Ry, F ® By, My) with My (dw,dt) := P(dw)dN;(w).
Notice that the extra term depends on the control u° to be tested on
optimality.
Theorem 5.1 Let u® € U be the optimal control for the problem (25), (2) and
y° be the corresponding process.
Then there is a pair (p,h) € LCY x L2®° which is the solution of the
(n-dimensional) backward SDE

OH
dpy = _a_y(y;t)fau;ﬁ):pt—aht)dt + hi(dN — Aedt), (32)

pr = 07 (33)
such that

sugH(yf_,u,pt,, ht) = H(y;_,ug,pe—, ht) dP x dt-a.e. (34)
ue

where H is given by (29).
Proof. The relation (32) is nothing but

dpt = —(A*pt_ + B*ht>\t + ayf + b)dt + ht(dNt — )\tdt) (35)

Since y° € LC$ and the coefficient a is bounded, in accordance with Remark
1 there exists the unique solution (p,h) € LC x L3>*. Let u € U be an
arbitrary control with its corresponding process y solving (2); put ¥ := y° —y.
Then

dy = (Ay— + fi(w®) — fi(u))dt + (By_ + f2(u®) — fo(u)(dN — Adt)  (36)

where 9o = 0. Let us calculate the increment of the cost functional J when u°
is substituted by u. We have:

. o 1 -
Jw®)—J(u)=FE ((aryy +be,Ut) + fo(ug) — fo(ur))dt — §E as |y | dt.
0,7] 0,7]
(37)
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Let us introduce the following notations:

Xe(ue) = (pi—, fr(ue)) + (he, fo(ue)) + folu),

¢e(u) = @ [fi(w) — B(I + B) ™" fa(ur)A],
Ye(ug) = 7T+ B) falup),
Xt = xe(ug) = xe(ue),

G = de(uf) — piluy),
e = h(ug) — Peluy),

my = N;— Asds.
[0,¢]

We rewrite the first term in the right-hand side of the equality (37) involving
¥ in a linear way using (22). In the second term we substitute the expression
for y given by the formula Cauchy (7). As a result we get

1 ~
Jw)—Jw)=E [ Rdt—=E [ a o / Guds| di—
[0,7] 2 Jpo,m [0.4]
o~ ~ 1 o
_E at(<I>t bods, B, wsdms)dt——E ar |®; [ dedm,| dt.
[0,7] [0,t] [0,£] 2 Jo,1 [0,4]
(38)

For any r €]0,T] and € €]0,r] we can define the control
wSr = ultT + ’LLO(]. _ Ie,r)

where 17 is the indicator function of |r —¢,r], i.e. u®" coincides with the
optimal control u® everywhere on [0,T] except the interval |r — &,r] where
u®(r) is equal to u.
It follows from (38) and the definition of u*" that
J(u®) = J(w™") = Gy" = (1/2)Gy" — G5 — 1/2)Gy”
with

Gi’r = K )/(\tItgmdt = / E;(\tdt,
[0,7] Ir,r—e]

o, / I yds
[0.4]
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€,r
Gy

E at(<1>t / 57 8, ds, @, / I;"zﬁsdms)dt,
[0,T7] [0,t] [0,t]

Gy" = E ar |®, / IS gdm
[0,4]

(0,77

dt.

We show that
§J" == lime 1 (J(u°) — J(u™"))
e—0
exists for almost all 7 €]0, T'] and calculate the explicit expression for this limit.
Since the functions f; are bounded and (p,h) € LC$® x L3>, the function
f[o,.] EX.dt is absolute continuous on [0, T]. Hence for almost all » €]0, T

lime 'G}" = EX. (39)

e—0

Notice that

e 1/2 <1>t/ IS yds §5_1/2|<I>t|/ IS gg|ds < £/2|®, ||| |7
[0,t] [0,t]

The processes ® and ®~! are in LC®, the functions a, f;, A , B, and
(I + B)~! are bounded. Therefore, by the bounded convergence theorem we
have for all r that

lim 'G5 = 0.
e—0

Further,

< (@[ s [1D]7 (N = Ny—e + c2),

(2. / 57 pods, @ / I gdms) )
[0,¢] [0,2]

hence, for all r

lime Gy =0.
e—0

At last, we check that for almost all r

lim e~ Gy = BE(My (Y|P)riby, ¥r) (40)

e—0

where Y is given by (30). Put
&= / IS hydms,.
[0,t]
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It follows from the product formula that

e,r e, e,r
Gy =G+ Gy

where
Gl o= 28| af / iDL, e ) dt,
’ [0,T] [0,1]
Gyh = E as / (85 ®1hy, hs) 5" dN ydt.
’ 0,71 J{o,4

The total variation of any component of £=" is bounded by (N, — N,._. + ce¢)
where the random variable n has moments of any order. It follows easily that

lime ‘G =0.
e—0 ’

The expression for Gi:'{ can be easily transformed in the following way:

= E/ I/ (BF By, s )dtdN, =
[0,T7] [s,t]

- E/ I (Yyths, hs)dN, = E IS (My (Y [P)sths, ths)dN, =
[0,T7] [0,T]

=B 127 (My (Y|P) sths, ) Ads.
[0,T7
We infer from the obtained expression, in the same way as for (39), that the
relation (40) holds for almost all r €]0, 7.
Thus, we have shown that for almost all r
0T = E[Rr — (LD (MN (Y | P)rthr, 1) Ne]. (41)

But u° is an optimal control, i.e. J(u®) — J(u®(r)) > 0. Therefore, for almost
all r

E[S(\r - (1/2)(MN(Y|7))T12;T‘7 12;7“)>‘r] Z 0.
Integrating this inequality with respect to r we get the bound
E [ ][5(\7‘ - (1/2)(MN(Y|7))7‘12;T7ar)Ar]dr Z 0. (42)
0,T

Since the control u € I is arbitrary, the relation (42) implies that

igg[k\r(u) - (1/2)(MN(Y|P)T‘1ZT(U)7 er(U))Ar] = 5(\7‘(“0) (43)
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dP x dt-a.e. Indeed, if it would not be the case and (43) were violated on the
set, of positive measure, the standard use of the measurable selection theorem
(see the proof of the assertion (b) of Theorem 4.1) would allow to construct a
control u € U violating (42).

To accomplish the proof we notice that (34) and (43) are equivalent. O

6 Final remarks

Our hypotheses on the boundedness of the functions f;(u) make possible to
avoid some technicalities in the proof of the maximum principle. However, the
results obtained above are not applicable to the generalization of the classic
LQ-problem where the phase variables have jumps at stopping times which
form a Poisson type point process, e.g., to the problem:

E / ((1/2)lyel? + |ue[?)dt — min, (44)
[0,T7]

dy; = (Ayi— + Cuy)dt + (Byi— + Duy) (ANy — Adt), yo =, (45)

where a > 0, U = R", and the class of admissible controls consists of all
predictable processes u = (u;) with values in R™ and satisfying a certain
integrability condition. In the problem (44), (45) it is naturally to assume
that U coincides with the Hilbert space L3?. The strictly concave functional .J
on this space attains its minimum and only at a single point. In this case the
stochastic maximum principle holds as well but it is more natural to consider
the processes involved in its formulation as the elements of other functional
spaces. The analysis of necessary conditions lead to the definitive solution of
the LQ-problem similar to that as was done by J.-M. Bismut for the case of
the Poisson disturbances.

The discussion of this result as well as of nonlinear problems and problems
with incomplete information is beyond of the scope of this work.
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